RU2641639C2 - Способ измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра белого света - Google Patents

Способ измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра белого света Download PDF

Info

Publication number
RU2641639C2
RU2641639C2 RU2016118830A RU2016118830A RU2641639C2 RU 2641639 C2 RU2641639 C2 RU 2641639C2 RU 2016118830 A RU2016118830 A RU 2016118830A RU 2016118830 A RU2016118830 A RU 2016118830A RU 2641639 C2 RU2641639 C2 RU 2641639C2
Authority
RU
Russia
Prior art keywords
film
correlograms
measured
substrate
correlogram
Prior art date
Application number
RU2016118830A
Other languages
English (en)
Other versions
RU2016118830A (ru
Inventor
Илья Викторович КИСЕЛЕВ
Виктор Владимирович Сысоев
Егор Ильич Киселев
Екатерина Владимировна Ушакова
Илья Викторович Беляев
Дмитрий Александрович Зимняков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.)
Priority to RU2016118830A priority Critical patent/RU2641639C2/ru
Publication of RU2016118830A publication Critical patent/RU2016118830A/ru
Application granted granted Critical
Publication of RU2641639C2 publication Critical patent/RU2641639C2/ru

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

Изобретение относится к области метрологии тонких пленок, а именно к способу измерения толщины тонких прозрачных пленок бесконтактным способом с помощью интерферометра. При реализации способа измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра белого света подвергают воздействию белого света подложку с нанесенной измеряемой пленкой и измеряют набор коррелограмм. При этом предварительно подвергают воздействию белого света с ограниченной когерентностью подложку, не содержащую измеряемую пленку, и измеряют коррелограммы, после чего выделяют опорную коррелограмму. Кроме того, измерение набора коррелограмм осуществляют по каждому пикселю, которые аппроксимируют взвешенной суммой двух или более опорных коррелограмм, вычисляют набор толщин пленки и положений ее подложки, по результатам которого строятся карты топографии поверхности и толщины пленки. Технический результат - увеличение точности определения толщины тонких пленок и увеличение топографической разрешающей способности топографического картирования поверхности пленки. 3 з.п. ф-лы, 5 ил., 1 табл.

Description

Способ измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра белого света
Данное изобретение относится к области метрологии тонких пленок, а именно к способу измерения толщины тонких прозрачных пленок бесконтактным способом с помощью оптических приборов.
Известна группа способов измерения толщин тонких пленок, которые широко применяются в промышленности на основе метода эллипсометрии, позволяющего одновременно измерять толщину и показатель преломления пленки (например, Fujiwara Н. Ellipsometry / Handbook of Optical Metrology: Principles and Applications, ed. Yoshizawa Т. - CRC Press: Boca Raton, 2015. - 706 pp.).
Однако этот метод имеет существенные ограничения в части его использования для пленок с высокой шероховатостью поверхности и необходимостью направления света на исследуемый образец под косыми углами.
Поэтому продолжают активно развиваться прочие методы измерения толщин тонких пленок, в первую очередь основанные на применении интерферометрии.
Известен способ бесконтактного непрерывного измерения толщины прозрачной пленки, основанный на направлении лучей света на пленку, их полном внутреннем отражении на границе раздела сред и последующей обработке отраженного света (Патент РФ №2506537). Источник света помещают над/под пленкой так, чтобы образованные лучи света были направлены под углами. Фиксируют изображение искаженного светового пятна, образованного на твердой поверхности под пленкой в результате полного внутреннего отражения света на границе раздела пленка-воздух, на видеокамеру в течение всего времени измерения, обрабатывают на компьютере, измеряют геометрические размеры светового пятна и определяют толщину пленки по формуле:
Figure 00000001
, где h - толщина пленки; D - длина главной диагонали эллипса, аппроксимирующего область светового кольца; d - размер источника света на поверхности; n2 - коэффициент преломления воздуха; n1 - коэффициент преломления материала пленки.
Недостатком данного метода является необходимость оптического доступа к пленке со стороны подложки, что обеспечивает полное внутреннее отражение на поверхностях разделов с уменьшающимся показателем преломления. Кроме того, невозможно измерять толщины пленок из материалов, не прошедших калибровку.
Известен интерференционный метод измерения толщины тонких пленок с помощью устройства, которое содержит источник монохроматического излучения, держатель образца, вращающееся плоское зеркало и приемник излучения, который подсоединен к регистрирующему устройству (Патент РФ №2411448). Ось вращения плоского зеркала расположена на его отражающей поверхности. В устройство введены первое сферическое зеркало и второе сферическое зеркало. Первое сферическое зеркало установлено так, что точка, оптически сопряженная с точкой образца, в которой производятся измерения, находится на оси вращения плоского зеркала в месте падения на него излучения источника. Второе сферическое зеркало установлено с возможностью оптического сопряжения точки образца, в которой производятся измерения, и приемной площадки приемника при различных угловых положениях плоского зеркала.
Недостатком данного метода является избыточная сложность конструкции применяемого устройства.
Популярным является способ измерения толщины пленки и показателя преломления с помощью сканирующей интерферометрии белого света (ИБС, иначе - интерферометрии с ограниченной когерентностью). Данный способ используется для измерения двумерного распределения толщины и показателя преломления прозрачных диэлектрических тонкопленочных структур, применяемых в полупроводниковой электронике (Патент США № 6545763). В основе предложенного способа лежит формула Эйри для плоской волны, испытывающей многократные отражения от плоской прозрачной пленки (Born М. The reflection and transmission coefficients. A homogeneous dielectric film, Principles of Optics. / M. Born, E. Wolf.-Cambridge: Cambridge University Press, 1999. - Pp. 63-69), которая показывает зависимость комплексного коэффициента отражения от толщины пленки. В отсутствии пленки фаза интерферограммы (или, другими словами, в дальнейшем - коррелограммы) линейно зависит от волнового числа k с коэффициентом пропорциональности, равным удвоенному расстоянию отражающей поверхности от положения равенства оптических путей объектного и опорного пучков интерферометра. Дополнительный фазовый сдвиг, вызванный прозрачной пленкой, может быть однозначно разложен на линейную и нелинейную компоненту относительно k, причем нелинейная компонента характеризует именно толщину пленки. Поэтому способ называется методом нелинейного спектра фазы.
Недостатки данного способа определяются тем, что для упрощения анализа используется только часть информации, содержащейся в коррелограмме - а именно, в ее фазе. Информация, содержащаяся в амплитуде, теряется. Также, используемая в способе нелинейная составляющая фазы интерференционного сигнала подвержена значительным шумовым вариациям от точки к точке поверхности пленки (т.е. в направлениях x и y оптического поля объектива). В результате достоверное определение толщин пленки менее 300 нм требует значительного усреднения по пикселям оптического поля, что приводит к снижению латеральной разрешающей способности метода.
Наиболее близким к заявляемому является способ определения толщины пленки, основанный на сравнении измеренной коррелограммы с библиотекой моделированных теоретических коррелограмм (Патент США № 7106454). Зная полностью набор характеристик источника света интерферометра, а также оптических характеристик подложки и пленки, можно теоретически моделировать коррелограммы для любой толщины пленки:
Figure 00000002
где γ - масштабирующий фактор; F(k) - функция спектральной плотности источника излучения; θ - угол падения луча на поверхность; U(θ) - распределение интенсивности по углу падения; d - толщина пленки; h - высота поверхности в точке z - координате распределения интенсивности коррелограммы вдоль линии сканирования. Сравнение измеренной коррелограммы с вычисленными в соответствии с формулой (1) коррелограммами позволяет выявить вычисленную коррелограмму с наименьшими отклонениями от измеренной и определить соответствующую толщину слоя d.
Недостатком способа является сложность его реализации, сложность теоретического учета всех особенностей конкретного устройства и малая помехоустойчивость вследствие чрезмерного количества входящей информации.
Задачей заявляемого изобретения является разработка способа поточечного (на каждом пикселе) измерения толщины тонкой пленки, расположенной на подложке, с помощью сканирующей ИБС путем использования всей содержащейся в коррелограмме информации о толщине пленки без применения синтеза теоретических коррелограмм.
Техническим результатом изобретения является увеличение точности определения толщины тонких пленок и увеличения разрешающей способности топографического картирования пленки, расположенной на подложке, с помощью аппроксимации измеренной коррелограммы суммой членов, представляющих собой подвергнутую операциям масштабирования и сдвига опорную коррелограмму. Опорная коррелограмма определяется как коррелограмма, полученная во время измерения идентичной подложки, не содержащей измеряемую пленку.
Поставленная задача решается тем, что подложку, не содержащую измеряемую пленку, сначала подвергают воздействию белого света с ограниченной когерентностью с помощью интерферометра, измеряют коррелограммы, выделяют опорную коррелограмму; затем подвергают воздействию белого света подложку с нанесенной измеряемой пленкой, измеряют набор коррелограмм, по коррелограмме на каждом пикселе, которые аппроксимируют взвешенной суммой опорных коррелограмм, используя интерполяцию как измеренных коррелограмм из набора, так и опорной коррелограмм для повышения точности аппроксимации, а затем вычисляют набор толщин пленки и положений ее подложки, по результатам которого строятся карты топографии поверхности и толщины пленки.
В последнем случае опорные коррелограммы являются коррелограммами последовательных отражений луча от границ пленки. При этом для выполнения топографирования поверхность пленки разбивается на пиксели, на каждом из которых определяется коррелограмма. Таким образом, разрешающая способность оптической системы, включая регистрирующую камеру, определяет латеральную разрешающую способность метода.
Аппроксимацию коррелограмм, полученных при измерении подложки с нанесенной пленкой, выполняют с помощью взвешенной суммы опорных коррелограмм с варьируемыми значениями сдвига; при этом толщина пленки и ее положение в направлении сканирования являются параметрами аппроксимации. Значения этих параметров, при которых достигается наилучшая аппроксимация, принимаются как истинные значения толщины пленки и ее положения.
Для наиболее точной аппроксимации производится интерполяция как коррелограмм, измеренных на пленке, так и опорной коррелограммы. Интерполяцию коррелограмм выполняют путем расширения спектра гармониками высоких частот с нулевой амплитудой.
В основе способа лежит использование фундаментального утверждения, что суммарная коррелограмма нескольких лучей может быть получена как сумма отдельных коррелограмм каждого из лучей. В приложении к анализу коррелограмм в присутствии пленок это означает, что суммарная измеренная коррелограмма равна сумме коррелограмм волн, отраженных от поверхностей пленок, в простейшем случае - одной пленки. Причем это утверждение справедливо для пленок любой толщины, в том числе значительно менее длины когерентности интерферометра, что может быть показано следующим образом.
В рамках интерферометрического измерения рассматривается взаимодействие двух главных лучей, отраженных от поверхностей пленки (границы пленка-воздух и пленка-подложка); при этом изменениями, внесенными дальнейшими отражениями, можно пренебречь. Из формулы Френеля следует, что, например, в случае пленок SiO2, имеющихся на поверхности подложек из кремния, амплитуды последовательно отраженных волн соотносятся следующим образом: 1,0000:2,1818:0,1983:0,0180:0,0016 и т.д., что указывает на возможность пренебрежения всеми отраженными волнами кроме первых двух, так как последующие волны дают вклад менее 10%. Это справедливо для большинства практических ситуаций, в которых амплитуды волн более высокого порядка отражения сравнимы с уровнем шума.
Если x(t) - амплитуда электрического поля пучка излучения источника света в интерферометре на регистрирующем элементе фотоприемника интерферометра в зависимости от времени, то эта функция имеет конечное время когерентности и ее автокорреляционная функция K(τ) стремится к нулю с ростом сдвига во времени τ. С точностью до константы интенсивность коррелограммы I отражения от подложки, на которой не имеется измеряемой пленки, определяется выражением
Figure 00000003
где τ=Δz/c; Δz - разность длин оптических путей объектного и опорного пучков интерферометра, для простоты их интенсивности приняты равными; Т - продолжительность измерения регистрирующей системы так, что T>>τ.
В этом случае i и K(τ) не зависят от T, так как процесс является стационарным случайным процессом. Если принять в рассмотрение два отраженных пучка света со сдвигом во времени на 2d/c, который появляется в случае отражения от пленки оптической толщиной d, и обозначить их амплитуды, отнесенные к амплитуде падающего пучка, как α и β, то интенсивность коррелограммы, отраженной от пленки, записывается как
Figure 00000004
В этом выражении только последние два слагаемых зависят от τ. Таким образом, с учетом того, что формула (2) показывает эквивалентность частных (опорных) коррелограмм автокорреляционной функции K(τ), то с точностью до константы коррелограмма, определяемая формулой (3), равна сумме коррелограмм двух отдельно взятых отраженных лучей, умноженных на соответствующие коэффициенты Френеля α и β. Поэтому предлагаемый способ суммирования коррелограмм для определения толщины пленки заключается в измерении коррелограммы подложки, не имеющей нанесенную измеряемую пленку (или, иными словами, определении опорной коррелограммы), и последующем измерении коррелограммы той же подложки с нанесенной измеряемой пленкой, которую аппроксимируют суммой двух опорных коррелограмм, умноженных на коэффициенты Френеля α, β. Параметром аппроксимации является толщина пленки d.
Формула (3) соответствует случаю, когда верхняя поверхность пленки находится от фотоприемника интерферометра точно на таком же оптическом расстоянии, что и зеркало опорного плеча интерферометра. На практике эти расстояния не равны, а разность между ними h определяет положение поверхности пленки и является вторым параметром аппроксимации коррелограммы волны, отраженной от пленки, опорными коррелограммами.
Изобретение поясняется чертежами и таблицей. На фиг. 1 представлена блок-схема интерферометра для осуществления заявляемого способа путем измерения коррелограмм белого света; для примера использован интерферометр Миро. На фиг. 2 представлена процедура аппроксимации коррелограммы, полученной отражением от пленки взвешенными опорными коррелограммами. На фиг. 3 представлен пример спектральной интерполяции коррелограммы. На фиг. 4 представлен результат наилучшей аппроксимации коррелограммы, измеренной на пленке SiO2 толщиной 300 нм, выращенной на Si подложке, с использованием источника белого света. На фиг. 5 представлена функция ошибки аппроксимации в зависимости от параметра толщины пленки. В Табл. представлено процентное сравнение возможности попиксельного определения толщины заявляемым способом и методом нелинейного спектра фазы из прототипа.
Позициями на чертежах обозначены: 1 - образец пленки, толщина которой измеряется; 2 - светоделитель; 3 - зеркало опорного плеча интерферометра; 4 - поверхность пленки с выделенным оптическим полем интерферометра; 5 - оптическое поле пленки, разбитое на пиксели; 6 - опорные коррелограммы от поверхностей измеряемой пленки, взвешенные и смещенные в соответствии с ее толщиной и показателем преломления; 7 - сумма опорных коррелограмм.
Предлагаемый способ включает стандартные измерения на сканирующем интерферометре белого света, например типа Миро (в котором объектив включает в себя поз. 2 и 3, фиг. 1). Этот интерферометр используют для сканирования участка поверхности измеряемой пленки (поз. 1, 4, 5, фиг. 1). При сканировании фотоприемник прибора регистрирует в каждой точке сканирования zi распределение интенсивности света по плоскости x, y, параллельной поверхности измеряемой пленки. Записываемая интенсивность определяются интерференцией объектного и опорного пучков интерферометра. В случае отсутствия пленки объектный пучек отражается от поверхности подложки, а при наличии пленки - от обеих ее поверхностей, т.е. в этом случае он уже является результатом сложения пучков отражения. Длина оптического пути опорного пучка в приборе постоянна, а для объектного пучка она пропорциональна z. Разность фаз объектного и опорного пучков пропорциональна z, и фотоприемник регистрирует гармонический интерференционный сигнал при изменении z. Причем амплитуда интерференционного сигнала убывает с ростом z вследствие конечной длины когерентности излучения. То есть полученный затухающий квазигармонический сигнал имеет максимальную амплитуду при условии равенства оптических путей опорного и объектного пучков; амплитуда уменьшается с удалением по z от положения равенства оптических путей. Результирующее распределение интенсивности называется коррелограммой, которая иллюстрирована на фиг. 2. В ходе сканирования сохраняется полная информация об интенсивности света I во всех точках сканирования. Полученную трехмерную зависимость интенсивности от x, y и z интерпретируют как двумерное распределение коррелограмм I(z) по поверхности пленки или пространственный набор коррелограмм. При этом каждая коррелограмма соответствует отдельному пикселю оптического поля (поз. 5, фиг. 1).
Согласно данному способу на первом этапе производят измерение набора коррелограмм на образце подложки, не содержащем измеряемой пленки, и/или на лабораторном зеркале. Из набора эквивалентных коррелограмм выделяют опорную коррелограмму - или как наиболее типичную, или как усредненную по набору. Затем производят измерение на образце подложки, содержащем измеряемую пленку. При этом, наилучшее приближение дает положение обоих поверхностей пленки - на границе пленка/воздух и на границе пленка/подложка.
Вариант заявляемого способа использует определение двух (или, в общем случае, более), вместо одной, опорных коррелограмм. Такие две опорные коррелограммы содержат особенности отражения от обеих поверхностей пленки, и обеспечивают наиболее надежное определение ее геометрии. Чем больше толщина пленки по сравнению с длиной когерентности, тем больше разделение коррелограмм, поэтому две или более различных опорных коррелограммы могут быть получены измерением толстой пленки с оптической толщиной, значительно превышающей длину когерентности интерферометра.
Для каждой коррелограммы, измеренной во всех точках оптического поля, производят ее аппроксимацию суммой двух опорных коррелограмм, амплитуды которых умножают на коэффициенты отражения Френеля от соответствующих поверхностей пленки. Параметрами аппроксимации являются значения z-координат (максимумов) двух суммируемых коррелограм. Сумму взвешенных коррелограмм приводят в соответствие с амплитудой измеренной коррелограммы посредством масштабирования амплитуды суммы коррелограмм так, чтобы максимум получаемой суммы равнялся максимальному значению измеренной коррелограммы. Точность аппроксимации определяют либо вычислением коэффициента корреляции аппроксимирующей и аппроксимируемой коррелограмм, либо средним квадратом расстояния между этими коррелограммами.
Данную процедуру производят для всех точек оптического поля измеряемой пленки, что позволяет определить топографию обеих поверхностей пленки - z1(x, y) - граница пленка-воздух и z2(x, y) - граница пленка-подложка, или, другими словами, определить распределение толщины пленки d(x, y)=|z1(x, y)-z2(x, y)| и ее поверхности z(x, y)=z1(x, y). Полученные распределения значений координат дают топографические карты поверхности подложки и пленки с учетом коэффициента преломления материала пленки.
Так как современные интерферометры в целях экономии времени сканирования используют значительные интервалы между точками регистрации в направлении сканирования z, то перед проведением процедуры аппроксимации как опорную, так и измеренную коррелограммы интерполируют на значительно (например, десятикратно) более частую сетку. При этом производят спектрально адаптированную интерполяцию, при которой каждую спектральную гармонику дополняют промежуточными точками этой же гармоники. С точки зрения преобразования Фурье эта интерполяция заключается в расширении спектра сигнала в v раз. Таким образом, массив получаемых после дискретного преобразования Фурье значений амплитуд гармоник дополняют более высокочастотными гармониками с нулевыми амплитудами. Так как Δz=1/Δƒ, где Δƒ - используемая в преобразовании Фурье ширина спектра, то в результате такого расширения спектра шаг дискретизации, полученного при обратном преобразовании Фурье сигнала, сокращается в v раз по сравнению с первоначальным, и сигнал плавно интерполируется. Пример такой интерполяции дан на фиг. 3. Интерполяция характерна тем, что получаемый после нее сигнал имеет в спектральном диапазоне исходного сигнала в точности тот же спектр, что и последний.
Предлагаемый способ является эффективным и простым в использовании для определения толщины пленки по данным ИБС.
Пример реализации способа
Предложенный способ исследовали для измерения толщин пленок SiO2, нанесенных на подложку полированного кремния, путем применения одного из стандартных промышленных интерферометров белого света (Mirau, Breitmeier Messtechnik GmbH, Германия). Применяли объективы Nikon CF IC EPI Plan DI со следующими параметрами: увеличение - ×10, ×20, и ×40; числовые апертуры - 0,30; 0,40; 0,55; рабочие расстояния - 7,7; 4,7; 3,4 мм; площадь измерения - 0,66×0,89; 0,33×0,44; 0,13×0,17 мм2, соответственно. Для записи световых сигналов использовали ПЗС-матрицу с разрешением 518×692 пикселей. В интерферометре использовали светодиодный источник «белого» света с энергетическим спектром в диапазоне 8,5-12,8 мкм-1. Для получения «эталонных» значений толщин измеряемых пленок SiO2 пленки выращивались с использованием калиброванной процедуры окисления или измерялись независимыми методами в рамках стандартной эллипсометрии с точностью 10 нм. Измеряли пленки SiO2 на кремниевой подложке с толщинами в диапазоне 100-1000 нм. Во всех измерениях использовали минимальный шаг в сканируемом направлении z, равный 40 нм.
Процедура взвешенного сложения опорных коррелограмм иллюстрируется на фиг. 2. На части 6 фиг. 2 приведены две опорные коррелограммы, взвешенные с коэффициентами Френеля, соответствующими поверхностям отражения воздух/SiO2 (граница воздух-пленка) и SiO2/Si (граница воздух-подложка) и смещенными на толщину пленки, которая в данном примере составляла 670 нм. На части 7 фиг. 2 приведен результат суммирования - коррелограмма, использованная для аппроксимации измеренной коррелограммы.
На фиг. 4 показано как согласуются аппроксимирующая сумма и экспериментальная коррелограмма, полученная при измерении пленки SiO2/Si толщиной 300 нм, при наилучшей аппроксимации. Коррелограммы были интерполированы описанным способом спектральной интерполяции. Соответствие можно признать достаточным для практических применений.
Неточность аппроксимации при варьируемых значениях предполагаемой толщины пленки дает так называемую функцию ошибки. Пример такой функции ошибки в диапазоне аргумента, содержащем абсолютный минимум, представлен на фиг. 5. Важно отметить, что характерная шкала ширины пиков функции ошибки позволяет надежно определять положение минимума, а, следовательно, и толщину пленки с неопределенностью менее 1%. Действительно, как видно из фиг. 5, величина радиуса/кривизна пика функции в районе минимума обеспечивает его надежную локализацию с указанной точностью. Полученные данные измерений обрабатывались также методом нелинейного фазового спектра. При этом погрешность определения толщины без дополнительной калибровки для уменьшения погрешности составляла 4-5% (в зависимости от толщины пленки) и 2% после калибровки. Прототипный же метод теоретических коррелограмм оказался неприменимым для обработки данных этих измерений при толщинах пленки менее 300 нм, т.к. теоретическая опорная коррелограмма существенно отличается от измеренной.
Наиболее существенно преимущество заявляемого метода заключается в возможности попиксельного определения толщины пленки, в то время как популярный метод нелинейного спектра фазы требует усреднения по некоторому множеству пикселей, объем которого зависит от характеристик прибора и поверхности, для надежного определения толщины. В Таблице 1 приведено сравнение возможностей попиксельного распознавания толщины пленки двумя методами. Из данных Таблицы 1 видно, что заявляемый способ позволяет достичь большей разрешающей способности определения топографии пленки.
Таким образом, решена задача по разработке способа измерения толщины пленки в рамках ИБС путем применения измерения коррелограмм образца пленки, нанесенной на подложку, и идентичной подложки, не содержащей измеряемую пленку, и дальнейшей аппроксимацией коррелограмм, полученных от пленки, взвешенной суммой коррелограмм, полученных от подложки. Данный способ имеет важное преимущество по сравнению с прототипом, заключающееся в том, что использование коррелограмм, полученных с подложек, не содержащих измеряемую пленку, позволяет учесть искажения коррелограмм, вызванное оптическими инструментами и отражением от подложки. Также этот способ является простым по сравнению с другими известными способами определения толщины пленки на основе ИБС. Способ использует полную информацию, содержащуюся как в амплитудном, так и фазовом спектре сигнала интерферометра.
Figure 00000005

Claims (4)

1. Способ измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра белого света, характеризующийся тем, что подвергают воздействию белого света подложку с нанесенной измеряемой пленкой и измеряют набор коррелограмм, отличающийся тем, что предварительно подвергают воздействию белого света с ограниченной когерентностью подложку, не содержащую измеряемую пленку, и измеряют коррелограммы, после чего выделяют опорную коррелограмму; кроме того, измерение набора коррелограмм осуществляют по каждому пикселю, которые аппроксимируют взвешенной суммой двух или более опорных коррелограмм, используя интерполяцию как измеренных коррелограмм из набора, так и опорных коррелограмм для повышения точности аппроксимации; вычисляют набор толщин пленки и положений ее подложки, по результатам которого строятся карты топографии поверхности и толщины пленки.
2. Способ по п. 1, отличающийся тем, что опорную коррелограмму определяют на основании измерения поверхности подложки, не содержащую измеряемую пленку, характеризуя ее отражающие свойства, либо измерением на зеркале или другом объекте; опорных коррелограмм может быть одна или несколько.
3. Способ по п. 1, отличающийся тем, что аппроксимацию коррелограмм, полученных при измерении подложки с нанесенной пленкой, выполняют с помощью взвешенной суммы опорных коррелограмм; при этом толщина пленки и ее положение в направлении сканирования являются параметрами аппроксимации; значения этих параметров, при которых достигается наилучшая аппроксимация, принимаются как истинные значения толщины пленки и ее положения.
4. Способ по п. 1, отличающийся тем, что интерполяцию коррелограмм выполняют путем расширения спектра гармониками высоких частот с нулевой амплитудой.
RU2016118830A 2016-05-16 2016-05-16 Способ измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра белого света RU2641639C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016118830A RU2641639C2 (ru) 2016-05-16 2016-05-16 Способ измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра белого света

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016118830A RU2641639C2 (ru) 2016-05-16 2016-05-16 Способ измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра белого света

Publications (2)

Publication Number Publication Date
RU2016118830A RU2016118830A (ru) 2017-11-21
RU2641639C2 true RU2641639C2 (ru) 2018-01-18

Family

ID=63852058

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016118830A RU2641639C2 (ru) 2016-05-16 2016-05-16 Способ измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра белого света

Country Status (1)

Country Link
RU (1) RU2641639C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2701783C2 (ru) * 2018-01-26 2019-10-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный архитектурно-строительный университет" (ННГАСУ) Информационно-измерительная система контроля толщины и массы диэлектрических плоских изделий

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999014A (en) * 1989-05-04 1991-03-12 Therma-Wave, Inc. Method and apparatus for measuring thickness of thin films
US20070139656A1 (en) * 2005-12-15 2007-06-21 Veeco Instruments Inc. Measurement of thin films using fourier amplitude
RU2498215C1 (ru) * 2010-11-26 2013-11-10 Баошань Айрон Энд Стил Ко., Лтд. Способ измерения в режиме реального времени толщины пленки не содержащего хром покрытия на поверхности полосовой стали
WO2014045038A1 (en) * 2012-09-19 2014-03-27 Dupont Teijin Films U.S. Limited Partnership Metrology method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999014A (en) * 1989-05-04 1991-03-12 Therma-Wave, Inc. Method and apparatus for measuring thickness of thin films
US20070139656A1 (en) * 2005-12-15 2007-06-21 Veeco Instruments Inc. Measurement of thin films using fourier amplitude
RU2498215C1 (ru) * 2010-11-26 2013-11-10 Баошань Айрон Энд Стил Ко., Лтд. Способ измерения в режиме реального времени толщины пленки не содержащего хром покрытия на поверхности полосовой стали
WO2014045038A1 (en) * 2012-09-19 2014-03-27 Dupont Teijin Films U.S. Limited Partnership Metrology method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2701783C2 (ru) * 2018-01-26 2019-10-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный архитектурно-строительный университет" (ННГАСУ) Информационно-измерительная система контроля толщины и массы диэлектрических плоских изделий

Also Published As

Publication number Publication date
RU2016118830A (ru) 2017-11-21

Similar Documents

Publication Publication Date Title
JP7174060B2 (ja) 多層スタックの計測
De Groot Coherence scanning interferometry
US5398113A (en) Method and apparatus for surface topography measurement by spatial-frequency analysis of interferograms
US6597460B2 (en) Height scanning interferometer for determining the absolute position and surface profile of an object with respect to a datum
US7649634B2 (en) Methods and systems for white light interferometry and characterization of films
JP3741472B2 (ja) 大等価波長を用いた物体表面形状測定方法及びシステム
US8319975B2 (en) Methods and apparatus for wavefront manipulations and improved 3-D measurements
JPH09503065A (ja) 表面形状を測定する干渉計測方法及び装置
CN109781633A (zh) 一种可获得光谱信息的白光显微干涉测量系统及方法
US10203195B2 (en) Noise reduction techniques, fractional bi-spectrum and fractional cross-correlation, and applications
Jo et al. Thickness and surface measurement of transparent thin-film layers using white light scanning interferometry combined with reflectometry
US20070008551A1 (en) Measurement of the top surface of an object with/without transparent thin films in white light interferometry
Kim et al. Thickness measurement of a transparent thin film using phase change in white-light phase-shift interferometry
de Groot et al. Surface profiling by frequency-domain analysis of white light interferograms
Li et al. Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry
WO1993024805A1 (en) Interferometric method and apparatus to measure surface topography
US6624893B1 (en) Correction of scanning errors in interferometric profiling
RU2641639C2 (ru) Способ измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра белого света
RU2709600C1 (ru) Интерферометр Майкельсона для определения показателя преломления поверхностных плазмон-поляритонов терагерцевого диапазона
JP4597467B2 (ja) 基準面に対する物体の絶対位置及び表面プロファイルを測定するための高さ走査干渉計
RU2634328C1 (ru) Способ определения толщины пленки с помощью интерферометрии белого света
Mingzhou Development of fringe analysis techniques in white light interferometry for micro-component measurement
Tang et al. High resolution interferometric metrology for patterned wafers
WO2025135196A1 (en) Systems and methods for multi-surface profile estimation via optical coherence tomography
RU2233430C1 (ru) Способ видеоизмерения толщины пленки