RU2640764C1 - Оптический материал инфракрасного диапазона и способ его получения - Google Patents
Оптический материал инфракрасного диапазона и способ его получения Download PDFInfo
- Publication number
- RU2640764C1 RU2640764C1 RU2016138671A RU2016138671A RU2640764C1 RU 2640764 C1 RU2640764 C1 RU 2640764C1 RU 2016138671 A RU2016138671 A RU 2016138671A RU 2016138671 A RU2016138671 A RU 2016138671A RU 2640764 C1 RU2640764 C1 RU 2640764C1
- Authority
- RU
- Russia
- Prior art keywords
- crystal
- ini
- growing
- indium
- optical material
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000000463 material Substances 0.000 title claims abstract description 23
- 230000003287 optical effect Effects 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000013078 crystal Substances 0.000 claims abstract description 57
- 239000003708 ampul Substances 0.000 claims abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 230000005540 biological transmission Effects 0.000 claims abstract description 7
- 239000010453 quartz Substances 0.000 claims abstract description 7
- 239000011521 glass Substances 0.000 claims abstract description 6
- 238000000926 separation method Methods 0.000 claims abstract description 6
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000005297 pyrex Substances 0.000 claims abstract description 5
- 230000003595 spectral effect Effects 0.000 claims abstract description 4
- FOVZCYAIUZHXGB-UHFFFAOYSA-M indium(1+);iodide Chemical compound I[In] FOVZCYAIUZHXGB-UHFFFAOYSA-M 0.000 claims description 30
- 238000000746 purification Methods 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 3
- 229910052738 indium Inorganic materials 0.000 abstract description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 abstract description 3
- 238000001228 spectrum Methods 0.000 abstract description 3
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 abstract description 2
- 238000004140 cleaning Methods 0.000 abstract description 2
- 238000002203 pretreatment Methods 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 description 7
- RMUKCGUDVKEQPL-UHFFFAOYSA-K triiodoindigane Chemical compound I[In](I)I RMUKCGUDVKEQPL-UHFFFAOYSA-K 0.000 description 7
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 6
- 229910052716 thallium Inorganic materials 0.000 description 6
- 239000000155 melt Substances 0.000 description 5
- PGAPATLGJSQQBU-UHFFFAOYSA-M thallium(i) bromide Chemical compound [Tl]Br PGAPATLGJSQQBU-UHFFFAOYSA-M 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- -1 thallium halides Chemical class 0.000 description 4
- 238000004857 zone melting Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000007713 directional crystallization Methods 0.000 description 2
- 230000005251 gamma ray Effects 0.000 description 2
- 231100000086 high toxicity Toxicity 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- KLRHPHDUDFIRKB-UHFFFAOYSA-M indium(i) bromide Chemical compound [Br-].[In+] KLRHPHDUDFIRKB-UHFFFAOYSA-M 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 231100001231 less toxic Toxicity 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- GBECUEIQVRDUKB-UHFFFAOYSA-M thallium monochloride Chemical compound [Tl]Cl GBECUEIQVRDUKB-UHFFFAOYSA-M 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical class Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- IGUXCTSQIGAGSV-UHFFFAOYSA-K indium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[In+3] IGUXCTSQIGAGSV-UHFFFAOYSA-K 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000005212 lattice dynamic Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003476 thallium compounds Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Изобретение относится к монокристаллическим оптическим неорганическим материалам, которые могут использоваться в оптической технике. Оптический материал представляет собой монокристаллический моноиодид индия InI ромбической сингонии с областью спектрального пропускания до 51 мкм. Способ получения InI включает предварительную очистку исходной шихты методом ректификации, выращивание монокристалла методом Бриджмена со скоростью протяжки не более 2,0 мм/ч в кварцевой ампуле из стекла «пирекс», отделение от конечной части выращенного кристалла мутной части и четырехкратную кристаллофизическую очистку полученного на предыдущей стадии высокочистого материала путем повторного выращивания кристалла с промежуточным отделением конечной мутной части кристалла после каждой очистки. Изобретение позволяет получать монокристаллы InI, прозрачные от видимого до дальнего инфракрасного диапазона спектра, отличающиеся негигроскопичностью. 2 н.п. ф-лы, 3 ил., 1 табл., 6 пр.
Description
Изобретение относится к монокристаллическим оптическим неорганическим материалам. Оптический материал представляет собой монокристалл моноиодида индия (InI) ромбической сингонии, прозрачный от видимого до дальнего инфракрасного диапазона спектра. Способ включает в себя использование высокочистой исходной шихты InI, очищенной ректификацией (чистота не хуже 99,9998%) с последующей четырехкратной кристаллофизической очисткой и с промежуточным отделением конечной мутной части кристалла, содержащей примеси и включения, от основной части. Способ включает вертикальную направленную кристаллизацию очищенного моноиодида индия со скоростью, не превышающей 2 мм/час.
Современная оптическая промышленность оперирует набором кристаллических и поликристаллических материалов, прозрачных в инфракрасном (ИК) диапазоне. Возможность создания и практического использования оптического материала определяется рядом факторов: химической устойчивостью (в первую очередь - к воздействию воды и кислорода); механическими свойствами, допускающими возможность оптической обработки поверхности; термической устойчивостью; а также - наличием соответствующего метода синтеза моно- или поликристаллического материала (Оптические материалы для инфракрасной техники / Воронкова Е.М., Гречушников Б.Н., Дистлер Г.И., Петров И.П. - М.: Наука, 1965. - 336 с.; Зверев В.А., Кривопустова Е.В., Точилина Т.В. Оптические материалы. Часть 2. Учебное пособие для конструкторов оптических систем и приборов. – СПб.: ИТМО, 2013. - 248 с.).
Фторид бария BaF2 и фторид кальция CaF2 при прекрасных механических характеристиках, термостойкости и устойчивости к действию влаги характеризуется сравнительно близким краем поглощения в ИК-области (12 мкм и 9 мкм соответственно). Ограничения по пределу пропускания имеют и другие оптические материалы: поликристаллические сульфид цинка ZnS и селенид цинка ZnSe (14 и 18 мкм соответственно), монокристаллический германий Ge (20 мкм), монокристаллические хлорид KCl и бромид калия KBr (22 и 28 мкм соответственно), моно- и поликристаллический теллурид кадмия CdTe (29 мкм). При этом недостатками хлорида и бромида калия являются невысокие механические характеристики и гигроскопичность, а Ge недостаточно прозрачен в полосе пропускания, которая начинается только от 1.8 мкм.
Дальним краем пропускания в ИК-области (более 50 мкм) характеризуется монокристаллический CsI, однако он сильно гигроскопичен, что в значительной степени ограничивает возможность его практического использования (S.S. Ballard, L.S. Combes, K.A. McCarthy. J. Optical Soc. Amer. 1953. V. 43. (11). P. 975-976).
Прототипом являются уникальные оптические материалы - твердые растворы галогенидов таллия: TlBr-TlI (КРС-5) и TlCl-TlBr (КРС-6), которые наиболее широко используются в ИК-оптике дальнего диапазона. В системах TlCl-TlBr и TlBr-TlI образуются непрерывные твердые растворы между компонентами, на кривых плавления которых образуются минимумы. Составы минимумов (70 мол.% TlCl - 30 мол.% TlBr и 50 мол.% TlI - 50 мол.% TlBr) характеризуются конгруэнтным плавлением и равенством единице коэффициентов распределения обоих компонентов, поэтому они очень благоприятны для получения монокристаллов высокого оптического качества методом направленной кристаллизации расплава. Граница области пропускания в ИК-диапазоне составляет 40 мкм для КРС-6 и 52 мкм для КРС-5.
Монокристаллы КРС-5 и КРС-6 впервые были выращены для изготовления оптических деталей фирмой «Карл Цейсс» (Германия) в 1941 году (Koops R. Optische Baustoffe aus binaren Mischkristallen // Optik. - 1948. - B. 3. - Hf. 4. - S. 298; Smakula A. Einkristalle. Wachstum, Herstellung, Anwendung. - Berlin: Spring-Verlag. - 1962. - 429 s.; Кристаллы галогенидов таллия. Получение, свойства и применение / Авдиенко К.И., Артюшенко В.Г., Белоусов А.С.и др. - Новосибирск: Наука, 1989. - 152 с.; Важнейшие соединения таллия. Свойства, получение, применение / Дарвойт Т.И., Морозов Е.Г., Беклемишев В.Б. и др. - Ставрополь: ОАО «Люминофор», 1997. - 280 с.). Аббревиатура КРС расшифровывается как «Kristalle aus dem Schmelzfluss» - кристаллы из расплава.
Выращивание монокристаллов твердых растворов производится методом направленной кристаллизации (методы Бриджмена, Стокбаргера или зонной плавки) в откачанных и отпаянных ампулах из кварца или стекла «пирекс», скорость опускания ампулы менее 2 мм/час. Для получения реактивов высокой чистоты используют кристаллофизические методы очистки (зонная плавка или направленная кристаллизация).
Основным недостатком материалов КРС-5 и КРС-6 является высокая токсичность соединений таллия (Межотраслевые правила по охране труда при использовании химических веществ ПОТ Р М-004-97, утв. Постановлением Министерства труда и социального развития Российской Федерации от 17 сентября 1997 г. N 44; ГОСТ 12.1.007-76 Вредные вещества. Классификация и общие требования безопасности). Бромид и иодид таллия по воздействию на организм человека относятся к веществам 1 класса опасности по ГОСТ 12.1.007-76. Максимальная разовая предельно допустимая концентрация (ПДК) в воздухе рабочей зоны производственных помещений TlBr, TlI и TlCl (по таллию) в соответствии с требованиями ГН 2.2.5.1313 не должна превышать 0,01 мг/м3. Высокая токсичность галогенидов таллия серьезно осложняет жизненный цикл изделий из них, включающий их получение, эксплуатацию и утилизацию после истечения срока использования. В связи с этим тенденцией современного оптического приборостроения является переход к менее токсичным материалам.
Задачей нового изобретения является нахождение технологичного соединения, менее токсичного, чем галогениды таллия, монокристаллы которого прозрачны в далеком ИК-диапазоне и негигроскопичны, а также способов получения его монокристаллов.
Соединением, удовлетворяющим этим требованиям, является моноиодид индия InI.
ПДК на иодид индия и его соединения не установлены. Для оксида индия ПДК составляет 4 мг/м3, он отнесен к веществам 3 класса опасности. При работе с иодидом индия следует ориентироваться на установленный ПДК по йоду, равный 1 мг/м3, что соответствует 2 классу опасности.
Моноиодид индия представляет собой вещество в твердом состоянии коричнево-красного цвета, в порошке - ярко-красного, в расплаве - почти черного. Плавится при температуре 365°С без разложения, не имеет полиморфных превращений. Довольно устойчив на воздухе, не гигроскопичен. Лишь при длительном хранении на воздухе (в течение нескольких недель) постепенно переходит в вещество белого цвета, по-видимому, в гидроокись индия. Это происходит из-за микропримесей дииодида и трииодида индия, которые являются чрезвычайно гигроскопичными. Моноиодид индия в воде не растворяется даже при нагревании. Разбавленной серной и соляной кислотами разлагается очень медленно. Разлагается азотной кислотой. В предельных углеводородах, хлороформе, четыреххлористом углероде, спирте, эфире и ацетоне моноиодид индия не растворяется (Федоров П.И., Акчурин Р.Х. Индий. М.: Наука. 2000).
Кристаллы моноиодида индия используются в качестве материала для радиационных детекторов (Bhattacharya P., Groza М., Cui Y. et al. Growth of InI single crystals for nuclear detection applications // J. Cryst. Growth. 2010. V. 312. P. 1228-1232; Toshiyuki Onodera, Keitaro Hitomi, Tadayoshi Shoji. Fabrication of Indium Iodide X- and Gamma-Ray Detectors // IEEE Transactions on Nuclear Science. 2006. V. 53. No 5. P. 3055-3059).
Известен способ получения монокристаллов InI из паровой фазы (Ohno N., Fujita М., Nakai Y., Nakamura K. Reflection spectra of orthorhombic indium iodide // Solid State Commun. 1978. V. 28. P. 137-139; Levy F., Depeursinge C., Berger H. Crystal Growth and Properties of Compounds with the TlI - Type of Structure // Lab. de Phys. Appl., EPF-Lausanne (report). 1975. 8 p.). При этом получаются монокристаллические пластинки высокого качества, но маленького размера. Наилучшие результаты получены при медленной сублимации в эвакуированной кварцевой ампуле с очень маленьким температурным градиентом: температура горячей зоны 300-350°С, температура зоны конденсации 270-300°С. При этом получены пластинки размером 2×2×1 мм3, достаточные только для некоторых физических исследований
Известен способ выращивания монокристаллов InI методом горизонтальной зонной плавки в кварцевых ампулах, заполненных аргоном, при скорости движения расплавленной зоны 5 мм/ч. Предварительно для очистки шихты от примеси в той же аппаратуре использовали до 80 проходов расплавленной зоны (Toshiyuki Onodera, Keitaro Hitomi, Tadayoshi Shoji. Fabrication of Indium Iodide X- and Gamma-Ray Detectors // IEEE Transactions on Nuclear Science. - 2006. - V. 53. - No 5. - P. 3055-3059). Недостатком метода является получение слитков неправильной формы, повторяющей форму лодочки (приблизительно полуцилиндр), с меняющийся по длине толщиной.
Известен способ выращивания монокристаллов InI методом Чохральского в стеклянных ампулах при давлении аргона в них на уровне 1 бар. Метод не позволяет получать кристаллы заданного диаметра и длины. Выращенные кристаллы имеют неправильную форму, типичный размер около 15 мм в диаметре при длине 25 мм, они пригодны для изготовления пластинок для радиационных детекторов толщиной менее 1 мм (I. Nicoara, D. Nicoara, С. Bertollo, G.A. Stack, A.G. Ostrogorsky, M. Groza, A. Burger / Mater. Res. Soc. Symp. Proс. 2011. vol. 1341, p. 95-104, doi. 10.1557/opl.2011.1111).
Прототипом изобретения является способ выращивания монокристаллов Inl методом Бриджмена в эвакуированных кварцевых ампулах со скоростью протяжки 5 мм/день. Предварительно шихта очищается методом зонной плавки при 50 проходах расплавленной зоны с температурой 420°С (Bhattacharya P., Groza М., Cui Y. et al. Growth of InI single crystals for nuclear detection applications // J. Cryst. Growth. 2010. V. 312. P. 1228-1232).
Сущность предлагаемого изобретения заключается в использовании монокристаллов моноиодида индия InI в качестве материалов дальнего ИК-диапазона. Граница пропускания монокристалла InI в ИК-диапазоне составляет 51 мкм. Выращивание монокристаллов InI осуществляется методом Бриджмена в эвакуированных кварцевых ампулах или ампулах из стекла «пирекс» со скоростью протяжки не более 2 мм/час. Исходная шихта предварительно очищается методом ректификации (Гасанов А.А, Лобачев Е.А., Кузнецов С.В., Федоров П.П. Получение и глубокая очистка моноиодида индия // Журнал неорганической химии. 2015. Т.60. №11. С. 1457-1460), затем подвергается четырехкратной кристаллофизической очистке в аппаратуре для роста кристаллов (направленная кристаллизация со скоростью 2 мм/час) с промежуточным отделением конечной мутной части кристалла после каждой стадии очистки.
Длинноволновая граница прозрачности в ИК-диапазоне ионных кристаллов определяется главным образом процессами фотон-фонного взаимодействия, т.е. положением, шириной и интенсивностями полос поглощения, обусловленных собственными колебаниями кристаллической решетки (особенностями фононного спектра материала). Согласно теоретическим расчетам (Mao-Hua Du, D.J. Singh. Enhanced Born charges in III-VII, IV-VII2, and V-VII3 compounds // Phys. Rev. В 2010. V. 82, 045203) и данным по спектрам комбинационного рассеяния (В.Р. Clayman, R.J. Namanich, J.C. Mikkelsen, G. Lucovsky. Lattice dynamics of the layered compounds InI and InBr. // Phys. Rev. В 1982. V. 26, p. 2011-2015) в решетке InI присутствуют собственные колебания в диапазоне 40-100 см-1. Это свидетельствует о далекой границе пропускания в ИК-области и о применимости монокристаллов InI в качестве оптического материала дальнего ИК-диапазона.
Увеличение скорости кристаллизации при выращивании методом Бриджмена и сокращение числа операций кристаллофизической очистки по сравнению с прототипом определяется высокой эффективностью предварительной очистки шихты методом ректификации. По-видимому, наиболее опасной примесью, определяющей деградацию кристалла InI при хранении на воздухе, является трииодид индия InI3, отличающийся высокой гигроскопичностью.
Заявленное изобретение подтверждено опытным путем.
Изобретение иллюстрируется следующими чертежами.
На Фиг. 1 приведен общий вид монокристалла InI, выращенного методом Бриджмена из расплава.
На Фиг. 2 приведен спектр пропускания полированной монокристаллической пластинки InI толщиной 1.8 мм. Съемка проводилась на спектрофотометре Bruker IFS-113V с приставкой параллельного пучка А480.8.
На Фиг. 3 приведена кривая дифракционного отражения (кривая качания) рентгеновского излучения от полированной поверхности монокристалла InI. Полуширина пика составляет 1265.4 угл. сек.
Пример №1
Исходный коммерчески доступный порошок моноиодида индия Inl чистотой 99.998% был помещен в ампулу из кварцевого стекла. Ампула была вакуумирована до остаточного давления 10-2 мм рт.ст. Запаянная ампула была помещена в трубчатую печь и нагрета до температуры 450°С со скоростью 20 град/мин, выдержана при данной температуре в течении 1 часа и затем охлаждена до температуры 395°С. Затем произведено выращивание кристалла методом Бриджмена со скоростью протяжки ампулы 2,0 мм/ч. Длина кристалла составила 50 мм.
Получен слиток с мутными включениями по всей длине. При хранении на воздухе он быстро (в течение 12 часов) покрывается белой коркой.
Пример №2
Пример осуществлен аналогично п. 1 с той лишь разницей, что в качестве исходной шихты был использован материал, подвергнутый ректификации. Чистота шихты по катионным примесям составила 99.9998%.
Получен слиток с мутными включениями на половине длины (25 мм в конечной части слитка). При хранении на воздухе (в течение 24 часов) он покрывается белой коркой.
Пример №3
Пример осуществлен аналогично п. 2 с той лишь разницей, что от выращенного слитка отрезалась мутная часть, кристалл выращивался повторно, и эта операция повторялась дважды, т.е. всего 3 раза.
Получен кристалл с мутными включениями на длины в конечной части. При хранении на воздухе (в течение 7 дней) он медленно покрывается белой коркой.
Пример №4
Пример осуществлен аналогично п. 3 с той лишь разницей, что операция кристаллофизической очистки с отделением конечной мутной части кристалла после каждой стадии очистки повторялась четыре раза.
Получен кристалл длиной 100 мм без мутных включений. Дальнейшее увеличение количества операций очистки не улучшает качества монокристалла, но приводит к возрастанию времени получения материала и его удорожанию.
Внешний вид кристалла представлен на Фиг. 1. Зарегистрирован спектр пропускания кристалла (Фиг. 2) и кривая качания (Фиг. 3). При хранении на воздухе на протяжении 1 месяца кристалл не претерпевает изменений.
Пример №5
Пример осуществлен аналогично п. 4 с той лишь разницей, что выращивание кристалла проводили со скоростью 2.5 мм/час. Получен кристалл, состоящий из нескольких кристаллических блоков, что не соответствует требованиям, предъявляемым к оптическим материалам. Кристалл устойчив к хранению на воздухе.
Пример №6
Пример осуществлен по п. 4 с той лишь разницей, что в качестве материала ампулы использовали стекло «пирекс». Результат аналогичен примеру №4.
В таблице приведены сводные характеристики монокристаллического моноиодида индия (InI)
Claims (2)
1. Оптический материал - монокристаллический моноиодид индия InI с областью спектрального пропускания до 51 мкм.
2. Способ получения оптического материала по п. 1, включающий предварительную очистку исходной шихты методом ректификации, выращивание монокристалла методом Бриджмена со скоростью протяжки не более 2,0 мм/ч в кварцевой ампуле из стекла «пирекс», отделение от конечной части выращенного кристалла мутной части и четырехкратную кристаллофизическую очистку полученного на предыдущей стадии высокочистого материала путем повторного выращивания кристалла с промежуточным отделением конечной мутной части кристалла после каждой очистки.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016138671A RU2640764C1 (ru) | 2016-09-30 | 2016-09-30 | Оптический материал инфракрасного диапазона и способ его получения |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016138671A RU2640764C1 (ru) | 2016-09-30 | 2016-09-30 | Оптический материал инфракрасного диапазона и способ его получения |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2640764C1 true RU2640764C1 (ru) | 2018-01-11 |
Family
ID=68235350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016138671A RU2640764C1 (ru) | 2016-09-30 | 2016-09-30 | Оптический материал инфракрасного диапазона и способ его получения |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2640764C1 (ru) |
-
2016
- 2016-09-30 RU RU2016138671A patent/RU2640764C1/ru not_active IP Right Cessation
Non-Patent Citations (3)
Title |
---|
BHATTACHARYA P. et al. Growth of InI single crystals for nuclear detection applications, "Journal of Crystal Growth", Vol. 312, No. 8, p. 1228-1232. * |
BHATTACHARYA P. et al. Growth of InI single crystals for nuclear detection applications, "Journal of Crystal Growth", Vol. 312, No. 8, p. 1228-1232. ГАСАНОВ А.А. и др. ПОЛУЧЕНИЕ И ГЛУБОКАЯ ОЧИСТКА МОНОИОДИДА ИНДИЯ, "ЖНХ", 2015, т. 60, N 11, стр.1457-1460. Riabov, Volodymyr, Purification and crystal growth of InI and alloys In 1-x Tl x I and In 1-x Ga x I for application in X-ray and gamma-ray detectors, "ProQuest Dissertations And Theses; Thesis (M.S.)", Illinois Institute of Technology, July 2016; Publication Number: AAT 10174146; ISBN: 9781369286724; Source: Masters Abstracts International, Volume: 56-01; 94 p. * |
ГАСАНОВ А.А. и др. ПОЛУЧЕНИЕ И ГЛУБОКАЯ ОЧИСТКА МОНОИОДИДА ИНДИЯ, "ЖНХ", 2015, т. 60, N 11, стр.1457-1460. Riabov, Volodymyr, Purification and crystal growth of InI and alloys In 1-x Tl x I and In 1-x Ga x I for application in X-ray and gamma-ray detectors, "ProQuest Dissertations And Theses; Thesis (M.S.)", Illinois Institute of Technology, July 2016; Publication Number: AAT 10174146; ISBN: 9781369286724; Source: Masters Abstracts International, Volume: 56-01; 94 p. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105102693B (zh) | 钾冰晶石类型闪烁体材料的制备 | |
CN113529168A (zh) | 一种Li+掺杂零维钙钛矿结构金属卤化物闪烁晶体及其制备方法与应用 | |
CN104532351A (zh) | 一种红外非线性光学晶体材料、其制备方法及应用 | |
Lee et al. | Facile synthesis and structure characterization of hexagonal tungsten bronzes crystals | |
WO2016086425A1 (zh) | 一种非线性光学晶体材料、其制备方法及应用 | |
Velázquez et al. | Growth and characterization of pure and Pr3+-doped Cs4PbBr6 crystals | |
Zhukova et al. | Highly transparent ceramics for the spectral range from 1.0 to 60.0 µm based on solid solutions of the system AgBr–AgI–TlI–TlBr | |
Schieber et al. | Purification, growth, and characterization of alpha mercuric-iodide crystals for gamma-ray detection | |
RU2640764C1 (ru) | Оптический материал инфракрасного диапазона и способ его получения | |
Dubovik et al. | Research and Development of ZnBO_4 (B= W, Mo) Crystal Scintillators for Dark Matter and Double Beta Decay Searching | |
Cockayne et al. | The czochralski growth and laser characteristics of Li (Y, Er, Tm, Ho) F4 and Li (Lu, Er, Tm, Ho) F4 scheelite single crystals | |
Ovanesyan et al. | Single crystal growth and characterization of LaLuO3 | |
Angervaks et al. | Di-and trivalent ytterbium distributions along a melt-grown CaF2 crystal | |
Alombert-Goget et al. | Titanium distribution in Ti-sapphire single crystals grown by Czochralski and Verneuil technique | |
CN106119969A (zh) | 光学晶体AZn4Ga5S12 用作红外非线性光学材料的用途 | |
Plakhtii et al. | Crystal structure and photoluminescence of ZnSe and ZnSe: Mn nanocrystals obtained by combustion synthesis | |
Gavrilova et al. | Growth of Na2W2O7 single crystals as possible optical host material | |
Kolesnikov et al. | Synthesis and growth of GaSe1–x S x (x= 0–1) crystals from melt. Phase composition and properties | |
Voda et al. | Crystal growth of rare-earth-doped ternary potassium lead chloride single crystals by the Bridgman method | |
Mochizuki et al. | Sublimation growth of high-purity ZnSe single crystals and photoluminescence | |
Kubota et al. | Optical characteristics of Tl+ centers in CsCaCl3, KCaCl3, and CsCl crystals | |
Krymov et al. | GaN growth on β-Ga2O3 substrates by HVPE | |
US3567643A (en) | Hydrothermal process for growing crystals having the structure of beryl in an acid halide medium | |
Remeika et al. | Synthesis of CuCl | |
Miyake et al. | Preparation of CuGaxIn1− xS2 alloys from In solutions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20180605 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20201001 |