RU2642991C1 - Клапанный узел канала перепуска компрессора - Google Patents

Клапанный узел канала перепуска компрессора Download PDF

Info

Publication number
RU2642991C1
RU2642991C1 RU2017113437A RU2017113437A RU2642991C1 RU 2642991 C1 RU2642991 C1 RU 2642991C1 RU 2017113437 A RU2017113437 A RU 2017113437A RU 2017113437 A RU2017113437 A RU 2017113437A RU 2642991 C1 RU2642991 C1 RU 2642991C1
Authority
RU
Russia
Prior art keywords
bypass channel
compressor
valve assembly
longitudinal guides
longitudinal
Prior art date
Application number
RU2017113437A
Other languages
English (en)
Inventor
Сергей Петрович Куница
Тимур Маматкулович Ланевский
Андрей Владимирович Попарецкий
Original Assignee
Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") filed Critical Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО")
Priority to RU2017113437A priority Critical patent/RU2642991C1/ru
Application granted granted Critical
Publication of RU2642991C1 publication Critical patent/RU2642991C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к газотурбинным двигателям, в частности к клапанным устройствам для газотурбинных двигателей, и может найти применение в авиадвигателестроении. Клапанный узел канала перепуска компрессора, содержащий корпус компрессора, внешний и внутренний корпуса канала перепуска с установленным с возможностью осевого перемещения внутри внутреннего корпуса кольцевым затвором профилированной формы, привод. Корпус компрессора снабжен осевыми пазами с установленными в них с возможностью перемещения продольными направляющими. Кольцевой затвор усилен продольными ребрами жесткости, соединенными с продольными направляющими и приводом. Привод размещен внутри кольцевого затвора и закреплен на корпусе компрессора. Продольные направляющие выполнены прямоугольного сечения. Кольцевой затвор имеет возможность перемещаться по поверхности внутреннего корпуса канала перепуска. Изобретение позволяет снизить габаритные размеры и массу клапанного узла канала перепуска компрессора, увеличить прочность конструкции. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к газотурбинным двигателям, в частности к клапанным устройствам для газотурбинных двигателей, и может найти применение в авиадвигателестроении.
По крайней мере, некоторые известные авиационные двухконтурные двухвальные газотурбинные двигатели включают в себя вентилятор, компрессор, камеру сгорания, турбину высокого и низкого давления, и форсажную камеру. Вентилятор двухконтурного турбореактивного двигателя представляет собой компрессор низкого давления или его часть, повышающий давление воздуха, который поступает в наружный контур или одновременно в наружный и внутренний контуры. Воздушный поток на входе вентилятора сжимается, а воздушный поток, выходящий из вентилятора, разделяется так, что часть направляется в компрессор, а остальная часть, именуемая наружным контуром вентилятора, направляется в перепускной канал, где она обходит компрессор, камеру сгорания, турбину высокого и низкого давления и попадает в реактивное сопло. Воздушный поток в компрессоре сжимается и выпускается через камеру сгорания, где он смешивается с топливом и воспламеняется, производя газы сгорания, которые попадают в турбины высокого и низкого давления. К тому же, по крайней мере, некоторые известные газотурбинные двигатели смешивают часть потока наружного контура вентилятора с потоком воздуха, выходящего из турбины низкого давления.
Для регулировки количества воздуха наружного контура, поступающего в реактивное сопло и форсажную камеру, по крайней мере, некоторые газотурбинные двигатели включают в себя клапанный узел.
Известен газотурбинный двигатель, включающий в себя вентилятор, канал перепуска вентилятора, соединенный с вентилятором, а также клапанный узел, соединенный по потоку от узла вентилятора в наружном контуре вентилятора и включающий в себя кольцевое тело клапана, состоящее из золотника, наружного и внутреннего обтекателя, выполненное с возможностью осевого перемещения вдоль канала. Перемещение кольцевого клапана осуществляется приводом с помощью кривошипно-шатунного механизма, включающего в себя связанный с управляющим механизмом трубчатый корпус кривошипа с коленчатыми рычагами, один из которых связан с корпусом канала вентилятора, а другой - с кольцевым клапаном (патент № US 2009/0211090 А1 от 27.08.2009).
Недостатком известного клапанного узла является наличие трех обтекаемых тел сложной геометрической формы. Это приводит к усложнению конструкции клапана, увеличению его массы и снижению ресурса и надежности работы.
Наиболее близким аналогом предлагаемого изобретения является газотурбинный двигатель, включающий в себя вентилятор, канал перепуска вентилятора, соединенный с вентилятором, а также клапанный узел, соединенный по потоку от вентилятора в канал перепуска вентилятора и включающий в себя корпус канала перепуска, соединенный с диффузором, с установленным внутри него с возможностью осевого перемещения кольцевым клапаном профилированной формы и приводом, расположенным внутри кольцевого клапана.
Осевое перемещение клапанного узла осуществляется за счет сжатого воздуха, подводимого по каналам через отверстия во входную полость кольцевого клапана. Обратное перемещение осуществляется при подаче сжатого воздуха, подводимого по каналам через отверстия в конечную полость кольцевого клапана перед уплотнительным соединением (патент № US 2009/0035127 A1 от 05.02.2009).
Недостатком известного клапанного узла является пневматический привод. Требуемые осевые усилия перемещения кольцевого клапана получают отбором воздуха от компрессора, что ухудшает экономичность двигателя, или увеличением рабочей площади приложения давления к кольцевому клапану, что увеличивает габаритный диаметр кольцевого клапана и двигателя. Для быстрого заполнения полостей кольцевого клапана требуется большое количество каналов подвода сжатого воздуха, что увеличивает массу трубопроводов и увеличивает гидравлическое сопротивление течения воздуха в канале наружного контура. Кроме того, необходимо герметизировать корпус наружного контура в местах прохождения трубопроводов, что дополнительно увеличивает массу конструкции и увеличивает вероятность утечек воздуха канала наружного давления за корпус двигателя с потерей тяги.
Позиционирование кольцевого клапана относительно корпуса канала перепуска выполнено при помощи сложного, массивного механического соединения, протяженного по осевой длине.
В совокупности конструкция клапанного узла усложнена, увеличена его масса, снижена надежность работы, увеличен габаритный диаметр двигателя, сопровождаемый снижением экономичности двигателя и потерей тяги.
Задачей настоящего изобретения является создание конструкции клапанного узла канала перепуска компрессора с минимальным диаметральным размером, с минимальными гидравлическими потерями рабочего тела на обтекание клапанного узла.
Техническим результатом, достигаемым при использовании заявленного изобретения, является снижение габаритных размеров и массы клапанного узла канала перепуска компрессора, компактное размещение управляющего привода в полости кольцевого клапана, увеличение прочности конструкции, сохранение коэффициента полезного действия компрессора при работе клапанного узла.
Указанный технический результат достигается тем, что в известном клапанном узле канала перепуска компрессора, содержащем корпус компрессора, внешний и внутренний корпуса канала перепуска с установленным с возможностью осевого перемещения внутри канала кольцевым затвором профилированной формы, привод, согласно изобретению корпус компрессора снабжен осевыми пазами с установленными в них с возможностью перемещения продольными направляющими, кольцевой затвор усилен продольными ребрами жесткости, соединенными с продольными направляющими и приводом, причем привод размещен внутри кольцевого затвора и закреплен на корпусе компрессора. Продольные направляющие выполнены прямоугольного сечения. Кольцевой затвор имеет возможность перемещаться по поверхности внутреннего корпуса канала перепуска.
Кольцевой клапан представляет собой соединенную воедино, например, при помощи сварки конструкцию, усиленную продольными ребрами жесткости, равномерно расположенными в окружном направлении, количество которых выбирается исходя из условий обеспечения ее прочности и жесткости. Такая конструкция позволяет соединить привод, например гидравлический или электрический, с продольными ребрами жесткости, что позволяет компактно разместить управляющие гидроцилиндры внутри кольцевого клапана с уменьшением габаритных размеров и массы клапанного узла. Крепление приводов к продольным ребрам жесткости кольцевого затвора и корпусу компрессора выполнено при помощи разъемного соединения, например болтового, снабженного сферическим телом, обеспечивающим возможность малых угловых перекосов.
Количество приводов выбрано из условия обеспечения потребного усилия перемещения кольцевого клапана, с учетом ограничения габаритных размеров внутри кольцевого клапана, при этом для обеспечения равномерного перемещения в осевом направлении без перекосов и заклинивания, не менее трех, например шесть, что также равномерно передает нагрузку на продольные ребра жесткости кольцевого затвора.
Продольные направляющие, например, прямоугольного сечения, соединенные с продольными ребрами жесткости, обеспечивают центровку и осевое перемещение кольцевого клапана в пазах относительно корпуса компрессора и не передают нагрузку на корпус компрессора от давления рабочего тела, действующего на кольцевой клапан в частично прикрытом/закрытом положении. Прямоугольное сечение продольных направляющих технологичнее в изготовлении, чем, например, трапециевидное, обеспечивающее совместное радиальное перемещение кольцевого клапана и корпуса компрессора. Кроме того, паз и ребра жесткости, расположенные на корпусе компрессора, обеспечивают ему повышенную прочность и жесткость, а также препятствуют пробиванию его в случае обрыва рабочей лопатки.
Высота кольцевого клапана выбрана исходя из обеспечения минимальной площади проходного сечения канала перепуска для создания преимущественно осевого течения рабочего тела в канале с минимальным гидравлическим сопротивлением.
Кольцевой затвор клапана и внешний корпус канала перепуска за счет профилированной формы, представляющей собой гладкую, обтекаемую поверхность, преимущественно эллипсоидной формы, или, в частном случае, не менее двух сопряженных радиусов, при обеспечении перекрытия проточной части канала компрессора, создает минимальное гидравлическое сопротивление течению рабочего тела как в канале перепуска компрессора, так и в канале компрессора.
Расположение привода внутри кольцевого клапана, например, между внутренним корпусом канала перепуска и корпусом компрессора, и крепление его к корпусу компрессора упрощает кинематическую схему клапанного узла и уменьшает потребный рабочий ход привода.
Например, в двухконтурном двухвальном газотурбинном двигателе клапанный узел канала перепуска может быть расположен на компрессоре высокого давления, компрессоре низкого давления, в частном случае - вентиляторе.
Болтовое соединение элементов конструкции клапанного узла позволяет проводить сборку и разборку узла для проведения ремонта и технического обслуживания.
На чертеже показан продольный разрез клапанного узла канала перепуска компрессора.
1 - внешний корпус канала перепуска;
2 - кольцевые ребра жесткости;
3 - передний фланец;
4 - направляющий аппарат предыдущей ступени компрессора;
5 - задний фланец;
6 - кольцевой затвор профилированной формы;
7 - продольные ребра жесткости;
8 - продольные направляющие;
9 - осевые пазы корпуса компрессора;
10 - ребра жесткости на корпусе компрессора;
11 - корпус компрессора;
12 - проставка;
13 - направляющий аппарат последующей ступени компрессора;
14 - фланцевое соединение;
15 - привод;
16 - ось крепления к штоку привода;
17- кронштейн;
18 - ось крепления к корпусу привода;
19 - поверхность внутреннего корпуса канала перепуска;
20 - внутренний корпус канала перепуска.
Клапанный узел канала перепуска состоит из внешнего корпуса канала перепуска 1, снабженного кольцевыми ребрами жесткости 2, передним фланцем 3 присоединенного к статору впереди идущего направляющего аппарата 4 предыдущей ступени компрессора, задним фланцем 5 присоединенного, например, к промежуточному корпусу (на фигуре не показано) или удлинительному патрубку (на фигуре не показано), присоединенному, например, к промежуточному корпусу, кольцевого клапана, состоящего из кольцевого затвора 6 профилированной формы, снабженного продольными ребрами жесткости 7, установленного при помощи продольных направляющих 8 в осевых пазах 9, имеющих ребра жесткости 10, расположенные на корпусе компрессора 11. Корпус компрессора 11 совместно с проставкой 12 крепления направляющих аппаратов 13 последующей ступени компрессора прикреплен, например, к промежуточному корпусу при помощи фланцевого соединения 14. Кольцевой клапан соединен с приводами 15 по оси 16 при помощи разборного соединения, например болтового, снабженного сферическим телом. Приводы 15 закреплены на корпусе компрессора 11 при помощи кронштейна 17 по оси 18 разборным соединением, например болтовым, снабженным сферическим телом. Кольцевой затвор 6 кольцевого клапана перемещается по поверхности 19 внутреннего корпуса канала перепуска 20.
Принцип действия устройства заключается в изменении площади проходного сечения А-А в зависимости от программы управления двигателем путем осевого перемещения кольцевого клапана по продольным направляющим 8 вдоль пазов 9 корпуса компрессора 11 при помощи приводов 15, например, закрепленных на корпусе компрессора 11. В закрытом положении клапанного узла канала перепуска компрессора кольцевой клапан касается внешнего корпуса канала перепуска 1, шток гидроцилиндра 15 выдвинут в максимально открытое положение. При подаче управляющего давления в полость гидроцилиндра 15 шток перемещается в закрытое положение (вправо на чертеже), перемещая кольцевой клапан, таким образом, что площадь проходного сечения А-А непрерывно увеличивается до полного открытия. Кольцевой клапан занимает крайнее открытое положение, обеспечивающее потребный расход рабочего тела в соответствии с программой управления двигателем. Закрытие клапанного узла осуществляется в обратной последовательности.

Claims (3)

1. Клапанный узел канала перепуска компрессора, содержащий корпус компрессора, внешний и внутренний корпуса канала перепуска с установленным с возможностью осевого перемещения внутри канала перепуска кольцевым затвором профилированной формы, привод, отличающийся тем, что корпус компрессора снабжен осевыми пазами с установленными в них с возможностью перемещения продольными направляющими, кольцевой затвор усилен продольными ребрами жесткости, соединенными с продольными направляющими и приводом, причем привод размещен внутри кольцевого затвора и закреплен на корпусе компрессора.
2. Клапанный узел канала перепуска компрессора по п. 1, отличающийся тем, что продольные направляющие выполнены прямоугольного сечения.
3. Клапанный узел канала перепуска компрессора по п. 1, отличающийся тем, что кольцевой затвор имеет возможность перемещаться по поверхности внутреннего корпуса канала перепуска.
RU2017113437A 2017-04-19 2017-04-19 Клапанный узел канала перепуска компрессора RU2642991C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017113437A RU2642991C1 (ru) 2017-04-19 2017-04-19 Клапанный узел канала перепуска компрессора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017113437A RU2642991C1 (ru) 2017-04-19 2017-04-19 Клапанный узел канала перепуска компрессора

Publications (1)

Publication Number Publication Date
RU2642991C1 true RU2642991C1 (ru) 2018-01-29

Family

ID=61173348

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017113437A RU2642991C1 (ru) 2017-04-19 2017-04-19 Клапанный узел канала перепуска компрессора

Country Status (1)

Country Link
RU (1) RU2642991C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2365777C2 (ru) * 2004-01-12 2009-08-27 Снекма Турбовентиляторный реактивный двигатель со вспомогательной распределенной опорой
US7818957B2 (en) * 2005-08-29 2010-10-26 General Electric Company Valve assembly for a gas turbine engine
RU2406854C1 (ru) * 2009-03-18 2010-12-20 Открытое акционерное общество "Авиадвигатель" Газотурбинная установка
US7870741B2 (en) * 2007-05-25 2011-01-18 General Electric Company Turbine engine valve assembly and method of assembling the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2365777C2 (ru) * 2004-01-12 2009-08-27 Снекма Турбовентиляторный реактивный двигатель со вспомогательной распределенной опорой
US7818957B2 (en) * 2005-08-29 2010-10-26 General Electric Company Valve assembly for a gas turbine engine
US7870741B2 (en) * 2007-05-25 2011-01-18 General Electric Company Turbine engine valve assembly and method of assembling the same
RU2406854C1 (ru) * 2009-03-18 2010-12-20 Открытое акционерное общество "Авиадвигатель" Газотурбинная установка

Similar Documents

Publication Publication Date Title
US9476362B2 (en) Turbomachine with bleed valves located at the intermediate case
JP5342130B2 (ja) ターボファンエンジンカウルアセンブリ及び内部コアカウルバッフルアセンブリ
US6647708B2 (en) Multi-spool by-pass turbofan engine
CN106870161B (zh) 涡轮风扇发动机和放出系统
US7818957B2 (en) Valve assembly for a gas turbine engine
KR101370117B1 (ko) 터보 과급기
CN107916993B (zh) 燃气涡轮发动机和用于燃气涡轮发动机的放气组件
US9739235B2 (en) Thrust reverser for a turbofan engine
CN102536513A (zh) 操作用于涡轮风扇推进系统的推力反向器的系统和方法
CA2495624A1 (en) Turbojet having a large bypass ratio
EP3133249A1 (en) Gas turbine engine having an air bleed system
CN101737194A (zh) 一种变循环发动机模式转换机构中的可调前涵道引射器
JP4057891B2 (ja) 二重流のターボジェットエンジンにおける排出装置
US9828943B2 (en) Variable area nozzle for gas turbine engine
WO2013188074A1 (en) Turbomachine flow control device
EP3816423B1 (en) An exhaust nozzle for a gas turbine engine
US9328735B2 (en) Split ring valve
EP2867491A1 (en) Thrust reverser maintenance actuation system
KR101244956B1 (ko) 실링 에어 채널을 가진 안내 장치의 캐리어 링
US10794272B2 (en) Axial and centrifugal compressor
RU2642991C1 (ru) Клапанный узел канала перепуска компрессора
US10883447B2 (en) Aircraft propulsion unit having thrust reverser flaps connected to an inter-compressor casing located between the engine compressors
KR101529411B1 (ko) 터보 과급기
US9790806B2 (en) Case with vane retention feature
RU2346166C1 (ru) Газотурбинная установка