RU2643844C1 - Комбинированный взрывной заряд - Google Patents
Комбинированный взрывной заряд Download PDFInfo
- Publication number
- RU2643844C1 RU2643844C1 RU2017106219A RU2017106219A RU2643844C1 RU 2643844 C1 RU2643844 C1 RU 2643844C1 RU 2017106219 A RU2017106219 A RU 2017106219A RU 2017106219 A RU2017106219 A RU 2017106219A RU 2643844 C1 RU2643844 C1 RU 2643844C1
- Authority
- RU
- Russia
- Prior art keywords
- charge
- explosive
- substance
- fuel
- composition
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B1/00—Explosive charges characterised by form or shape but not dependent on shape of container
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B3/00—Blasting cartridges, i.e. case and explosive
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Изобретение относится к области взрывной техники, а именно к конструированию взрывных зарядов на основе бризантных взрывчатых веществ. Комбинированный взрывной заряд из бризантного взрывчатого вещества выполнен с центральным осевым каналом, который заполнен композицией на основе неорганических окислителя и горючего, и содержит систему инициирования, включающую генераторы плоской ударной волны, расположенные на торцевых поверхностях заряда, и быстродействующие детонаторы, В качестве бризантного взрывчатого вещества используется вещество, для которого критическое значение ударно-волнового начального импульса составляет не менее 5 ГПа, а в качестве горючего в композиции используются нанопорошок алюминия или гидрид алюминия. Повышается безопасность, снижается уязвимость боеприпаса при сохранении эффективности взрыва по воздушной ударной волне (фугасности) на уровне современных мощных взрывчатых составов. 1 табл., 2 пр., 2 ил.
Description
Изобретение относится к области взрывной техники, а именно к конструированию взрывных зарядов на основе бризантных взрывчатых веществ.
Известна конструкция взрывного заряда, включающая комбинированный заряд, состоящий из внешней оболочки из мощного бризантного вещества на основе октогена, во внутреннем осевом канале оболочки расположен стержневой заряд, состоящий из смеси перхлората аммония и алюминия, которая может содержать и бризантные взрывчатые вещества из классов нитраминов и нитросоединений (патент США №5996501, опубл. 07.12.1999, F42B 1/00.) Такая конструкция позволяет увеличить энергию взрыва на 5-10% по сравнению со сплошным зарядом ВВ, а, следовательно, и энергию воздушной ударной волны и скорость осколков.
Недостатком данной конструкции является высокая ударно-волновая чувствительность внешнего слоя комбинированного заряда, что приводит к срабатыванию боеприпаса на его основе при достаточно близком срабатывании детонирующего боеприпаса, а также при простреле пулей или быстро летящим осколком.
Известна также конструкция боеприпаса (патент РФ №2253084, опубл. 27.05.2005. F42B 12/20), содержащего комбинированный заряд, состоящий из внешней оболочки из мощного бризантного вещества на основе октогена, внутренний центральный осевой канал оболочки заполнен высокоэнергетической композицией на основе минеральных окислителей и металлов. Для взрывчатых составов на основе октогена критическое давление начального ударно-волнового импульса согласно работе «Физика взрыва». М., Наука, 1972 составляет ~3 ГПа, т.е. данные составы являются весьма чувствительными к внешним ударно-волновым воздействиям. Изобретение по данному патенту направлено на повышение могущества фугасного действия осколочно-фугасного боеприпаса и позволяет повысить значение импульса, определяющего эту характеристику, на ~40% по сравнению с известным решением. При этом не наблюдается существенного снижения параметров, определяющих могущество осколочного действия. Так, величина количества осколков, характеризующая интенсивность дробления корпуса, снижается не более чем на 19%, а скорость их разлета увеличивается на 13%. Данное устройство выбрано в качестве прототипа.
Недостатком прототипа является уязвимость боеприпаса, т.е. срабатывание боеприпаса при достаточно близком срабатывании детонирующего боеприпаса, а также при простреле пулей или быстро летящим осколком. Это вызвано высокой ударно-волновой чувствительностью внешнего слоя комбинированного заряда, выполненного из составов на основе октогена.
В качестве критерия ударно-волновой чувствительности принимают предельное значение давления во фронте инициирующей ударной волны (порог инициирования) при определенном расстоянии до возникновения детонации (см. Физика взрыва. М., Наука, 1972). Часто расстояние до детонации при отнесении ВВ к классу низкочувствительных не указывают. В работе В.Ю. Клименко «Физическая и численная модели детонации низкочувствительных ВВ». Материалы Международной конференции «Ударные волны в конденсированных средах». Киев, Украина, 16-21 сентября 2012 г. в качестве критерия по отношению ВВ к классу низкочувствительных принято значение порога инициирования порядка 6 ГПа.
Задачей настоящего изобретения является снижение уязвимости боеприпаса (увеличение порога инициирования) с одновременным сохранением его могущества (фугасности, параметров воздушной ударной волны, т.е. эффективности боеприпаса) на уровне боеприпасов на основе современных мощных взрывчатых веществ.
Техническим результатом является повышение безопасности боеприпаса к внешним ударно-волновым воздействиям при сохранении эффективности на уровне современных мощных взрывчатых составов.
Для решения указанной задачи и достижения технического результата заявляется комбинированный взрывной заряд из бризантного взрывчатого вещества, выполненный с центральным осевым каналом, который заполнен композицией на основе неорганических окислителя и горючего, и содержащий систему инициирования, в котором, согласно изобретению, в качестве бризантного взрывчатого вещества используется вещество с критическим значением ударно-волнового начального импульса (порога инициирования) не менее 5 ГПа, а в качестве горючего в композиции используется нанопорошок алюминия или гидрид алюминия, при этом использована система инициирования, включающая генераторы плоской ударной волны, расположенные на торцевых поверхностях заряда, срабатывающие от быстродействующих детонаторов. Использование бризантного взрывчатого вещества, у которого критическое значение ударно-волнового начального импульса составляет не менее 5 ГПа,- снижает уязвимость боеприпаса. К таким веществам относятся следующие ВВ: Октоген (НМХ, циклотетраметилентетранитрамин) и гексоген (RDX. циклотриметилентринитрамин), содержащие не менее 15%.; полисилоксаного каучука СКТН.
Тротил (TNT, тринитротолуол) беспористый;
ТАТБ (ТАТВ, Триаминотринитробензол). а также ряд веществ, синтезированных в последние десятилетия.
Одновременное заполнение осевого канала бризантного взрывчатого вещества композицией, содержащей неорганические окислитель и горючее, и использование в качестве горючего нанопорошка алюминия или гидрида алюминия позволяет сохранить энергию взрыва на уровне мощных ВВ. Это связано с дополнительным энерговыделением в ходе реакции продуктов разложения окислителя с горючим - металлом или его гидридом (см. таблицу).
Наиболее явно тепловой эффект гетерогенных реагирующих композиций проявляется при максимально развитой поверхности контакта реагентов, т.е. для гомогенных систем с минимальными размерами частиц. Поэтому в качестве горючего выбран нанопорошок алюминия или его гидрид, разлагающийся на элементы в ходе реакции. При обработке в мощных планетарных мельницах кристаллические вещества измельчаются до субмикронных размеров. При аналогичной обработке двойной смеси в виде суспензии происходит гомогенизация композиции.
Для реализации энергии гетерогенной реакции в виде детонационного процесса необходим сильный инициирующий импульс, который и реализуется при обжатии композиции (стержня) детонационной волной, особенно при прецизионном встречном инициировании плоскими ударными волнами, что достигается при использовании генераторов плоской ударной волны, расположенных на торцевых поверхностях заряда, срабатывающих от быстродействующих детонаторов.
В этом случае затрудняется разлет продуктов детонации, а при встрече детонационных волн увеличивается длительность экстремальных воздействий на гетерогенную систему, что приводит к более полному протеканию реакций окисления, т.е. к увеличению энерговыделения.
При оптимальной конструкции заряда сумма энергий взрыва стержня и внешнего слоя низкочувствительного ВВ может достигать значений, характерных для зарядов на основе таких мощных ВВ, как октоген и гексоген. Поскольку интенсивность воздушной ударной волны (фугасность) пропорциональна энергии взрыва, по этому параметру эффективности комбинированный заряд не будет уступать зарядам на основе мощных, но чувствительных к ударно-волновому воздействию взрывчатых веществ. При этом следует учитывать, что по таким параметрам эффективности, как дробящее действие (бризантность) и метательная способность, заряд остается на уровне зарядов на основе ВВ внешнего слоя, т.е. значительно уступает октогеновым и гексогеновым зарядам. В частности, такие заряды нельзя использовать в кумулятивных системах.
Наиболее известной композицией «окислитель-горючее», являющейся одновременно промышленным взрывчатым веществом, является смесь аммиачной селитры с органическими веществами или порошком алюминия. Имеются экспериментальные данные по скорости детонации некоторых составов этого типа, в частности, аммонала, с содержанием алюминия ~ 10% (см. Физика взрыва. М., Наука, 1972).
На основе общих термохимических, физико-химических и термодинамических предпосылок были проведены оценки энергетических параметров для конкретных композиций типа «окислитель-горючее». На известных системах, таких как смеси нитрата аммония с порошком алюминия - «аммоналы», произведена верификация расчетов, давшая приемлемое соответствие расчетов и экспериментальных данных.
Результаты расчетов представлены в таблице. Полученные результаты расчета для смеси аммиачной селитры с алюминием близки к экспериментальным данным, представленным в монографии «Физика взрыва». М., Наука, 1972.
Значения теплоты реакции (взрыва), приведенные в таблице, являются предельно достижимыми для данной гетерогенной реакции. Заявляемая конструкция заряда обеспечивает условия, соответствующие наиболее полной степени протекания реакции, а значит приближению к предельному значению теплоты взрыва. Это обеспечивает при низком значении теплоты взрыва внешнего низкочувствительного ВВ (относительно мощных ВВ) достижения общей теплоты взрыва комбинированного заряда на уровне мощных ВВ.
Как уже упоминалось, для реализации эффекта интенсификации реакции необходима оптимизация конструкции заряда по соотношению внешнего и внутреннего диаметров для каждого вида композиции.
На фиг. 1 изображена схема заявляемого комбинированного взрывного заряда.
На фиг. 2 изображен внешний вид заряда перед испытанием (в сборке перед подрывом, виден соединительный кабель между ЭД)
На фиг. 1 заявляемый комбинированный взрывной заряд состоит из корпуса 1, в котором расположен заряд 2 из бризантного ВВ, выполненный с центральным каналом. Канал заполнен высокоэнергетической композицией 3 на основе неорганических окислителя и горючего. На торцах заряда установлена инициирующая система, состоящая из генераторов плоской ударной волны 4 и быстродействующих детонаторов 5.
Примеры конкретного исполнения.
Для достижения технического результата в заявляемой конструкции комбинированного взрывного заряда приняты следующие решения
1. В качестве основного горючего использован наиболее доступный в настоящее время нанопорошок алюминия, для выявления влияния водорода на эффективность взрыва использован гидрид алюминия.
2. В качестве окислителя применен нитрат аммония как наиболее изученное и широко использующееся во взрывной технике кристаллическое вещество-окислитель.
3. В качестве суспензионной жидкости для приготовления композиции применен этиловый спирт ректификат. Он хорошо смачивает компоненты, достаточно летуч, малотоксичен, слабо растворяет нитрат аммония.
4. Обработку суспензии проводили в мощной планетарной мельнице.
Для выбора внешнего слоя бризантного ВВ использована информация монографии «Физика взрыва». М., Наука, 1972.
Пример 1
Высокоэнергетическая композиция в данном варианте представляет собой гомогенную смесь нитрата аммония с нанодисперсным порошком алюминия; содержание нанопорошка алюминия в смеси 21% по массе (содержание активного алюминия в нанопорошке 82% по массе остальное окисная пленка). Размер частиц алюминия 50-150 нанометров. Смесь готовили путем обработки в планетарной шаровой мельнице в спиртовой суспензии. После сушки прессовали давлением 1500 кгс/см2, отношение высоты шашки к диаметру 0,8, пористость не более 5%.
Заряд ВВ - тротил прессованный плотностью 1,56 г/см3. Внешний диаметр заряда по ВВ - 60 мм, диаметр стержня 30 мм, длина заряда 150 мм.
Генератор плоской волны содержит пластичное ВВ.
При определении интенсивности воздушной ударной волны (эффективности взрыва) для исключения воздействия отраженной ударной волны на основной сигнал заряд подвешивали на высоту 12 метров.
Для измерений параметров воздушной ударной волны использовались пьезорезистивные датчики давления.
Сигналы датчиков давления через предварительные усилители регистрировались автономными регистраторами.
Основной результат: параметры воздушной ударной волны комбинированного заряда (интенсивность, энергия) находятся на уровне заряда аналогичной геометрии, снаряженного одним из современных мощных пластичных ВВ типа С-4 (алюминизированный пластичный гексоген).
Пример 2. Конструкция и технология аналогичны приведенным в примере 1, отличие состоит в рецептуре композиции стержня, она содержит смесь нитрата аммония (65% по массе) и гидрида алюминия (остальное). Масса внутреннего заряда уменьшена на 25%.
Результат: при уменьшенной массе по сравнению с примером 1 воздушная ударная волна сохраняет интенсивность на том же уровне.
Claims (1)
- Комбинированный взрывной заряд из бризантного взрывчатого вещества, выполненный с центральным осевым каналом, который заполнен композицией на основе неорганических окислителя и горючего, и содержащий систему инициирования, отличающийся тем, что в качестве бризантного взрывчатого вещества используется вещество, для которого критическое значение ударно-волнового инициирующего импульса составляет не менее 5 ГПа, а в качестве горючего в композиции используются нанопорошок алюминия или гидрид алюминия, при этом использована система инициирования, включающая генераторы плоской ударной волны, расположенные на торцевых поверхностях заряда, и быстродействующие детонаторы.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017106219A RU2643844C1 (ru) | 2017-02-22 | 2017-02-22 | Комбинированный взрывной заряд |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017106219A RU2643844C1 (ru) | 2017-02-22 | 2017-02-22 | Комбинированный взрывной заряд |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2643844C1 true RU2643844C1 (ru) | 2018-02-06 |
Family
ID=61173857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017106219A RU2643844C1 (ru) | 2017-02-22 | 2017-02-22 | Комбинированный взрывной заряд |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2643844C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2669182A (en) * | 1949-03-29 | 1954-02-16 | Brevets Aero Mecaniques | Shattering and incendiary shell |
RU2025646C1 (ru) * | 1992-12-15 | 1994-12-30 | Научно-исследовательский институт специального машиностроения МГТУ им.Н.Э.Баумана | Макет боеприпаса для испытания материалов и взрывчатых веществ на метательно-дробящее действие |
RU2253084C1 (ru) * | 2003-10-15 | 2005-05-27 | Пензенский государственный университет | Осколочно-фугасный боеприпас |
RU2529122C2 (ru) * | 2013-09-09 | 2014-09-27 | Александр Иванович Голодяев | Боевая часть |
RU2590803C1 (ru) * | 2014-12-25 | 2016-07-10 | Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации | Разрывной заряд обычных средств поражения и боеприпасов основного назначения |
-
2017
- 2017-02-22 RU RU2017106219A patent/RU2643844C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2669182A (en) * | 1949-03-29 | 1954-02-16 | Brevets Aero Mecaniques | Shattering and incendiary shell |
RU2025646C1 (ru) * | 1992-12-15 | 1994-12-30 | Научно-исследовательский институт специального машиностроения МГТУ им.Н.Э.Баумана | Макет боеприпаса для испытания материалов и взрывчатых веществ на метательно-дробящее действие |
RU2253084C1 (ru) * | 2003-10-15 | 2005-05-27 | Пензенский государственный университет | Осколочно-фугасный боеприпас |
RU2529122C2 (ru) * | 2013-09-09 | 2014-09-27 | Александр Иванович Голодяев | Боевая часть |
RU2590803C1 (ru) * | 2014-12-25 | 2016-07-10 | Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации | Разрывной заряд обычных средств поражения и боеприпасов основного назначения |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ahmad et al. | Laser ignition of energetic materials | |
Meyer et al. | Explosives | |
Zou et al. | Explosives | |
US7784403B2 (en) | Optically doped energetic igniter charge | |
MX2012008420A (es) | Pelet explosivo. | |
US8250986B1 (en) | Thermal enhanced blast warhead | |
Koch | High explosives, propellants, pyrotechnics | |
US6467416B1 (en) | Combined high-blast/anti-armor warheads | |
US3320882A (en) | High velocity ignition-propagating cord | |
CN111919081B (zh) | 具有烟火制造术的作用装药的射弹 | |
Trzciński et al. | Investigation of blast wave characteristics for layered thermobaric charges | |
US3528864A (en) | High impulse explosives containing tungsten | |
Liu | Explosion Physics | |
RU2643844C1 (ru) | Комбинированный взрывной заряд | |
Mathieu | Molecular modeling of the sensitivities of energetic materials | |
US4711177A (en) | Auxiliary booster | |
US3369944A (en) | Thickened aqueous detonator composition containing a brisant explosive | |
US3742859A (en) | Explosive charge | |
RU2415119C1 (ru) | Энергонасыщенная взрывчатая композиция | |
JPH04244599A (ja) | 多構造爆発性装薬を含む低脆弱性爆発性火工素子及び爆破、泡立ち効果を得る方法 | |
Locking | TNT equivalence, berthelot theory and the traulz lead block test | |
US5608184A (en) | Alternative use of military propellants as novel blasting agents | |
US3411446A (en) | Igniter cord | |
Klapoetke | Energetic Materials Research at Ludwig Maximilian University of Munich (LMU) | |
TRANĂ et al. | Experimental study on aluminum foils use in blast enhancement application |