RU2639714C1 - Ветро-солнечный генератор со сдвоенным ротором - Google Patents

Ветро-солнечный генератор со сдвоенным ротором Download PDF

Info

Publication number
RU2639714C1
RU2639714C1 RU2017103074A RU2017103074A RU2639714C1 RU 2639714 C1 RU2639714 C1 RU 2639714C1 RU 2017103074 A RU2017103074 A RU 2017103074A RU 2017103074 A RU2017103074 A RU 2017103074A RU 2639714 C1 RU2639714 C1 RU 2639714C1
Authority
RU
Russia
Prior art keywords
rotor
shaft
magnetic circuit
stator
poles
Prior art date
Application number
RU2017103074A
Other languages
English (en)
Inventor
Сергей Анатольевич Попов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority to RU2017103074A priority Critical patent/RU2639714C1/ru
Application granted granted Critical
Publication of RU2639714C1 publication Critical patent/RU2639714C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/38Structural association of synchronous generators with exciting machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Изобретение относится к электромашиностроению и может быть использовано для преобразования энергии возобновляемых источников. Технический результат заключается в повышении стабильности параметров. Ветро-солнечный генератор со сдвоенным ротором содержит статор, состоящий из корпуса в форме полого цилиндра с расположенным в нем шихтованным магнитопроводом с m-фазной обмоткой, к торцовым поверхностям которого неподвижно прикреплены подшипниковые щиты с подшипниками. Ротор расположен во внутренней расточке магнитопровода статора, имеет вал, позиционирующийся на подшипниках, и явнополюсный магнитопровод с обмоткой возбуждения, питаемой через контактные кольца и щетки постоянным током. Число полюсов m-фазной обмотки статора равно числу полюсов магнитопровода ротора. Вал выполнен с возможностью размещения на нем ветротурбины, а сам ротор выполнен сдвоенным, расположен на валу симметрично в осевом направлении относительно магнитопровода статора с возможностью аксиального перемещения в воздушном зазоре, образованном между его частями с установленной между ними пружиной, надетой на вал. На каждом пакете сдвоенного магнитопровода ротора расположена отдельная обмотка возбуждения. 2 ил.

Description

Изобретение относится к электромашиностроению и может быть использовано для преобразования энергии возобновляемых источников, а именно механической энергии (энергии ветра), подаваемой на механический вход машины, и электрической энергии постоянного тока (энергии Солнца), подаваемой на электрический вход, в суммарную электрическую энергию m-фазного переменного тока с возможностью получения более стабильных параметров электрической энергии на выходе, чем в случае применения классического электромеханического преобразователя энергии.
Наиболее близким к заявляемому изобретению по технической сущности и достигаемому техническому результату и принятым автором за прототип является синхронная машина, которая является классическим электромеханическим преобразователем энергии и широко используется для ее получения. Статор синхронной машины имеет такое же устройство, как и статор асинхронной машины (Вольдек А.И. Электрические машины. Учебник для студентов высш. техн. учебн. заведений. Изд. 2-е, перераб. и доп. - Л., «Энергия», 1974 г., 840 с., с. 367). Трехфазная или в общем случае m-фазная обмотка статора синхронной машины выполняется с таким же числом полюсов, как и ротор, и называется также обмоткой якоря. Сердечник (магнитопровод) статора вместе с обмоткой называется также якорем. Ротор синхронной машины имеет обмотку возбуждения, питаемую через два контактных кольца и щетки постоянным током от постороннего источника.
Принцип работы синхронной машины основан на том, что если ее ротор привести во вращение с некоторой скоростью и возбудить его, то поток возбуждения Ф будет пересекать проводники обмотки статора и индуктировать в ней симметричную m-фазную систему ЭДС, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагрузится симметричной системой токов. Машина при этом будет работать в режиме генератора (Вольдек А.И. Электрические машины. Учебник для студентов высш. техн. учебн. заведений. Изд. 2-е, перераб. и доп. - Л., «Энергия», 1974 г., 840 с., с. 368).
Если вал синхронной машины привести во вращение с некоторой скоростью при помощи ветротурбины (используя энергию ветра), а обмотку ротора возбудить, используя энергию Солнца, подав постоянное напряжение от фотоэлектрического преобразователя или предварительно заряженной при его помощи аккумуляторной батареи, то поток возбуждения Ф будет пересекать проводники обмотки статора и индуктировать в ней симметричную m-фазную систему ЭДС. При подключении к обмотке статора симметричной нагрузки электрическая цепь будет замкнута, и по ней будет протекать симметричная система токов. При этом будет происходить суммирование и преобразование возобновляемых источников энергии (ВИЭ) в электрическую энергию переменного тока.
Однако работа синхронного генератора от ВИЭ будет иметь свои особенности, связанные с неравномерностью поступления энергии: к неравномерности поступления энергии ветра дополнительно будет накладываться неравномерность поступления энергии Солнца. Большие колебания поступления энергии Солнца приведут к тому, что на выходе фотоэлектрического преобразователя или предварительно заряженной при их помощи аккумуляторной батареи, постоянный ток будет колебаться в достаточно широких приделах с соответствующим колебанием потока возбуждения Ф. Колебания потока возбуждения Ф приведут к дополнительному колебанию m-фазной симметричной системы ЭДС, а при подключении к обмотке статора нагрузки - к дополнительному колебанию токов, то есть дополнительному ухудшению стабильности параметров электрической энергии на выходе и к сужению области применения.
Заявляемое изобретение решает задачу расширения области применения за счет возможности получения энергии от возобновляемых источников с последующим суммированием, преобразованием и выработкой электрической энергии m-фазного переменного тока с более стабильными параметрами.
Технический результат заключается в преобразовании и выработке электрической энергии m-фазного переменного тока с более стабильными параметрами.
Технический результат достигается тем, что в ветро-солнечном генераторе со сдвоенным ротором, содержащем статор с цилиндрической расточкой, состоящий из корпуса, выполненного в форме полого цилиндра с расположенным в нем шихтованным магнитопроводом статора с m-фазной обмоткой статора, к торцовым поверхностям которого неподвижно прикреплены подшипниковые щиты с подшипниками, причем ротор расположен во внутренней расточке шихтованного магнитопровода статора, имеет вал, позиционирующийся на подшипниках, и явнополюсный магнитопровод ротора с обмоткой возбуждения, питаемой через контактные кольца и щетки постоянным током, причем число полюсов m-фазной обмотки статора равно числу полюсов магнитопровода ротора, при этом вал выполнен с возможностью размещения на нем ветротурбины, а сам ротор сделан сдвоенным, расположен на валу симметрично в осевом направлении относительно магнитопровода статора с возможностью аксиального перемещения в воздушном зазоре, образованном между его частями с установленной между ними пружиной, надетой на вал, причем пакеты магнитопроводов сдвоенного ротора сопряжены с валом посредством шлицевых соединений, а их максимальное аксиальное перемещение на валу ограничено при помощи шпонок, расположенных на крайних внешних сторонах шлицов вала ротора вдоль его длины, при этом на каждом пакете сдвоенного магнитопровода ротора расположена отдельная обмотка возбуждения, чьи концы соединены с контактными кольцами, закрепленными неподвижно на внешних торцовых поверхностях сдвоенного ротора, и через щетки, расположенные на подшипниковых щитах соосно с ними, она соединена с источником постоянного тока, одновременно с этим оси полюсов сдвоенного явнополюсного магнитопровода ротора одинаковой полярности совпадают между собой в радиальном направлении.
Возможность получения энергии от возобновляемых источников, а именно механической энергии (энергии ветра), подаваемой на механический вход машины, и электрической энергии постоянного тока (энергии Солнца), подаваемой на электрический вход с последующим суммированием, преобразованием и выработкой электрической энергии m-фазного переменного тока с более стабильными параметрами ведет к расширению области применения электромеханического преобразователя.
Стабилизация и выравнивание параметров вырабатываемой электрической энергии m-фазного переменного тока происходит за счет взаимодействия с одной стороны электромагнитных сил, которые сжимают пружину и сдвигают сдвоенные части пакетов магнитопроводов за счет действия потока возбуждения Ф, а с другой стороны сил, которые раздвигают сдвоенные части пакетов магнитопроводов за счет взаимодействия между токами, протекающими встречно по внутренним аксиальным поверхностями обмоток возбуждения сдвоенного ротора.
При наличии минимальной требуемой величины постоянного тока, протекающей по обмоткам возбуждения, сила взаимодействия между токами, протекающими встречно по внутренним аксиальным поверхностям обмоток возбуждения сдвоенного ротора, будет минимальной, и электромагнитное усилие, которое будет создаваться потоком возбуждения Ф, сожмет сдвоенные части пакетов магнитопроводов с пружиной, установленной на валу между ними и обеспечит максимальную площадь активной рабочей поверхности магнитопроводов с последующим прохождением потока возбуждения Ф с возможностью получения в m-фазных обмотках статора m-фазную систему ЭДС при минимальных требуемых величинах постоянного тока.
Увеличение силы постоянного тока, протекающего по обмоткам возбуждения, приведет к пропорциональному увеличению сил взаимодействия между токами, протекающими встречно по внутренним аксиальным поверхностями обмоток возбуждения сдвоенного ротора. Пропорциональное увеличение сил взаимодействия приведет к раздвижению сдвоенных частей пакетов магнитопроводов с уменьшением площади активной рабочей поверхности магнитопроводов и, соответственно, к уменьшению прохождения потока возбуждения Ф и пропорциональному уменьшению величины m-фазной симметричной системы ЭДС.
Комплексное освоение энергии Солнца и ветра в рамках электромеханического преобразователя энергии позволяет дополнительно выровнять ее естественные колебания и получить электрическую энергию m-фазного переменного тока с более стабильными параметрами, что повышает перспективность применения генераторов подобного типа в нетрадиционной энергетике.
Сущность устройства поясняется чертежами.
На фиг. 1 изображен в разрезе главный вид ветро-солнечного генератора со сдвоенным ротором.
На фиг. 2 изображен поперечный разрез А-А ветро-солнечного генератора со сдвоенным ротором.
Ветро-солнечный генератор со сдвоенным ротором содержит статор с цилиндрической расточкой, состоящий из корпуса 1, выполненного в форме полого цилиндра с расположенным в нем шихтованным магнитопроводом статора 5 с m-фазной обмоткой статора 6, к торцовым поверхностям которого неподвижно прикреплены подшипниковые щиты 2, 3 с подшипниками 4 (фиг. 1, 2).
На подшипниках 4 позиционируется вал 7, с которым сопряжены посредством шлицевых соединений 8 пакеты магнитопроводов 9, 10 сдвоенного ротора. На валу 7 закреплена ветротурбина (ветротурбина не изображена), которая приводит его в движение.
Сдвоенный ротор выполнен явнополюсным и расположен на валу 7 симметрично в осевом направлении относительно магнитопровода статора 5 с возможностью аксиального перемещения в воздушном зазоре 11, образованном между его частями с установленной между ними пружиной 12, надетой на вал 7 (фиг. 1). При этом шлицевые соединения 8 состоят из шлицов 13 вала 7 и шлицов 14 пакетов магнитопроводов 9, 10 сдвоенного ротора (фиг. 1, 2). Максимальное аксиальное перемещение пакетов магнитопроводов 9, 10 сдвоенного ротора на валу 7 ограничивается при помощи шпонок 15, расположенных на крайних внешних сторонах шлицов 13 вала 7 ротора вдоль его длины. На каждом пакете сдвоенного магнитопровода 9, 10 ротора расположены обмотки возбуждения 16, 17, концы которой соединены с контактными кольцами 18, 19, закрепленными неподвижно на внешних торцовых поверхностях сдвоенного ротора, и через щетки 20, 21, расположенные на подшипниковых щитах 2, 3 соосно с ними, соединены с источником постоянного напряжения посредством проводов 22, 23. Так как оси полюсов пакетов магнитопроводов 9, 10 сдвоенного ротора одинаковой полярности совпадают между собой в радиальном направлении, то направление намотки обмотки возбуждения 16, 17 на каждом полюсе пакетов магнитопровода 9, 10 сдвоенного ротора тоже совпадает между собой.
Между внутренней цилиндрической расточкой шихтованного магнитопровода статора 5 и внешней активной рабочей поверхностью пакетов магнитопроводов 9, 10 сдвоенного ротора имеется рабочий воздушный зазор 24, который позволяет валу 7 со сдвоенном ротором свободно вращаться внутри цилиндрической расточки шихтованного магнитопровода статора 5 на подшипниках 4.
Ветро-солнечный генератор со сдвоенным ротором работает следующим образом.
Вал 7 ротора приводится во вращение с некоторой скоростью при помощи ветротурбины (используя энергию ветра) на подшипниках 4. Одновременно с этим на обмотки возбуждения 16, 17 ротора подается постоянное напряжение от фотоэлектрического преобразователя или предварительно заряженной при его помощи аккумуляторной батареи (используя энергию Солнца) через провода 22, 23, щетки 20, 21, расположенные на подшипниковых щитах 2, 3 соосно с контактными кольцами 18, 19, которые неподвижно закреплены на внешних торцовых поверхностях сдвоенного ротора. Так как электрическая цепь замкнута, то по обмоткам возбуждения 16, 17 ротора потечет постоянный ток, ведущий к возникновению потока возбуждения Ф в каждом пакете магнитопровода 9, 10 сдвоенного ротора. Поток возбуждения Ф будет замыкаться радиально от одного полюса через рабочий воздушный зазор 24, шихтованный магнитопровод статора 5 с m-фазной обмоткой статора 6, рабочий воздушный зазор 24 к другому полюсу и обратно (фиг. 2). При этом поток возбуждения Ф будет пересекать проводники m-фазной обмотки статора 6 и индуктировать в ней симметричную m-фазную систему ЭДС по закону электромагнитной индукции:
Figure 00000001
где
Figure 00000002
- скорость изменения магнитного потока;
wp - число витков m-фазной обмотки статора 6.
При подключении к m-фазной обмотке статора 6 симметричной нагрузки электрическая цепь будет замкнута, и по ней будет протекать симметричная система токов. При этом будет происходить суммирование и преобразование возобновляемых источников энергии (ВИЭ) в электрическую энергию переменного тока.
Наличие радиального потока возбуждения Ф приведет к возникновению электромагнитных сил, которые будут сжимать пружину 12 и сдвигать пакеты магнитопроводов 9, 10 сдвоенного ротора по шлицевым соединениям 8 (шлицы 14 пакетов магнитопроводов 9, 10 сдвоенного ротора будут двигаться по шлицам 13 вала 7) из-за его стремления расположиться в «магнитной середине» по отношению к шихтованному магнитопроводу статора 5, то есть в том положении, в котором магнитное сопротивление воздушного зазора 11 имеет наименьшее значение, что соответствует наиболее выгодному энергетическому положению.
Протекание постоянного тока по обмоткам возбуждения 16, 17 сдвоенного ротора приведет к взаимодействию между токами, протекающими встречно по внутренним аксиальным поверхностями пакетов магнитопроводов 9, 10, и возникновению сил, которые будут отталкивать обмотку возбуждения 16 от обмотки возбуждения 17 и тем самым раздвигать пакеты магнитопроводов 9, 10 сдвоенного ротора друг от друга. При этом для исключения касания пакетов магнитопроводов 9, 10 сдвоенного ротора и подшипниковых щитов 2, 3, которые неподвижно закреплены к торцовым поверхностям корпуса 1, максимальное аксиальное перемещение пакетов магнитопроводов 9, 10 сдвоенного ротора на валу 7 ограничено при помощи шпонок 15, расположенных на крайних внешних сторонах шлицов 13 вала 7.
При наличии минимальной требуемой величины постоянного тока, протекающей по обмоткам возбуждения 16, 17, сила взаимодействия между токами, протекающими встречно по внутренним аксиальным поверхностями обмоткам возбуждения 16, 17 сдвоенного ротора, будет минимальной, и электромагнитное усилие, которое будет создаваться потоком возбуждения Ф, сожмет пакеты магнитопроводов 9, 10 сдвоенного ротора с пружиной 12, установленной на валу между ними, и обеспечит максимальную площадь активной рабочей поверхность между шихтованным магнитопроводом статора 5 и пакетами магнитопроводов 9, 10 с последующим прохождением потока возбуждения Ф с возможностью получения в m-фазных обмотках статора m-фазную систему ЭДС при минимальных требуемых величинах постоянного тока.
Увеличение постоянного тока, протекающего по обмоткам возбуждения 16, 17, приведет к пропорциональному увеличению сил взаимодействия между токами, протекающими встречно по внутренним аксиальным поверхностями обмоток возбуждения 16, 17 сдвоенного ротора. Пропорциональное увеличение сил взаимодействия между токами, протекающими встречно по внутренним аксиальным поверхностями обмоток возбуждения 16, 17, приведет к их преобладанию по отношению к силам сжатия и соответственно будет раздвигать сдвоенные части пакетов магнитопроводов 9, 10 с уменьшением площади активной рабочей поверхности между шихтованным магнитопроводом статора 5 и пакетами магнитопроводов 9, 10. Это приведет к уменьшению потока возбуждения Ф и пропорциональному уменьшению величины m-фазной симметричной системы ЭДС. То есть будет происходить поддержание требуемой величины потока возбуждения Ф с последующей стабилизацией и выравниванием параметров вырабатываемой электрической энергии m-фазного переменного тока.

Claims (1)

  1. Ветро-солнечный генератор со сдвоенным ротором, содержащий статор с цилиндрической расточкой, состоящий из корпуса, выполненного в форме полого цилиндра с расположенным в нем шихтованным магнитопроводом статора с m-фазной обмоткой статора, к торцовым поверхностям которого неподвижно прикреплены подшипниковые щиты с подшипниками, причем ротор расположен во внутренней расточке шихтованного магнитопровода статора, имеет вал, позиционирующийся на подшипниках, и явнополюсный магнитопровод ротора с обмоткой возбуждения, питаемой через контактные кольца и щетки постоянным током, причем число полюсов m-фазной обмотки статора равно числу полюсов магнитопровода ротора, отличающийся тем, что вал выполнен с возможностью размещения на нем ветротурбины, а сам ротор сделан сдвоенным, расположен на валу симметрично в осевом направлении относительно магнитопровода статора с возможностью аксиального перемещения в воздушном зазоре, образованном между его частями с установленной между ними пружиной, надетой на вал, причем пакеты магнитопроводов сдвоенного ротора сопряжены с валом посредством шлицевых соединений, а их максимальное аксиальное перемещение на валу ограничено при помощи шпонок, расположенных на крайних внешних сторонах шлицов вала ротора вдоль его длины, при этом на каждом пакете сдвоенного магнитопровода ротора расположена отдельная обмотка возбуждения, чьи концы соединены с контактными кольцами, закрепленными неподвижно на внешних торцовых поверхностях сдвоенного ротора, и через щетки, расположенные на подшипниковых щитах соосно с ними, она соединена с источником постоянного тока, одновременно с этим оси полюсов сдвоенного явнополюсного магнитопровода ротора одинаковой полярности совпадают между собой в радиальном направлении.
RU2017103074A 2017-01-30 2017-01-30 Ветро-солнечный генератор со сдвоенным ротором RU2639714C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017103074A RU2639714C1 (ru) 2017-01-30 2017-01-30 Ветро-солнечный генератор со сдвоенным ротором

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017103074A RU2639714C1 (ru) 2017-01-30 2017-01-30 Ветро-солнечный генератор со сдвоенным ротором

Publications (1)

Publication Number Publication Date
RU2639714C1 true RU2639714C1 (ru) 2017-12-22

Family

ID=63857561

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017103074A RU2639714C1 (ru) 2017-01-30 2017-01-30 Ветро-солнечный генератор со сдвоенным ротором

Country Status (1)

Country Link
RU (1) RU2639714C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU215201U1 (ru) * 2022-08-11 2022-12-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Стабилизированная гибридная аксиальная электрическая машина-генератор

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143358A (ja) * 2005-11-22 2007-06-07 Fjc:Kk 多頭発電機
RU2313888C1 (ru) * 2006-06-15 2007-12-27 Государственное образовательное учреждение высшего профессионального образования Красноярский государственный технический университет (КГТУ) Торцевая электрическая машина
RU2349014C1 (ru) * 2007-07-02 2009-03-10 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО "КубГТУ") Двухмерная аксиальная электрическая машина-генератор
RU2450411C1 (ru) * 2011-01-12 2012-05-10 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУ ВПО "КубГТУ") Аксиальная двухвходовая бесконтактная электрическая машина-генератор
RU2561504C1 (ru) * 2014-06-16 2015-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Аксиальный двухвходовый бесконтактный ветро-солнечный генератор

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143358A (ja) * 2005-11-22 2007-06-07 Fjc:Kk 多頭発電機
RU2313888C1 (ru) * 2006-06-15 2007-12-27 Государственное образовательное учреждение высшего профессионального образования Красноярский государственный технический университет (КГТУ) Торцевая электрическая машина
RU2349014C1 (ru) * 2007-07-02 2009-03-10 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО "КубГТУ") Двухмерная аксиальная электрическая машина-генератор
RU2450411C1 (ru) * 2011-01-12 2012-05-10 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУ ВПО "КубГТУ") Аксиальная двухвходовая бесконтактная электрическая машина-генератор
RU2561504C1 (ru) * 2014-06-16 2015-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Аксиальный двухвходовый бесконтактный ветро-солнечный генератор

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU215201U1 (ru) * 2022-08-11 2022-12-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Стабилизированная гибридная аксиальная электрическая машина-генератор

Similar Documents

Publication Publication Date Title
US9496768B2 (en) Electrical machines
US8466592B2 (en) Electrical machines
JP5695748B2 (ja) 回転電機
RU2636387C1 (ru) Аксиальный трехвходовый ветро-солнечный генератор
US20130257188A1 (en) Flux-switching electric machine
KR20130073839A (ko) 풍력 에너지 설비용 전기 기계
CN111969822B (zh) 混合励磁多相磁阻电机及发电系统
CN110729873A (zh) 一种气隙磁场可调式混合励磁磁力丝杠
Severson et al. Outer-rotor ac homopolar motors for flywheel energy storage
CN100361373C (zh) 双凸极混合励磁电机
Nataraj et al. Modeling and FEA analysis of axial flux PMG for low speed wind turbine applications
RU2704665C1 (ru) Гибридная силовая установка
RU2639714C1 (ru) Ветро-солнечный генератор со сдвоенным ротором
RU2643522C1 (ru) Гибридный ветро-солнечный генератор
RU2629017C1 (ru) Гибридная аксиальная электрическая машина-генератор
KR20120057531A (ko) 비자성 회전자 이너 아우터 고정자 발전기의 구조
RU2633377C1 (ru) Гибридная электрическая машина-генератор
RU2633376C1 (ru) Гибридный аксиальный ветро-солнечный генератор
KR101062154B1 (ko) 발전기
Ahmed et al. Self-bearing switched reluctance motor: A review
RU217134U1 (ru) Стабилизированная гибридная электрическая машина-генератор
RU215201U1 (ru) Стабилизированная гибридная аксиальная электрическая машина-генератор
RU2436221C1 (ru) Бесконтактная магнитоэлектрическая машина с аксиальным возбуждением
Brando et al. Axial flux permanent machine design for low speed high torque application
KR20150145156A (ko) 모터와 이를 이용한 제너레이터

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190131