RU2642258C1 - Рекомбинантный химерный полипептид-иммуноген nTBI, обладающий способностью индуцировать антитела, нейтрализующие вирус иммунодефицита человека 1 типа, и предназначенный для использования в качестве компонента вакцины против ВИЧ-1 - Google Patents

Рекомбинантный химерный полипептид-иммуноген nTBI, обладающий способностью индуцировать антитела, нейтрализующие вирус иммунодефицита человека 1 типа, и предназначенный для использования в качестве компонента вакцины против ВИЧ-1 Download PDF

Info

Publication number
RU2642258C1
RU2642258C1 RU2016151969A RU2016151969A RU2642258C1 RU 2642258 C1 RU2642258 C1 RU 2642258C1 RU 2016151969 A RU2016151969 A RU 2016151969A RU 2016151969 A RU2016151969 A RU 2016151969A RU 2642258 C1 RU2642258 C1 RU 2642258C1
Authority
RU
Russia
Prior art keywords
hiv
ntbi
immunogen
antibodies
polypeptide
Prior art date
Application number
RU2016151969A
Other languages
English (en)
Inventor
Антон Николаевич Чикаев
Лариса Ивановна Карпенко
Андрей Павлович Рудометов
Надежда Борисовна Андреева
Александр Алексеевич Ильичев
Надежда Сергеевна Щербакова
Original Assignee
Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ГНЦ ВБ "Вектор" Роспотребнадзора)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ГНЦ ВБ "Вектор" Роспотребнадзора) filed Critical Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ГНЦ ВБ "Вектор" Роспотребнадзора)
Priority to RU2016151969A priority Critical patent/RU2642258C1/ru
Application granted granted Critical
Publication of RU2642258C1 publication Critical patent/RU2642258C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Изобретение относится к области медицины, биотехнологии и генной инженерии. Предложен рекомбинантный химерный полипептид-иммуноген, включающий консервативные Т- и В-клеточные эпитопы вируса ВИЧ-1 и последовательно расположенные пептидные фрагменты белков р24, gp41, gp120, узнаваемые широконейтрализующими антителами 10e8, 2F5, VRC01. Изобретение обеспечивает повышение ВИЧ-специфического иммунного ответа за счет включения в состав полипептида-иммуногена nTBI уникальных линейных имитаторов конформационных эпитопов, узнаваемых широконейтрализующими антителами. 6 ил., 5 пр.

Description

Изобретение относится к рекомбинантному химерному полипептиду-иммуногену, направленному на стимуляцию протективного иммунного ответа против ВИЧ-инфекции, и может быть использовано в качестве компонента вакцины в области биотехнологии, генной инженерии и медицины.
Количество ВИЧ-инфицированных в России ежегодно возрастает, и к концу 2016 превысило 1 миллион человек. При этом к настоящему времени отсутствуют схемы лечения ВИЧ-инфекции, которые позволили бы элиминировать вирус из организма. Современные способы терапии лишь замедляют прогрессирование ВИЧ-инфекции и её переход в стадию СПИДа. Кроме того, через несколько лет вирус мутирует, приобретая резистентность к применяемым препаратам. ВИЧ-инфекция поражает преимущественно молодое и наиболее трудоспособное население, что, безусловно, отражается как на экономике государства, так и на здоровье будущего поколения. Поэтому разработка эффективной вакцины против вируса иммунодефицита человека также является крайне актуальной задачей.
Для создания анти-ВИЧ вакцин было испробовано множество подходов, включая использование инактивированных, аттенуированных форм вируса, субъединичные вакцины, состоящие из отдельных вирусных гликопротеинов, создание генно-инженерных конструкций, ДНК-вакцины а также препараты на основе рекомбинантных вирусных и бактериальных векторов [1]. Однако ни одна из кандидатных анти-ВИЧ вакцин не продемонстрировала достаточный уровень эффективности. Наиболее успешной разработкой, прошедшей III фазу клинических испытаний, является созданная совместно компаниями Merck и Sanofi Pasteur прайм-буст вакцина ALVAC-HIV vCP1521/AIDSVAX B/E. Она включала в свой состав иммуногены, предназначенные для одновременной стимуляции В- и Т-клеточного иммунного ответа. В качестве праймирующего антигена использовался рекомбинантный вирус оспы канареек, экспрессирующий гены env, gag и протеазы ВИЧ-1 (ALVAC-HIV vCP1521), а бустерную вакцинацию осуществляли с помощью препарата AIDSVAX B/E (Vax003) на основе гликопротеина gp120 ВИЧ-1. Данное сочетание обеспечило снижение риска инфицирования на 31,2% [2]. Более детальный анализ результатов показал, что в первый год испытаний вакцина обеспечивала защиту на уровне 60%, после чего в крови вакцинированных начинала падать концентрация ВИЧ-специфических антител, и эффективность препарата снижалась. Дальнейшие исследования позволили установить причину невысоких показателей защиты от ВИЧ, связанных, по-видимому, с бустирующим компонентом AIDSVAX, ответственным за индукцию гуморального ответа. Выяснилось, что антитела, образующиеся в ответ на введение вакцины, либо не способны нейтрализовать вирус, либо обладают слабой нейтрализующей активностью [3, 4].
Приблизительно в это же время началось активное исследование гуморального ответа при ВИЧ-инфекции, что позволило добиться значительного прогресса в данной области. В частности, были обнаружены антитела, обладающие нейтрализующей активностью в отношении очень большого числа изолятов ВИЧ различных субтипов. Такие антитела, называемые нейтрализующими антителами широкого спектра действия (bnAbs - broadly neutralizing antibodies), связываются с консервативными областями поверхностных белков ВИЧ-1, практически не подверженных мутагенезу, за счет чего способны нейтрализовать до 98% всех известных первичных изолятов ВИЧ-1 [5]. Они обнаруживаются в крови многих ВИЧ-инфицированных, но их титр, как правило, очень низок. Кроме того, длительное аффинное созревание (которое может продолжаться более года) приводит к тому, что bnAbs появляются в организме с сильным опозданием, и к этому моменту уже неспособны существенно снизить вирусную нагрузку. В то же время при достаточно высоких концентрациях они весьма эффективно препятствуют развитию ВИЧ-инфекции. В качестве примера, подтверждающего эффективность bnAbs, можно привести работу Флориана Кляйна с соавторами, которые показали, что пассивная иммунизация гуманизированных мышей смесью из пяти антител широкого спектра действия PG16, PGT121, PGT128, 3BC176 и 45-46G54W подавляла репликацию ВИЧ-1, и еще в течение 60 дней после окончания курса позволяла поддерживать контроль над вирусом. Также на приматах было продемонстрировано протективное действие комбинации широконейтрализующих антител в отношении рекомбинантного вируса SHIV89.6P (вирус иммунодефицита обезьян, содержащий часть структурных компонентов ВИЧ) [6].
Однако использование моноклональных широконейтрализующих антител возможно только в качестве терапевтического средства. Кроме того, из-за высокой стоимости МКА данная терапия доступна лишь очень небольшому проценту населения. Тем не менее, учитывая уникальные свойства нейтрализующих антител широкого спектра действия, очень перспективной выглядит идея создания иммуногена, способного индуцировать их наработку, поскольку это потенциально решает проблему сильной антигенной вариабельности ВИЧ-1.
Один из распространенных подходов, использующихся при создании таких иммуногенов, основан на концепции рационального дизайна и заключается в получении растворимых фрагментов поверхностного гликопротеина gp120 ВИЧ-1, модифицированных таким образом, чтобы они содержали только те эпитопы, которые узнаются нейтрализующими антителами широкого спектра действия. Для этого вносят изменения, позволяющие стабилизировать структуру молекулы (точечные мутации, введение модификаций, приводящих к образованию дисульфидных связей, удаление петлевых фрагментов гликопротеина).
Другой подход заключается в создании не отдельных фрагментов gp120, а цельных тримеров со стабилизированной структурой, способных имитировать нативную конформацию поверхностного белка Env ВИЧ-1 [7, 8, 9]. В качестве альтернативы было предложено использовать мономерную стабилизированную форму оболочечного гликопротеина вируса для индукции антител к CD4bs - ключевому участку gp120, ответственному за связывание с CD4. Для получения иммуногена в соответствии с таким подходом сердцевина белка Env модифицируется с помощью направленного мутагенеза таким образом, чтобы полученная конструкция имитировала CD4bs сайт [10, 11, 12].
Перечисленные подходы, несмотря на большие перспективы, технически сложны и ресурсозатратны. Вследствие дороговизны и сложности данного метода пока не было создано ни одного вакцинного препарата, основанного на данной концепции.
Более технологически простой подход, применяемый для создания иммуногенов, направленных на индукцию вируснейтрализующих антител, заключается в использовании каркасных молекул, которые экспонируют эпитопы ВИЧ-1, узнаваемые нейтрализующими антителами широкого спектра действия. Данная технология, в частности, была использована для получения иммуногена, вызывающего наработку широконейтрализующих антител 2F5. Каркасные белки в данном случае подбирались таким образом, чтобы обеспечить расположение эпитопа в конформации, оптимальной для связывания с антителом [13]. Однако недостаток данного подхода заключался в том, что при создании описываемой конструкции не учитывался тот факт, что аминокислотное окружение эпитопа, при нахождении его в составе гликопротеина gp41, оказывает влияние на его конформацию. Вследствие этого иммуноген не продемонстрировал на модели животных образование вируснейтрализующих антител при иммунизации [13].
Помимо перечисленных конструкций, известен вакцинный препарат против ВИЧ-1 «ВИЧРЕПОЛ» (ГНЦ Институт иммунологии) [14]. Основной компонент вакцины - химерный белок rec (24-41), состоящий из фрагментов иммуногенных белков р24, gp41 и p17 ВИЧ-1 [15], конъюгированный с иммуностимулятором - носителем полиоксидонием (фармакологически активное соединение с молекулярной массой 100 кД с выраженной иммуномодулирующей активностью). Первая фаза клинических испытаний показала безопасность, иммуногенность и антигенную активность представленной вакцины. Кроме того, при иммунизации лабораторных животных данная вакцина вызывает наработку специфических антител к белкам р24 и gp41 ВИЧ-1, входящих в состав вакцины. Однако эти антитела обладают низкой вирус-нейтрализующей активностью: индекс нейтрализации составляет 54,9% при разведении иммунной сыворотки 1:50. Клеточный ответ был также относительно невысоким, как показали данные в реакции бласт-трансформации.
Известна также вакцинная композиция против вируса иммунодефицита человека [16]. Данный патент защищает рекомбинантные белки AFP (artificial fusion proteins), представляющих собой слитые друг с другом в различных комбинациях домены гликопротеинов ВИЧ-1. AFP содержат CTL-эпитопы, ассоциированные с контролем виремии и длительным отсутствием прогресса у индивидуумов с хронической ВИЧ-1 инфекцией. Кроме того, допускается включение в состав белков дополнительных доменов. Недостатком данного иммуногена является то, что AFP направлен на индукцию только CD8+ ответа, в то время как современные исследования показывают, что для обеспечения надежной защиты от ВИЧ-инфекции необходимо также стимулировать CD4+ T-h ответ и наработку нейтрализующих и не нейтрализующих ВИЧ-1-специфических антител.
Наиболее близким аналогом (прототипом) к настоящему изобретению является белок TBI, компонент вакцины против ВИЧ-инфекции КомбиВичВак [17]. TBI представляет собой рекомбинантный белок, включающий пять B-клеточных эпитопов, чередующихся с четырьмя T-клеточными эпитопами и формирующих конформацию четырех α-спиралей и петлевых участков [18]. На модели лабораторных животных было показано, что вакцина КомбиВичВак обеспечивает формирование ВИЧ-специфических антител, обладающих вируснейтрализующей активностью, а также стимулирует вирус специфический цитотоксический иммунный ответ у вакцинированных добровольцев [19].
Основным недостатком белка TBI является то, что TBI не содержит эпитопов, узнаваемых нейтрализующими ВИЧ-1 антителами широкого спектра действия. Это не позволяет использовать данный иммуноген в качестве универсального средства (вакцины) от ВИЧ-инфекции.
Техническим результатом заявляемого изобретения является создание рекомбинантного химерного полипептида-иммуногена nTBI, обеспечивающего повышение ВИЧ-специфического иммунного ответа за счет включения в состав указанного полипептида-иммуногена nTBI уникальных линейных имитаторов конформационных эпитопов, узнаваемых широконейтрализующими антителами, способного индуцировать образование антител, нейтрализующих ВИЧ-1.
Указанный технический результат достигается тем, что иммуноген nTBI содержит в качестве вакцинных антигенов эпитопы, узнаваемые широконейтрализующими ВИЧ-1 антителами. Ген, кодирующий nTBI, клонирован в плазмидный вектор pET21a по сайтам рестрикции NdeI и XhoI. Для экспрессии полипептида используется штамм Е.coli BL-21. При этом полипептид nTBI представляет собой стерильный очищенный белок и имеет аминокислотную последовательность SEQ ID NO:1, представленную на фиг. 1 и в приложении.
Заявляемый полипептид-иммуноген, направленный на индукцию нейтрализующих ВИЧ-1 антител широкого спектра действия, получают следующим образом.
При создании иммуногена nTBI за основу был взят ранее спроектированный белок TBI. Модификации исходного варианта белка TBI были направлены, в первую очередь, на улучшение его антигенных характеристик. С этой целью была произведена замена нескольких наименее иммуногенных пептидов, входящих в состав оригинального TBI, на аминокислотные последовательности, представляющие собой эпитопы (либо их линейные имитаторы), с которыми связываются нейтрализующие ВИЧ-1 антитела широкого спектра действия. Из молекулы TBI были удалены 2 B-клеточных эпитопа из белка Gag (99-109 и 351-361), имеющих низкую иммуногенность, а также эпитоп env (255-266), который распознается антителами, не обладающими способностью нейтрализовать вирусные частицы. Удаленные пептиды были заменены на эпитопы из MPER региона гликопротеина gp41, узнаваемые нейтрализующими ВИЧ-1 антителами широкого спектра действия 10e8 и 2F5. Также в состав нового белка был включен линейный пептид-имитатор эпитопа, расположенного в области CD4bs gp120 и узнаваемого bnAb VRC01, выявленный ранее с помощью фагового дисплея [20].
Помимо замены пептидов, были проведены модификации, направленные на повышение экспрессии гена целевого белка. В структуру nTBI с N-конца был добавлен фрагмент транскрипционного фактора InfB E. coli, позволяющий увеличить уровень экспрессии гена в прокариотической системе экспрессии [21]. Также была проведена процедура оптимизации кодонного состава гена nTBI с использованием онлайн-сервиса Codon Optimization OnLine. Спроектированный ген клонировали в составе вектора pET21a+. Использовали сайты, узнаваемые эндонуклеазами рестрикции XhoI и NdeI. Полученной конструкцией трансформировали клетки E. coli BL21, биомассу трансформированных клеток наращивали в течение ночи на среде LB. Полученную биомассу обрабатывали с помощью ультразвукового дезинтегратора, центрифугировали и ресуспендировали в лизирующем буфере, содержащем 8 М мочевину. Очистку целевого белка проводили с помощью металл-хелатной аффинной хроматографии на колонке с Ni-NTA-агарозой. Для перевода белка в нативное состояние использовали ступенчатый диализ против буферов с постепенным снижением концентрации мочевины. Наличие фракции целевого белка и степень очистки оценивали с помощью электрофореза в ПААГ в денатурирующих условиях. На фиг. 1. представлена нуклеотидная последовательность гена, кодирующего полипептид-иммуноген nTBI, и аминокислотная последовательность указанного полипептида. На фиг. 2 (А, Б) изображена схема клонирования данного гена в вектор pET21a(+). На фиг. 3 приведена первичная структура белка TBI и полученного на его основе nTBI. Замененные B-клеточные эпитопы белка nTBI выделены жирным шрифтом, более бледным шрифтом - Т-h эпитопы, а также пептидная последовательность, обеспечивающая усиление экспрессии (expressivity tag). Цилиндрами обозначены участки, имеющие структуру α-спиралей, серыми стрелками - β-складок. На фиг. 4, А приведены результаты электрофоретического разделения белков TBI и nTBI в 14% SDS-ПААГ, а на фиг. 4, Б - а вестерн-блоттинг белков TBI и nTBI, перенесенных на нитроцеллюлозную мембрану, где: 1 - образец белка nTBI; 2 - образец белка TBI; M - маркер молекулярных масс PAGERuler (TermoFisher). На фиг. 5 представлены данные анализа сывороток кроликов, иммунизированных белком nTBI, с использованием тест-системы NEW LAV-BLOT1, где: 3 - сыворотка ВИЧ-положительного пациента, взятая из набора New LAv Blot (положительный контроль); 4 - сыворотка кролика, иммунизированного nTBI; К- - сыворотка из образца крови кролика, взятой до иммунизации nTBI (отрицательный контроль). На фиг. 6. приведена кривая нейтрализации env-псевдотипированных частиц ВИЧ-1 сыворотками кроликов, иммунизированных белками TBI и nTBI. Черным и серым цветами обозначены кривые, построенные для сывороток кроликов, иммунизированных белками TBI и nTBI соответственно. Линия (с ромбами) представляет нейтрализацию сывороток животных из контрольной группы. Ниже приведены примеры осуществления изобретения.
Пример 1. Получение плазмиды pET21a-nTBI
Конструирование плазмиды проводят с помощью стандартных методов молекулярного клонирования [22]. Ген, кодирующий белок nTBI, был химически синтезирован компанией Евроген, нуклеотидная последовательность гена представлена на фиг. 1. Ген клонируют в составе плазмиды pET21a(+) (фиг. 2, Б).
Плазмидный вектор pET21a(+) (Novagen) гидролизуют эндонуклеазами рестрикции NdeI и XhoI, полученную ДНК выделяют с помощью набора Qiagen MiniPrep и лигируют с геном, кодирующим белок nTBI. Полученной лигазной смесью трансформируют клетки Е. coli XL1-Blue (Novagen) методом электропорации согласно методике, описанной в [23]. Трансформированные клетки высевают на чашки с LB агаром, содержащим 100 мкг/мл апмициллина. Для проверки наличия в трансформантах плазмидной ДНК с целевой вставкой отдельные колонии пересевают в пробирки с 2 мл среды LB, содержащей 100 мкг/мл ампициллина, и подращивают в течение ночи при 37°С. Плазмидную ДНК из полученных клеток выделяют методом щелочного лизиса [24]. Выделенную ДНК анализируют путем секвенирования по методу Сэнгера с использованием праймеров T7 promoter primer #69348-3 и T7 terminator primer #69337-3 (Novagen). Используют набор CEQ2000Dye Terminator Cycle Sequencing Kit и 16-капилярный автоматический секвенатор ABI 3130xl. Полученные секвенограммы должны подтверждать наличие гена, кодирующего белок nTBI, в составе рекомбинантной плазмиды pET21a-nTBI. Секвенограмма должна быть идентична нуклеотидной последовательности целевого гена, представленного на фиг. 1.
Пример 2. Наработка и очистка белка nTBI
Для получения белка nTBI плазмиду pET21-nTBI трансформируют в штамм-продуцент E. coli BL-21 методом электропорации. Клоны отбирают на чашках с агаризованной средой LB по устойчивости к ампициллину. Наращивание биомассы клеток E. coli, трансформированных полученной плазмидой, осуществляют на среде LB с ампициллином (40 мкл/мл) на термостатированных качалках при 37°С до оптической плотности 0,8-0,9. Индукцию синтеза целевого белка проводят путем добавления в среду 1 мМ ИПТГ и последующей инкубации в течение 4-6 ч. Полученную биомассу осаждают центрифугированием при 4°С и суспендируют в лизирующем буфере, содержащем 50 мМ NaH2PO4, 300 мМ NaCl, 0,1% Tween 20, 10 мМ Tris, 30 мМ имидазол и PMSF (Sigma Aldrich) в соотношении 7 мл буфера на 1 г биомассы. Далее суспензию помещают в ледяную баню и производят обработку ультразвуком 18 раз по 2 мин с перерывом по 1 мин для охлаждения смеси. Далее проводят центрифугирование при 34000 g в течение 15 мин, полученный дебрис ресуспендируют в лизирующем буфере, повторно дезинтегрируют и центрифугируют. Очистку рекомбинантного белка осуществляют с помощью аффинной хроматографии на Ni-NTA-агарозе в присутствии 8 М мочевины. Для этого осадок ресуспендируют в 2 М растворе мочевины в 20 мМ Tris-буфере (pH 8.0), центрифугируют. Полученный дебрис растворяют в лизирующем буфере, содержащем 8 М мочевину, и наносят на колонку с Ni-NTA агарозой. Материал элюируют буфером, содержащим 8 М мочевину, 100 мМ NaH2PO4, 10 мМ Tris, pH 8.0, 250 мМ имидазол. Для перевода белка в нативное состояние используют ступенчатый диализ против буферов, содержащих 50 мМ NaH2PO4 и 6, 3,1, 0,1 М мочевину. На конечном этапе диализ проводят против физиологического раствора без мочевины. Наличие фракции целевого белка и степень очистки оценивают с помощью электрофоретического разделения белков по Лэммли в 14% SDS-ПААГ [26]. После электрофореза гель фиксируют в 40%-ном спиртовом растворе, содержащем 10% уксусной кислоты, отмывают в дистиллированной воде и окрашивают кумасси G-250.
Электрофореграмма (фиг. 4, А) должна подтверждать наличие в образце гомогенного препарата белка размером около 18 кДа, что соответствует расчетному значению.
Пример 3. Подтверждение антигенных свойств nTBI
Для подтверждения способности nTBI связываться с МКА, эпитопы которых были включены в его состав, а также оценки его антигенных свойств в сравнении с оригинальным белком TBI, проводят вестерн-блот анализ. Разделенные электрофоретически препараты белков TBI и nTBI переносят на нитроцеллюлозную мембрану методом полусухого переноса [23]. Мембрану блокируют 1% раствором бычьего сывороточного альбумина в PBS (0,002 М KH2PO4, 0,01 M Na2HPO4x7H2O, 0,137 M NaCl, 0,0027 M KCl, pH 7,4) для предотвращения неспецифического связывания. Иммунодетекцию проводят согласно протоколу для системы «SNAP i.d.» (Merck Millipore, США) с первичными моноклональными человеческими антителами 2F5, 10E8, а также с мышиными МКА 29F2, связывающимися с белком p24 ВИЧ-1. Связывание специфического антитела визуализируют с использованием вторичных антител rabbit anti-human IgG alkaline phosphatase (AP) и rabbit anti-mouse IgG-AP (Sigma-Aldrich, США) в разведениях, рекомендованных производителем, и добавлением хромогенного субстрата BCIP/NBT. Результаты Вестерн-блот анализа, представленные на фиг. 4, Б, демонстрируют способность пептидов, включенных в состав nTBI, специфически взаимодействовать с соответствующими МКА. В данном тесте не используют антитело VRC01, поскольку узнаваемый им эпитоп является конформационным, а белок nTBI после переноса на нитроцеллюлозную мембрану в Вестерн-блоте находится в денатурированном виде, лишенном третичной структуры. В отсутствие соответствующей пространственной организации эпитоп не узнается МКА VRC01.
Пример 4. Проверка иммуногенных свойств белка nTBI. Иммунизация лабораторных животных
Для проверки иммуногенных свойств nTBI очищенным препаратом белка иммунизируют лабораторных животных и проводят иммунологические тесты с использованием антисывороток. Иммунизацию проводят по следующей схеме. Первую и вторую группу кроликов иммунизируют очищенными препаратами белков TBI и nTBI соответственно в количестве 0,5 мг на кролика при первой иммунизации и 1 мг при последующих. Первую инъекцию проводят подкожно, в четыре точки вдоль спинного хребта, в смеси с полным адъювантом Фрейнда, последующие две - с интервалом в две недели в смеси неполным адъювантом. Забор крови проводят из краевой ушной вены перед иммунизацией у каждого животного (в дальнейшем сыворотки используют в качестве отрицательного контроля), а также через неделю после последней иммунизации.
Для постановки иммуноферментного анализа белок nTBI разводят в буфере PBS до концентрации 1 мкг/мл и вносят по 100 мкл в лунки 96-луночного планшета. Планшет блокируют добавлением в лунки 3%-ного раствора казеина в буфере PBS, инкубируют 2 часа при 37°С, после чего 3 раза промывают буфером PBS-T. Для титрования используют разведения сывороток в буфере PBS с 3%-ным казеином в диапазоне от 1:10 до 1:10240. В лунки заблокированного и отмытого планшета вносят по 100 мкл последовательных разведений сывороток, инкубируют при покачивании 1-1,5 часа при 37°С, после чего трижды промывают буфером PBS-Т. Специфически связавшиеся антитела выявляют добавлением 40000-кратного разведения вторичных антител mouse anti-rabbit IgG-AP. Инкубируют 1 час при 37°С при покачивании, после чего планшет 3 раза промывают PBS-Т и добавляют хромогенный субстрат на основе п-нитрофенилфосфата (pNPP). Инкубацию с субстратом проводят в течение 16 часов при комнатной температуре в термостате при 37°С. Результат регистрируют с помощью ИФА-ридера Bio Rad 680 Microplate reader при длине волны 405 нм. Результаты ИФА показывают, что титры сывороток кроликов, иммунизированных как TBI, так и nTBI, составляют 1:600.000.
Наличие в антисыворотках антител, специфичных к ВИЧ-1, оценивают с помощью тест-системы NEW LAV-BLOT 1 (Bio Rad), представляющей собой набор нитроцеллюлозных полосок (стрипов), на которые сорбирован лизат белков ВИЧ-1. Сыворотки иммунных животных разводят в 50 раз в буфере ТБС-Т (0,05 М трис HCl рН 7,5; 0,15 М NaCl, Твин-20 v/v 200:1) и инкубируют со стрипами в течение двух часов при покачивании. В качестве положительного контроля использовалась сыворотка, полученная из крови ВИЧ-положительного человека. Инкубация проводится по аналогичной схеме, описанной для сывороток кроликов. Далее полоски отмывают ТБС-Т 3 раза по 5 мин и добавляют 5000-кратные разведения вторичных антител rabbit anti-human IgG-AP (goat anti-rabbit IgG-AP в случае положительного контроля), инкубируют в течение 1 ч при покачивании. После отмывки вносят хромогенный субстрат BCIP/NBT. После проявления нитроцеллюлозных стрипов в течение 20 мин наблюдают окрашенные полосы, по электрофоретической подвижности соответствующие определенным вирусным белкам. На фиг. 5 представлен результат проявки стрипов из набора NEW LAV BLOT, подтверждающий наличие вирус-специфических антител в сыворотках иммунизированных кроликов, при этом выявляемые белки соответствуют по подвижности расчетным (эпитопы, включенные в nTBI, входят в состав гликопротеинов gp120, gp41 и p24).
Пример 5. Постановка реакции вируснейтрализации для оценки иммуногенных свойств белка nTBI
Вируснейтрализующую активность антисывороток определяют путем постановки реакции вируснейтрализации с использованием панели env-псевдотипированных вирусных частиц, полученных на основе штаммов ВИЧ-1 субтипа B. Псевдовирусы получают котрансфекцией клеток 293Т/17 плазмидами pcDNA3.1/V5, несущими различные полноразмерные гены gp160, и плазмидой pSG3Δenv, несущей все остальные гены ВИЧ-1, за исключением gp160. Процедуру проводят с использованием липофектамина 2000 (Invitrogen): на 5 мкл липофектамина 2000 берется по 300 нг плазмид pEnv и pSG3Δenv. Смесь перемешивают, инкубируют 15 мин при комнатной температуре и переносят в 24-луночный планшет к монослою клеток 293Т/17. Через 48 ч инкубации в СО2-термостате при 37°С отбирают культуральную среду. От клеток псевдовирусы отделяют путем низкоскоростного центрифугирования с последующей фильтрацией через нитроцеллюлозные фильтры с диаметром пор 0,22 мкм. Полученную псевдовирус-содержащую надосадочную жидкость хранят при -80°С в среде DMEM, содержащую 20 % фетальной бычьей сыворотки.
Постановку реакции вируснейтрализации проводят согласно протоколу Монтефиори [25]. Для проведения эксперимента из антисывороток предварительно выделяют фракцию IgG осаждением сульфатом аммония и последующей аффинной очисткой на сефарозе с белком A. В лунки планшета, содержащие 150 мкл культуральной среды, вносят последовательные пятикратные разведения фракции IgG из антисывороток объемом 11 мкл. В качестве отрицательного контроля (фоновый люминесцентный сигнал) используют один ряд лунок, содержащих только среду DMEM без добавления антисывороток. Затем в каждую лунку за исключением контрольного ряда добавляют по 50 мкл суспензий псевдовирусов с концентрацией, соответствующей значению 200 TCID50/100 мкл. Далее во все лунки вносят 100 мкл суспензии клеток TZM-bl с концентрацией 100000 клеток/мл и инкубируют 48 ч при 37°С. После инкубации из лунок отбирают по 150 мкл их содержимого и добавляют LAR реактив (Promega, США), использующийся в качестве субстрата для люциферазы. После лизирования клеток содержимое лунок переносят в лунки планшета для измерения люминесцентного сигнала. Уровень люминесценции измеряют с помощью люминометра Wallac 1420 Multilabel counter (Perkin Elmer, Waltman, MA) при длине волны 482 нм. На фиг. 6 представлены кривые нейтрализации на примере env-псевдотипированного вируса, полученного на основе ВИЧ-1 SF162. Можно заметить, что сыворотки кроликов, иммунизированных TBI и nTBI, обладают дозозависимой нейтрализующей активностью, в отличие от сыворотки неиммунизированных животных, которая не продемонстрировала нейтрализующий эффект. Кроме того, концентрация полумаксимального ингибирования (IC50) антисывороток к nTBI составляет 5,58 мкг/мл, превышая аналогичное значение концентрации антисывороток к TBI (34,61 мкг/мл) примерно в 6 раз. При этом значение IC50, измеренное для МКА 2F5, составило 1,17 мкг/мл. Данный факт говорит о существенном улучшении иммуногенных свойств белка nTBI по сравнению с исходным вариантом белка TBI, что подтверждает заявленный технический результат.
Источники патентной и научно-технической информации
1. Gorry P.R., McPhee D.A., Verity E., Dyer W.B., Wesselingh S.L., Learmont J., Sullivan J.S., Roche M., Zaunders J.J., Gabuzda D., Crowe S.M., Mills J., Lewin S.R., Brew B.J., Cunningham A.L., Churchill M.J. Pathogenicity and immunogenicity of attenuated, nef-deleted HIV-1 strains in vivo // Retrovirology. - 2007. - V. 4. - N 3. - P.1.
2. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, Benenson M, Gurunathan S, Tartaglia J, McNeil JG, Francis DP, Stablein D, Birx DL, Chunsuttiwat S, Khamboonruang C, Thongcharoen P, Robb ML, Michael NL, Kunasol P, Kim JH; MOPH-TAVEG Investigators. Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand // New England Journal of Medicine. - 2009. - V. 361. - N. 23. - P. 2209-2220.
3. Kim J.H., Excler J.L., Michael N.L. Lessons from the RV144 Thai Phase III HIV-1 Vaccine Trial and the Search for Correlates of Protection // Annual Review of Medicine. - 2015. - V. 66. - P. 423-427.
4. Montefiori D.C., Karnasuta C., Huang Y., Ahmed H., Gilbert P., De Souza M.S., McLinden R., Tovanabutra S., Laurence-Chenine A., Sanders-Buell E., Moody M.A., Bonsignori M., Ochsenbauer C., Kappes J., Tang H., Greene K., Gao H., Labranche C.C., Andrews C., Polonis V.R., Rerks-Ngarm S., Pitisuttithum P., Nitayaphan S., Kaewkungwal J., Self S.G., Berman P.W., Francis D., Sinangil F., Lee C., Tartaglia J., Robb M.L., Haynes B.F., Michael N.L., Kim J.H. Magnitude and breadth of the neutralizing antibody response in the RV144 and Vax003 HIV-1 vaccine efficacy trials // Journal of Infectious Diseases. - 2012. - V. 206. - N 3. - P. 431-441.
5. Sok D., Burton D. R. HIV Broadly Neutralizing Antibodies: Taking Good Care Of The 98%. // Immunity. - 2016. - V. 45. - N. 5. - P. 958-960.
6. Ferrantelli F., Rasmussen R.A., Hofmann-Lehmann R., Xu W., McClure H.M., Ruprecht R.M. Do not underestimate the power of antibodies - Lessons from adoptive transfer of antibodies against HIV // Vaccine. - 2002. - V. 20. - N SUPPL. 4. - P. A61-A65.
7. Kovacs JM, Nkolola JP, Peng H, Cheung A, Perry J, Miller CA, Seaman MS, Barouch DH, Chen B. HIV-1 envelope trimer elicits more potent neutralizing antibody responses than monomeric gp120 // Proceedings of the National Academy of Sciences. - 2012. - V. 109. - N. 30. - P. 12111-12116.
8. Yang X., Lee J., Mahony E.M., Kwong P.D., Wyatt R., Sodroski J. Highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacteriophage fibritin // Journal of Virology. - 2002. - V. 76. - N 9. - P. 4634-4642.
9. Yasmeen A., Ringe R., Derking R., Cupo A., Julien J.P., Burton D.R., Ward A.B., Wilson I.A., Sanders R.W., Moore J.P., Klasse P.J. Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits // Retrovirology. - 2014. - V. 11. - N 1. DOI: 10.1186/1742-4690-11-41.
10. Wu X.L., Yang Z.Y., Li Y.X., Hogerkorp C.M., Schief W.R., Seaman M.S., Zhou T.Q., Schmidt S.D., Wu L., Xu L., Longo N.S., McKee K., O'Dell S., Louder M.K., Wycuff D.L., Feng Y., Nason M., Doria-Rose N., Connors M., Kwong P.D., Roederer M., Wyatt R.T., Nabel G.J., Mascola J.R. Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1 // Science. - 2010. - V. 329. - N 5993. - P. 856-861.
11. Zhou T.Q., Xu L., Dey B., Hessell A.J., Van Ryk D., Xiang S.H., Yang X.Z., Zhang M.Y., Zwick M.B., Arthos J., Burton D.R., Dimitrov D.S., Sodroski J., Wyatt R., Nabel G.J., Kwong P.D. Structural definition of a conserved neutralization epitope on HIV-1 gp120 // Nature. - 2007. - V. 445. - N 7129. - P. 732-737.
12. Zhou T.Q., Georgiev I., Wu X.L., Yang Z.Y., Dai K.F., Finzi A., Kwon Y.D., Scheid J.F., Shi W., Xu L., Yang Y.P., Zhu J.A., Nussenzweig M.C., Sodroski J., Shapiro L., Nabel G.J., Mascola J.R., Kwong P.D. Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01 // Science. - 2010. - V. 329. - N 5993. - P. 811-817.
13. Ofek G., McKee K., Yang Y., Yang Z.Y., Skinner J., Guenaga F.J., Wyatt R., Zwick M.B., Nabel G.J., Mascola J.R., Kwong P.D. Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region // Journal of Virology. - 2010. - V. 84. - N 6. - P. 2955-2962.
14. Патент РФ № 2475264, кл. A61K 39/395, C07K 14/155, опубл.: 20.02.2013.
15. Патент РФ № 2214274, кл. А 61К 39/21, опубл. 20.10.2003.
16. Патент US 2008/0306224 A1, кл. C07K 14/00, опубл. 11.12.2008.
17. Патент РФ № 2317107, кл. C12N 15/48, опубл. 20.07.2007 (прототип).
18. Eroshkin AM, Karginova EA, Gileva IP, Lomakin AS, Lebedev LR, Kamyinina TP, Pereboev AV, Ignat'ev GM. Design of four-helix bundle protein as a candidate for HIV vaccine // Protein engineering. - 1995. - V. 8 - N. 2. - P. 167-173.
19. Карпенко Л.И., Бажан С.И., Богрянцева М.П., Рындюк Н.Н., Гинько З.Т., Кузубов В.И., Лебедев Л.Р., Каплина О.Н., Регузова А.Ю., Рыжиков А.Б., Усова С.В., Орешкова С.Ф., Нечаева Е.А, Даниленко Е.Д., Ильичев А.А. Комбинированная вакцина против ВИЧ-1 на основе искусственных полиэпитопных иммуногенов: результаты I фазы клинических испытаний // Биоорганическая химия. - 2016. - Т. 42. - N 2. - С. 191.
20. Chikaev A.N., BakulinaA.Yu., Burdick R.C., Karpenko L.I., Pathak V.K., Ilyichev A.A. Selection of peptide mimics of HIV-1 epitope recognized by neutralizing antibody VRC01 // PLOS ONE. - 2015. - V. 10. - N 3. - P. e0120847.
21. Hansted JG, Pietikäinen L, Hög F, Sperling-Petersen HU, Mortensen KK. Expressivity tag: a novel tool for increased expression in Escherichia coli // Biotechnology. - 2011. - V. 155. - N. 3. - P. 275-283.
22. Маниатис Т., Фрич Э., Сэмбрук Дж. Молекулярное клонирование. - М.: Мир. - 1984.
23. Sambrook, J., Fritsch, E. F., & Maniatis, T. Molecular cloning. // New York : Cold spring harbor laboratory press. - 1989. - V. 2. - P. 14-23.
24. Holmes D.S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. // Analytical biochemistry. - 1981. - V. 114. - N. 1. - P. 193-197.
25. Montefiori D.C. Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays // Current Protocols in Immunology. - 2005. - Chapter 12. - Unit 12.11.
26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 // Nature. - 1970. - V. 227. - P. 680-685.

Claims (1)

  1. Рекомбинантный химерный полипептид-иммуноген, включающий консервативные Т- и В-клеточные эпитопы вируса ВИЧ-1 и характеризующийся тем, что он содержит в качестве вакцинного антигена последовательно расположенные пептидные фрагменты белков р24, gp41, gp120, узнаваемые широконейтрализующими ВИЧ-1 антителами, причем химерный полипептид-иммуноген экспрессируется в клетках Е.coli, содержащих плазмидный вектор рЕТ21a, в который по сайтам рестрикции NdeI и XhoI вставлен фрагмент ДНК, кодирующий указанный рекомбинантный химерный полипептид, имеющий последовательность SEQ ID NO:1 и представляющий собой очищенный белок, несущий эпитопы и пептидные миметики эпитопов ВИЧ-1, узнаваемых широконейтрализующими антителами 10e8, 2F5, VRC01.
RU2016151969A 2016-12-27 2016-12-27 Рекомбинантный химерный полипептид-иммуноген nTBI, обладающий способностью индуцировать антитела, нейтрализующие вирус иммунодефицита человека 1 типа, и предназначенный для использования в качестве компонента вакцины против ВИЧ-1 RU2642258C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016151969A RU2642258C1 (ru) 2016-12-27 2016-12-27 Рекомбинантный химерный полипептид-иммуноген nTBI, обладающий способностью индуцировать антитела, нейтрализующие вирус иммунодефицита человека 1 типа, и предназначенный для использования в качестве компонента вакцины против ВИЧ-1

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016151969A RU2642258C1 (ru) 2016-12-27 2016-12-27 Рекомбинантный химерный полипептид-иммуноген nTBI, обладающий способностью индуцировать антитела, нейтрализующие вирус иммунодефицита человека 1 типа, и предназначенный для использования в качестве компонента вакцины против ВИЧ-1

Publications (1)

Publication Number Publication Date
RU2642258C1 true RU2642258C1 (ru) 2018-01-24

Family

ID=61023663

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016151969A RU2642258C1 (ru) 2016-12-27 2016-12-27 Рекомбинантный химерный полипептид-иммуноген nTBI, обладающий способностью индуцировать антитела, нейтрализующие вирус иммунодефицита человека 1 типа, и предназначенный для использования в качестве компонента вакцины против ВИЧ-1

Country Status (1)

Country Link
RU (1) RU2642258C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ308617B6 (cs) * 2019-09-13 2021-01-06 Biotechnologický ústav AV ČR, v. v. i. Polypeptidy mimikující epitop široce neutralizující protilátky VRC01 jako antigeny pro vakcíny proti infekci virem HIV-1
RU2779300C1 (ru) * 2021-10-27 2022-09-05 Федеральное государственное бюджетное учреждение науки Институт биологии гена Российской академии наук (ИБГ РАН) Способ усиления направленного редактирования гена CXCR4 в CD4-лимфоцитах человека в целях создания резистентности клеток к ВИЧ-1

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2317107C2 (ru) * 2006-01-10 2008-02-20 Федеральное государственное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" (ФГУН ГНЦ ВБ "Вектор") Роспотребнадзора Рекомбинантная вакцина против вируса иммунодефицита человека 1 типа
EA022788B1 (ru) * 2009-07-03 2016-03-31 Бионор Иммуно Ас Новые терапевтические и диагностические средства

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2317107C2 (ru) * 2006-01-10 2008-02-20 Федеральное государственное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" (ФГУН ГНЦ ВБ "Вектор") Роспотребнадзора Рекомбинантная вакцина против вируса иммунодефицита человека 1 типа
EA022788B1 (ru) * 2009-07-03 2016-03-31 Бионор Иммуно Ас Новые терапевтические и диагностические средства

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EROSHKIN A.M. et al. Design of four-helix bundle protein as a candidate for HIV vaccine. Protein Eng. 1995 Feb; 8(2): 167-73. *
ЧИКАЕВ А.Н. Пептиды-имитаторы эпитопов ВИЧ-1, узнаваемых нейтрализующими антителами широкого спектра действия. Дисс. канд. биол. наук. Кольцово, 2015, 118 c. *
ЧИКАЕВ А.Н. Пептиды-имитаторы эпитопов ВИЧ-1, узнаваемых нейтрализующими антителами широкого спектра действия. Дисс. канд. биол. наук. Кольцово, 2015, 118 c. EROSHKIN A.M. et al. Design of four-helix bundle protein as a candidate for HIV vaccine. Protein Eng. 1995 Feb; 8(2): 167-73. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ308617B6 (cs) * 2019-09-13 2021-01-06 Biotechnologický ústav AV ČR, v. v. i. Polypeptidy mimikující epitop široce neutralizující protilátky VRC01 jako antigeny pro vakcíny proti infekci virem HIV-1
RU2779300C1 (ru) * 2021-10-27 2022-09-05 Федеральное государственное бюджетное учреждение науки Институт биологии гена Российской академии наук (ИБГ РАН) Способ усиления направленного редактирования гена CXCR4 в CD4-лимфоцитах человека в целях создания резистентности клеток к ВИЧ-1

Similar Documents

Publication Publication Date Title
NZ230855A (en) Principal neutralising domain of hiv variant, dna, vaccine, assay, antibodies and treatment
Mörner et al. Human immunodeficiency virus type 1 env trimer immunization of macaques and impact of priming with viral vector or stabilized core protein
Wieczorek et al. Comparable antigenicity and immunogenicity of oligomeric forms of a novel, acute HIV-1 subtype C gp145 envelope for use in preclinical and clinical vaccine research
WO2012006180A1 (en) Hiv immunogens
JP2004509601A (ja) 非感染性hiv様粒子の組換え発現
US9775895B2 (en) HIV therapeutics and methods of making and using same
Selvarajah et al. Focused dampening of antibody response to the immunodominant variable loops by engineered soluble gp140
WO2014039746A1 (en) Hiv immune stimulating compositions comprising recombinantly expressed pili on bacteria and methods related thereto
RU2642258C1 (ru) Рекомбинантный химерный полипептид-иммуноген nTBI, обладающий способностью индуцировать антитела, нейтрализующие вирус иммунодефицита человека 1 типа, и предназначенный для использования в качестве компонента вакцины против ВИЧ-1
Li et al. Mucosal IL-4R antagonist HIV vaccination with SOSIP-gp140 booster can induce high-quality cytotoxic CD4+/CD8+ T cells and humoral responses in macaques
Chujoh et al. Cross-clade neutralizing antibody production against human immunodeficiency virus type 1 clade E and B′ strains by recombinant Mycobacterium bovis BCG-based candidate vaccine
Tumba et al. Immunization with HIV-1 trimeric SOSIP. 664 BG505 or founder virus C (FVCEnv) covalently complexed to two-domain CD4S60C elicits cross-clade neutralizing antibodies in New Zealand white rabbits
RU2679076C1 (ru) Искусственный ген YkuJ-MPER, кодирующий химерный белок-иммуноген YkuJ-MPER, рекомбинантная плазмидная ДНК pET21a-YkuJ-MPER, обеспечивающая экспрессию искусственного гена YkuJ-MPER, и химерный белок-иммуноген YkuJ-MPER, являющийся носителем мембранно-проксимальной области ВИЧ-1 и направленный на индукцию в организме широконейтрализующих антител
WO2017139392A1 (en) Recombinant hiv-1 envelope proteins and their use
CN107224578B (zh) Hiv疫苗及其制备方法
CA2431881C (en) Polypeptide inducing hiv-neutralising antibodies
US8475799B2 (en) HIV-1 GP41 neutralization domain and use thereof
Liu et al. Receptor binding domain based HIV vaccines
US20240181040A1 (en) Clade c hiv-1 envelope (env) trimer immunogens, compositions including the clade c hiv-1 envelope (env) trimer immunogens, and uses thereof
Libera et al. The Question of HIV Vaccine: Why Is a Solution Not Yet Available?
Amarasena et al. Z. Li1, M. Khanna1, 2, SL Grimley3, P. Ellenberg3, CA Gonelli3, Wen Shi Lee3
Tumba Molecular characterisation and immunogenicity of an HIV-1 subtype C founder consensus viral envelope SOSIP. 664 Trimer covalently bound to 2dCD4S60C
Liu et al. Comparison of antibody immune responses to different HIV-1 envelope glycoprotein mutants
Vaine et al. Improved induction of antibodies against key neutralizing epitopes by HIV-1 gp120 DNA prime-protein boost vaccination compared to gp120 protein only vaccination
Gao Broad neutralization as a byproduct of antibody maturation during HIV-1 infection: a personal perspective