RU2641060C1 - Способ идентификации днк микобактерий лепры с помощью полимеразной цепной реакции - Google Patents

Способ идентификации днк микобактерий лепры с помощью полимеразной цепной реакции Download PDF

Info

Publication number
RU2641060C1
RU2641060C1 RU2016134126A RU2016134126A RU2641060C1 RU 2641060 C1 RU2641060 C1 RU 2641060C1 RU 2016134126 A RU2016134126 A RU 2016134126A RU 2016134126 A RU2016134126 A RU 2016134126A RU 2641060 C1 RU2641060 C1 RU 2641060C1
Authority
RU
Russia
Prior art keywords
leprosy
leprae
dna
pcr
chain reaction
Prior art date
Application number
RU2016134126A
Other languages
English (en)
Inventor
Людмила Валентиновна Сароянц
Кристина Шотаевна Арнаудова
Original Assignee
Федеральное государственное бюджетное учреждение "Научно-исследовательский институт по изучению лепры" Минздрава Российской федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Научно-исследовательский институт по изучению лепры" Минздрава Российской федерации filed Critical Федеральное государственное бюджетное учреждение "Научно-исследовательский институт по изучению лепры" Минздрава Российской федерации
Priority to RU2016134126A priority Critical patent/RU2641060C1/ru
Application granted granted Critical
Publication of RU2641060C1 publication Critical patent/RU2641060C1/ru

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Изобретение относится к области медицины и предназначено для идентификации Mycobacterium leprae. ДНК выделяют из соскоба со слизистой оболочки полости носа в 5% растворе сывороточного бычьего альбумина. Проводят ПЦР в режиме реального времени с использованием внешних и внутренних праймеров. Изобретение обеспечивает повышение эффективности идентификации возбудителя лепры. 1 табл., 2 пр.

Description

Изобретение относится к области медицины, а именно к лабораторной диагностике лепры и может быть использовано, в частности, для выявления лиц, инфицированных микобактериями лепры. Сущность изобретения скринингового обследования населения на лепру состоит в том, что со слизистой оболочки полости носа берут соскоб и далее посредством проведения полимеразной цепной реакции (ПЦР) с использованием внешних и внутренних праймеров:
Figure 00000001
и
Figure 00000002
Figure 00000003
и флуоресцентного зонда
Figure 00000004
проводят идентификацию возбудителя лепры. Способ позволяет подтвердить факт носительства и/или инфицированности микобактериями лепры. Данный способ может применяться в диагностических лабораториях, в противолепрозных учреждениях, в лечебных учреждениях для обследования мигрантов.
Несмотря на значительное снижение распространенности лепры после внедрения комбинированной химиотерапии, частота выявления новых случаев заболевания лепрой в мире остается высокой. В последние годы в нашей стране отмечается значительное увеличение потока мигрантов из эндемичных по лепре стран. В этой связи, на основании постановления Правительства РФ от 3 апреля 2003 г. №168 все лица, въезжающие в Россию, должны обследоваться, в том числе и на лепру. В настоящее время данное обследование включает клинический осмотр, и только при подозрении на лепру, проводят бактериоскопические исследования, предварительно окрашенных по Циль-Нильсену мазков с соскобов из носа и скарификатов с кожи.
Однако недостатками бактериоскопического метода являются:
- субъективизм оценки;
- малая чувствительность (в мазке должно быть 104 и более бактерий/мл);
- невозможность провести под микроскопом идентификацию видов микобактерий.
Учитывая, что основной путь передачи инфекции воздушно-капельный, и у многих контактных с больными лепрой лиц, особенно проживающих в эндемичных регионах, в назальном секрете обнаруживаются M.leprae без явных симптомов болезни [1], т.е. они могут являться потенциальным источником распространения заболевания, существует необходимость совершенствования скринингового обследования населения на лепру. Причем для такого обследования актуальным остается неинвазивный способ идентификации M.leprae с высокой чувствительностью и специфичностью.
Из практики медицины известен «Способ диагностики лепры» (заявка на изобретение №2000123326/14, 07.09.2000, опубл. 10.08.2001). Сущность способа заключается в том, что в слюне методом иммуноферментного анализа определяют антитела к IgM, IgG M.leprae с помощью антигенов M.lufu и по показателям оптической плотности диагностируют лепру.
Существенным недостатком данного способа является использование в качестве антигенов - M.lufu, не являющейся аналогом M.leprae. Обнаружение антител к M.lufu может только косвенно свидетельствовать о наличии антител к M.leprae. Это не дает возможности получить конкретный технический результат - повышение эффективности способа.
С развитием амплификационных методов, в частности полимеразноцепной реакции (ПЦР), появились широкие возможности в диагностике инфекционных заболеваний, особенно тех, где возбудителя трудно или невозможно культивировать. Помимо основных достоинств ПЦР - высокой чувствительности и специфичности, применение ПЦР позволяет значительно снизить время детекции возбудителя. В основе данного метода, состоящего из трех стадий (денатурация, отжиг, синтез), лежит амплификация (многократная репликация) специфического участка ДНК. Выбор подходящей ДНК-мишени для амплификации очень важен для создания высокоспецифичного ПЦР-теста. Правильно подобранные праймеры к соответствующим участкам ДНК-мишени обеспечивают специфичность и чувствительность тест-системы. Однако на результаты определения может повлиять ряд факторов, связанных с особенностями анализируемого клинического материала, т.е. создание высокоспецифичного и высокочувствительного ПЦР-теста связано с методами экстракции ДНК M.leprae в зависимости от источника биологического образца (сыворотка крови, биоптат, скарификаты с кожи, соскобы со слизистой оболочки носа). Основной задачей на этом этапе является получение максимального количества ДНК возбудителя с наименьшими экономическими затратами.
Изложенное определяет актуальность предлагаемого изобретения и необходимость разработки скринингового обследования населения на лепру с помощью полимеразной цепной реакции.
Известен способ по выявлению M.leprae в носовой полости авторами Klaster P.R., van Beers S., Madjit В. et al. (Detection of Mycobacterium leprae nasal carriers in population for which leprosy endemic // J. Clin. Microbiol. 1993, 2947-2951), проводившими обследование населения в эндемичном по лепре регионе. Используя праймеры к 531-bp фрагменту pra гена M.leprae, детекцию продуктов амплификации проводили либо в агарозном геле, либо в дальнейшей гибридизации, либо в ELISA. Показано, что в 2,9% случаев при использовании данных праймеров идентифицировать M.leprae не представлялось возможным.
Недостатком этого способа является отсутствие возможности идентифицировать M.leprae в некоторых образцах при проведении ПЦР, для чего требовалась постановка или повторной реакции, или проведение гибридизации, или иммуноферментного анализа. Кроме того, недостатком известного способа является использование в качестве детекции продуктов амплификации электрофореза, что может способствовать контаминации образцов. Эти недостатки не позволяют получить конкретный технический результат - повышение эффективности способа.
Известен способ идентификации Mycobacterium leprae с помощью теста GenoType Leprae DR, основанный на DNA-стрип технологии фирмы Hain Lifescience (Германия). Для идентификации используют мультиплексную амплификацию с биотинилированными праймерами и реверс-гибридизацией.
Недостатком данного метода является необходимость использования специализированного дорогостоящего оборудования и реактивов, совместимых только с данным оборудованием и, как следствие этого, высокая стоимость анализа, что не обеспечивает возможности получения конкретного технического результата - повышение эффективности способа.
С целью обнаружения ДНК M.leprae применяют праймеры к различным участкам ДНК. Одним из видов таких праймеров являются, так называемые, RLEP праймеры. Хромосома Mycobacterium leprae содержит семейство из 29 мультикопийных повторов (RLEP) с переменной структурой и неизвестной функцией [2], каждая из которых содержит инвариантный фрагмент в 545 bp, фланкирующих в некоторых случаях дополнительные фрагменты от 44 до 100 bp. Использование RLEP в качестве ДНК-мишеней для ПЦР имеет преимущество по чувствительности по сравнению с другими мишенями ДНК, поскольку они присутствуют в нескольких местах геномной ДНК [3].
Известен способ идентификации M.leprae в носовой полости с использованием праймеров к 372 bp фрагменту RLEP M.leprae (Patrocinio L.G., Goulart I.M.B., Goulart L.R. et al. Detection of Mycobacterium leprae nasal mucosa biopsies by the polymerase chain reaction // FEMS Immunol, and Med Microbiol. 2005, 44: 311-316) и к 455-bp фрагменту RLEP (Jadhav R.S., Macdonald M, Bjune L. et al. Simplified PCR detection method for nasal Mycobacterium leprae // Int. J. Lepr. 2001, 4: 299-307) с хорошей степенью чувствительности.
Недостатками этого способа являются - инвазивность метода (взятие биопсии со слизистой поверхности носа, а не соскоба), что подразумевает особые условия для взятия анализа и не может быть использовано при скрининговом обследовании. Кроме того, этот метод был применен только у больных лепрой и не проверялся на здоровых лицах. Эти недостатки не обеспечивают возможности получения конкретного технического результата - повышение эффективности способа.
Известен способ идентификации M.leprae, разработанный Truman R.W., Andrews Р.K., Robins N.Y. et al. (Enumeration of Mycobacterium leprae using realtime PCR // PLOS Negl. Trop.Dis., 2008, 2(11), doi:10.1371/joumail.pntd.0000328), где в качестве праймеров и зонда использовали сиквенс из 1, 2, 3 и 4 RLEP M.leprae. Недостатком данного способа является использование данных праймеров только для обнаружения Mycobacterium leprae в экспериментальной модели лепрозной инфекции на мышах.
В качестве прототипа изобретения взят способ, предложенный Martinez N.A., Lahiri R., Pittman L.T. et al. (Molecular determination of Mycobacterium leprae viability by use of real-time PCR // J. Clin. Microbiol. 2009, 47: 2124-2130), при котором для обнаружения M.leprae применяется метод ПЦР с обратной транскрипцией с использованием в качестве праймеров sodA mRNA, 16S rRNA и RLEP M.leprae.
Общим существенным признаком является то, что в обоих способах в качестве одного из праймеров используются последовательности RLEP M.leprae и амплификация проходит в режиме реального времени (Real time) в течение 40 циклов.
Сущность способа по прототипу состоит в обнаружении в биоптатах больных лепрой жизнеспособной ДНК M.leprae при использовании двух пар праймеров, а именно sodA/RLEP и 16SrRNA/ RLEP.
Недостатками известного способа являются:
- длительность метода выделения, состоящего из многих этапов с использованием дорогостоящих готовых зарубежных наборов реагентов, включающих гомогенизацию на льду, обработку реагентом TRIzol, осаждение ДНК изоамиловым спиртом, многократные отмывки;
- проведение экстракции ДНК и РНК только из биоптатов и скарификатов кожи больных лепрой и из подушечек лап атимусных мышей, зараженных M.leprae по методу Shepard и McRae [4]. Авторы не проводили экстракцию ДНК, полученной из соскобов со слизистой носа как от больных лепрой, так и контактных лиц, что необходимо при создании скринингового теста;
- применение только для диагностирования клинических проявлений болезни и для контроля эффективности лечения у больных лепрой;
- выявление преимущественно жизнеспособных M.leprae, что не является определяющим при скрининговом обследовании;
- использование несколько пар праймеров.
Таким образом, перечисленные недостатки не обеспечивают повышение точности, скорости, информативности, неинвазивности и удешевления способа, т.е. эффективности способа.
Целью изобретения является повышение скорости, точности, информативности, неинвазивности, а также удешевление способа идентификации ДНК микобактерий лепры с помощью полимеразной цепной реакции в режиме реального времени.
Цель достигается путем обнаружения Mycobacterium leprae в носовой полости обследуемых лиц с помощью неинвазивного способа взятия материала, простотой и сокращением времени выделения ДНК, использованием одной пары праймеров с применением отечественного оборудования и реактивов.
Сущность способа состоит в следующем:
Соскоб со слизистой оболочки полости носа проводят с помощью стерильных одноразовых зондов. Зонд переносят в пластиковую пробирку объемом 1,5 мл со стерильным физиологическим раствором (300 мкл), аккуратно перемешивают, извлекают зонд, прижимая к стенке пробирки и отжимая избыток жидкости. Пробирку плотно закрывают, центрифугируют при 13000 об/мин в течение 10 мин и удаляют надосадочную жидкость, оставив в пробирке примерно 100 мкл (осадок + жидкая фракция). К 100 мкл исследуемого образца добавляют 100 мкл физиологического раствора и 40 мкл 5% раствора сывороточного бычьего альбумина (СБА), пробирка встряхивается, образец отстаивается в течение 2-5 мин и затем инкубируется при температуре 95° 1 мин и охлаждается 1 мин при температуре -20°С. Эту процедуру повторяют 4 раза. После чего образец термостатируют 20 мин при 95°С и центрифугируют 1 мин при 13000 об/мин. Далее 5 мкл выделенной ДНК отбирают на дальнейшую постановку ПЦР, оставшийся материал хранят при температуре -20°С.
Выделенные 5 мкл ДНК добавляют в амплификационную смесь (25 мкл). Состав амплификационной смеси: 50 мМ KCl, 10 мМ Трис HCl (pH 8,8), 6,25 мМ MgCl2, Taq-полимераза (5 ед/мкл), смесь dNTP, концентрация каждого нуклеотида 25 мМ, глицерол, Tween 20, по 10 пкмоль/мкл каждого праймера и флуоресцентного зонда, 25 мМ MgCl2 и деионизированная вода. Затем вносят в пробирку 20 мкл минерального масла.
В каждой постановке, помимо пробирок с исследуемыми образцами, ставят 3 пробирки для проверки этапов пробоподготовки и постановки ПЦР: 1 пробирка - отрицательный контрольный образец (ОКО), прошедший все этапы пробоподготовки; 2 - отрицательный контроль «К-», в который добавляется 5 мкл стерильной дистиллированной воды; 3 - положительный контроль «К+» - 5 мкл положительного контрольного образца.
Последовательность праймеров и зондов к RLEP M.leprae:
Figure 00000005
Figure 00000006
Figure 00000007
Использование в предлагаемом способе флуоресцентного зонда позволяет проводить ПЦР в реальном времени и избежать контаминации, что возможно при детекции результатов с помощью электрофореза. Отработка условий амплификации включает в себя: отработку времени и температуры денатурации при 94°-95°С от 1 мин до 10 мин, температуры отжига праймеров - 60°, 62°, 64°С, концентрации ионов Mg++ от 0,8 до 10,5 мМ, время циклов каждой стадии амплификации от 1 минуты до 15 сек и, наконец, количество циклов от 30 до 45. Критерием правильности режима для каждого этапа проводимой реакции служит показатель результата - наличие ДНК M.leprae из заведомо положительного биоптата кожи больного лепрой. Отработанный режим амплификации представляет из себя следующее:
Figure 00000008
Амплификацию и учет результатов проводят на термоциклере «ДТ-96 Real time» («НПФ ДНК-Технология», Россия).
Таким образом, способ идентификации микобактерий лепры, включающий применение ПЦР «Real time» с использованием внешних и внутренних праймеров:
Figure 00000009
и
Figure 00000010
Figure 00000011
и флуоресцентного зонда
Figure 00000012
, заключается в том, что ДНК выделяют из соскоба со слизистой оболочки полости носа в 5% растворе СБА, с использованием режима амплификации: 95°С - 5 мин и 60°С - 50 сек - 1 цикл и 95°С - 15 сек и 62°С - 40 сек - 40 циклов в Трис HCl буфере с KCl, 6,25 мМ MgCl2, твином и глицеролом.
Проверку специфичности проводили на кожных биоптатах, полученных от больных лепрой. Во всех биоптатах M.leprae обнаружены как с помощью ПЦР-анализа, так и при гистологическом исследовании. Кроме того, специфичность оценивалась на музейных штаммах микобактерий: M.avium, M.kansasii, M.scrofulaceum, M.marinum, M.vaccae, M.intracellulare, M.clegg, M.duvalii, M.phlei, M.gastri, M.gordonae, M.lufu, M.smegmatis, M.bovis, M.paratuberculosis, M. Кедровский. Все изоляты исследовались в пределах 100 клеток в образце. Ни один из изолятов не показал реактивности в ПЦР.
В качестве примеров своевременного выявления микобактерий лепры приводятся выписки из карт больных.
Пример 1. Больной М-в Н.А. 1950 г.р., житель Астраханской области, проходил обследование в «НИИЛ» в марте 2012 г. Предположительный диагноз: Экзема распространенная. Лепра?
При обследовании у пациента взят соскоб со слизистой оболочки полости носа и скарификат кожи для проведения бактериоскопического исследования и постановки ПЦР. При бактериоскопическом исследовании Mycobacterium leprae не обнаружены. Для проведения ПЦР анализа у обследуемого стерильным зондом взят соскоб со слизистой носа, затем зонд помещен в пластиковую пробирку объемом 1,5 мл и аккуратно перемешан со стерильным физиологическим раствором (300 мкл), после чего, прижимая зонд к стенке пробирки и отжимая избыток жидкости, зонд извлечен. Пробирку плотно закрывают, центрифугируют при 13000 об/мин в течение 10 мин и удаляют надосадочную жидкость, оставляя в пробирке примерно 100 мкл. Затем в пробирку добавляют 100 мкл физиологического раствора и 40 мкл 5% раствора СБА, пробирку встряхивают на вортексе, отставляют пробирку на 5 мин и затем инкубируют при температуре 95°С 1 мин и охлаждают 1 мин при температуре - 20°С. Эту процедуру повторяют 4 раза. После чего пробирку термостатируют 20 мин при 95°С и центрифугируют 1 мин при 13000 об/мин. Далее, 5 мкл выделенной ДНК отбирают и добавляют в пробирку с 25 мкл амплификационной смеси, содержащей: 50 мМ KCl, 10 мМ Трис HCl (pH 8,8), 6,25 мМ MgCl2, Taq - полимеразу (5 ед/мкл), смесь dNTP, концентрация каждого нуклеотида 25 мМ, глицерол, Tween 20, 10 пкмоль/мкл каждого праймера и 10 пкмоль/мкл флуоресцентного зонда, 25 мМ MgCl2 и деионизированную воду. После этого вносят в пробирку 20 мкл минерального масла. В другую пробирку («К-») с амплификационной смесью вносят 5 мкл стерильной дистиллированной воды, а в третью пробирку («К+») - 5 мкл положительного контрольного образца. Затем образцы ставят в амплификатор ДТ-96, где заложена необходимая программа (95°С - 5 мин, 60°С - 50 сек - один цикл и 95°С - 15 сек и 62°С - 40 сек - 40 циклов). В положительном контрольном образце (биопсия от больного) кривая флуоресценции начинает подниматься с 22 цикла и через 5 циклов начинает подниматься кривая из обследуемого образца. В отрицательном контрольном образце флуоресценции не наблюдается. По результатам ПЦР исследования пациенту решено провести никотиновую пробу, позволяющую выявить невидимые на коже инфильтрации или пятна, после чего взят биоптат с кожи для гистологического исследования. При гистологическом исследовании у пациента обнаружен характерный инфильтрат с наличием Mycobacterium leprae. Таким образом, через 5 часов у больного выявлены микобактерии лепры на слизистой оболочке полости носа, что позволило провести дальнейшее обследование и поставить диагноз - лепра.
Пример 2. Больной Ш-в К.Б. 1981 г.р., житель Таджикистана, проходил консультативное обследование в «НИИЛ» в июле 2013 г. Предположительный диагноз: Лепра?
При обследовании у пациента взят соскоб со слизистой оболочки полости носа для проведения бактериоскопического исследования и постановки ПЦР. При бактериоскопическом исследовании Mycobacterium leprae в соскобе со слизистой носа не обнаружены. В результате ПЦР исследования, проведение которого описано выше, у больного в соскобе со слизистой оболочки носа выявлены микобактерии лепры. В дальнейшем расширенное обследование больного с привлечением бактериоскопических исследований скарификатов кожи и гистологического анализа кожных биоптатов подтвердило эти результаты. Больному поставлен диагноз многобациллярной лепры, являющейся наиболее контагиозной формой заболевания. Данный больной, проживавший в эндемичном по лепре регионе, длительное время обращался в различные медицинские учреждения по поводу трофической язвы стопы. Проведение скринингового обследования на лепру, по предлагаемому нами способу, позволило бы своевременно установить правильный диагноз и вовремя начать специфическое лечение, тем самым прервать эпидемиологическую цепочку болезни, снизив риск инфицирования M.leprae лиц, с которыми больной контактировал.
Для характеристики чувствительности предлагаемой тест-системы проведено сравнительное изучение выявления микобактерий лепры с помощью предлагаемого способа и с использованием теста GenoType Leprae DR фирмы Hain Lifescience (Германия). Результаты представлены в таблице:
Figure 00000013
Полученные результаты подтверждают, что предлагаемый способ идентификации микобактерий лепры прост в исполнении, неинвазивен, информативен и значительно дешевле импортных тест-систем, выполняется на отечественном оборудовании и отличается повышенной чувствительностью, точностью и скоростью выполнения.
Приведенные примеры применения предлагаемого способа показывают его полезность для выявления инфицированных микобактериями лепры лиц, на основании чего проводится дальнейшее обследование с целью установления диагноза лепры. Таким образом, применение данного способа способствует выявлению заболевания на ранней стадии, когда лечение наиболее эффективно, проводится с наименьшими экономическими затратами и с наименьшим ущербом для здоровья пациентов. Предлагаемое изобретение удовлетворяет критериям новизны т.к. при определении уровня исследований по данному вопросу не обнаружено способа, которому присущи признаки, идентичные всем признакам, перечисленным в формуле изобретения, включая характеристику назначения.
Способ идентификации микобактерий лепры имеет изобретательский уровень, поскольку не выявлены технические решения, имеющие признаки, совпадающие с отличительными признаками предлагаемого изобретения.
Таким образом, предлагаемое изобретение решает основную задачу - повышение эффективности способа, а именно точности, скорости, информативности, неинвазивности, а также удешевление процедуры идентификации ДНК микобактерий лепры, что немаловажно при массовом обследовании, в частности мигрантов.
Авторами предложен новый, никем ранее незаявленный способ идентификации микобактерий лепры со слизистой оболочки носа при обследовании населения на лепру.
Предлагаемый способ может быть рекомендован к клиническому использованию в противолепрозных учреждениях, в диагностических лабораториях, в лечебных учреждениях для обследования населения на лепру.
Использованные источники
1. Rupendra S., Macdonald М., Bjune L. et al. Simplified PCR detection method for nasal Mycobacterium leprae // Int. J. Lepr., 2001, 69: 299-308.
2. Woods S.A., Cole S.T. A family of dispersed repeats of Mycobacterium leprae // Mol. Microbiol., 1990, 4: 1745-1751.
3. Kang T.J., Kim S.K., Lee S.B. et al. Comparison of two different PCR amplification products (the 18-kDA protein gene vs. RLEP repetitive sequence) in the diagnosis of Mycobacterium leprae // Clin. Exp. Dermatol., 2003, 28: 420-424.
4. Shepard S.S., McRae D.H. A method for counting acid-fast bacteria // Int. J. Lepr., 1968, 36: 78-82.

Claims (1)

  1. Способ идентификации Mycobacterium leprae, включающий применение полимеразной цепной реакции в режиме реального времени «Real time» с использованием внешних и внутренних праймеров: 5'-gca-gca-gta-tcg-tgt-tag-tga-a-3' и 5'-cgc-tag-aag-gtt-gcc-gta-t-3' и флуоресцентного зонда (R6G)-cgc-cga-cgg-ccg-gat-cat-cga-(BHQ2), отличающийся тем, что ДНК выделяют из соскоба со слизистой оболочки полости носа в 5% растворе сывороточного бычьего альбумина с использованием режима амплификации: 95°C - 5 мин и 60°C - 50 сек - один цикл, и 95°C - 15 сек и 62°C - 40 сек - 40 циклов.
RU2016134126A 2016-08-19 2016-08-19 Способ идентификации днк микобактерий лепры с помощью полимеразной цепной реакции RU2641060C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016134126A RU2641060C1 (ru) 2016-08-19 2016-08-19 Способ идентификации днк микобактерий лепры с помощью полимеразной цепной реакции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016134126A RU2641060C1 (ru) 2016-08-19 2016-08-19 Способ идентификации днк микобактерий лепры с помощью полимеразной цепной реакции

Publications (1)

Publication Number Publication Date
RU2641060C1 true RU2641060C1 (ru) 2018-01-15

Family

ID=68235657

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016134126A RU2641060C1 (ru) 2016-08-19 2016-08-19 Способ идентификации днк микобактерий лепры с помощью полимеразной цепной реакции

Country Status (1)

Country Link
RU (1) RU2641060C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2759232C1 (ru) * 2021-01-20 2021-11-11 Федеральное государственное бюджетное учреждение "Государственный научный центр дерматовенерологии и косметологии" Министерства здравоохранения Российской Федерации Способ оценки эффективности терапии лепры с использованием полимеразной цепной реакции для амплификации видоспецифичных участков геномов лепры, человека или мыши

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468371C2 (ru) * 2010-11-23 2012-11-27 Федеральное государственное бюджетное учреждение "Научно-исследовательский институт по изучению лепры" Министерства здравоохранения Российской Федерации (ФГБУ "НИИЛ" Минздрава России) Способ выявления антител к mycobacterium leprae на твердом носителе

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468371C2 (ru) * 2010-11-23 2012-11-27 Федеральное государственное бюджетное учреждение "Научно-исследовательский институт по изучению лепры" Министерства здравоохранения Российской Федерации (ФГБУ "НИИЛ" Минздрава России) Способ выявления антител к mycobacterium leprae на твердом носителе

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MARTINEZ A.N. et al. Molecular determination of Mycobacterium leprae viability by use of real-time PCR. J Clin Microbiol. 2009 Jul; 47(7): 2124-2130. Epub 2009 May 13. *
MARTINEZ A.N. et al. Molecular determination of Mycobacterium leprae viability by use of real-time PCR. J Clin Microbiol. 2009 Jul; 47(7): 2124-2130. Epub 2009 May 13. PATROCINIO L.G. et al. Detection of Mycobacterium leprae in nasal mucosa biopsies by the polymerase chain reaction. FEMS Immunol Med Microbiol. 2005 Jun 1; 44(3): 311-316. PONTES A.R. et al. [Detection of Mycobacterium leprae DNA in nasal swab]. [Article in Portuguese]. Rev Bras Enferm. 2008; 61 Spec No: 734-737. Laboratory Techniques for Leprosy. World Health Organization; 1987, 166 p. *
PATROCINIO L.G. et al. Detection of Mycobacterium leprae in nasal mucosa biopsies by the polymerase chain reaction. FEMS Immunol Med Microbiol. 2005 Jun 1; 44(3): 311-316. *
PONTES A.R. et al. [Detection of Mycobacterium leprae DNA in nasal swab]. [Article in Portuguese]. Rev Bras Enferm. 2008; 61 Spec No: 734-737. Laboratory Techniques for Leprosy. World Health Organization; 1987, 166 p. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2759232C1 (ru) * 2021-01-20 2021-11-11 Федеральное государственное бюджетное учреждение "Государственный научный центр дерматовенерологии и косметологии" Министерства здравоохранения Российской Федерации Способ оценки эффективности терапии лепры с использованием полимеразной цепной реакции для амплификации видоспецифичных участков геномов лепры, человека или мыши

Similar Documents

Publication Publication Date Title
Haldar et al. Improved laboratory diagnosis of tuberculosis–the Indian experience
Siriyasatien et al. Early detection of novel Leishmania species DNA in the saliva of two HIV-infected patients
Palmer et al. Biomarkers of cell-mediated immunity to bovine tuberculosis
Khosravi et al. Identification of Mycobacterium tuberculosis in clinical specimens of patients suspected of having extrapulmonary tuberculosis by application of nested PCR on five different genes
Munne et al. Female genital tuberculosis in light of newer laboratory tests: A narrative review
Pathak et al. Utility of multiplex PCR for early diagnosis and household contact surveillance for leprosy
Pazoki et al. Lupoid leishmaniasis among the known cases of cutaneous leishmaniasis in Herat Province, western Afghanistan
Watts et al. The laboratory diagnosis of Strongyloides stercoralis
Sowjanya et al. CBNAAT: a novel diagnostic tool for rapid and specific detection of mycobacterium tuberculosis in pulmonary samples
Sales et al. Validation of a real-time PCR assay for the molecular identification of Mycobacterium tuberculosis
RU2641060C1 (ru) Способ идентификации днк микобактерий лепры с помощью полимеразной цепной реакции
Lee et al. Does polymerase chain reaction of tissue specimens aid in the diagnosis of tuberculosis?
Banche et al. Application of multiple laboratory tests for Mycobacterium avium ssp. paratuberculosis detection in Crohn’s disease patient specimens
Guio et al. Method for efficient storage and transportation of sputum specimens for molecular testing of tuberculosis
Lima et al. Performance of nested PCR in the specific detection of Mycobacterium tuberculosis complex in blood samples of pediatric patients
RU2688156C2 (ru) Способ оценки эффективности лечения лепры с помощью полимеразной цепной реакции
Santos et al. Performance of the IS6110-TaqMan® assay in the diagnosis of extrapulmonary tuberculosis from different biological samples
Harirzadeh et al. Identification of Mycobacterium tuberculosis isolated from culture-negative pulmonary and extra-pulmonary samples in cases of suspected tuberculosis
Sumangala et al. Role of GeneXpert® MTB/RIF assay for early diagnosis of pulmonary tuberculosis in people living with HIV.
US20220056528A1 (en) Method of detecting infection with pathogens causing tuberculosis
Usharani et al. Molecular epidemiology of female genital tuberculosis leading to infertility
Javaheri et al. New foci of zoonotic cutaneous leishmaniosis due to Leishmania major in the northeastern Iran cities of Sabzevar and Neghaab
Beyhan et al. Detection and identification of cutaneous leishmaniasis isolates by culture, polymerase chain reaction and sequence analyses in Syrian and Central Anatolia patients
Chaoui et al. Molecular diagnostics for verification of pleural tuberculosis in Morocco
RU2759232C1 (ru) Способ оценки эффективности терапии лепры с использованием полимеразной цепной реакции для амплификации видоспецифичных участков геномов лепры, человека или мыши

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180820

NF4A Reinstatement of patent

Effective date: 20200827