RU2638863C1 - Crystals based on thallium bromide for detectors of ionizing radiation - Google Patents

Crystals based on thallium bromide for detectors of ionizing radiation Download PDF

Info

Publication number
RU2638863C1
RU2638863C1 RU2016126112A RU2016126112A RU2638863C1 RU 2638863 C1 RU2638863 C1 RU 2638863C1 RU 2016126112 A RU2016126112 A RU 2016126112A RU 2016126112 A RU2016126112 A RU 2016126112A RU 2638863 C1 RU2638863 C1 RU 2638863C1
Authority
RU
Russia
Prior art keywords
bromide
thallium bromide
detectors
crystals
thallium
Prior art date
Application number
RU2016126112A
Other languages
Russian (ru)
Inventor
Игорь Серафимович Лисицкий
Валерий Филиппович Голованов
Галина Васильевна Полякова
Михаил Сергеевич Кузнецов
Никита Андреевич Пимкин
Дмитрий Сергеевич Пушко
Original Assignee
Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет" filed Critical Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет"
Priority to RU2016126112A priority Critical patent/RU2638863C1/en
Application granted granted Critical
Publication of RU2638863C1 publication Critical patent/RU2638863C1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1645Solid materials characterised by a crystal matrix halide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

FIELD: chemistry.
SUBSTANCE: invention can be used as an optical material for IR optics, laser technology, acousto-optics. Crystals based on thallium bromide additionally contain 0.0028-0.00008 wt % of the magnesium bromide impurity. Material characteristics: μτe - 7.8⋅10-4 cm2/V, μτh - 2.5⋅10-4 cm2/V, resistivity - 1⋅1012 Om⋅cm.
EFFECT: increasing the detector characteristics of the material, ensuring the stability of properties during operation.
1 tbl

Description

Изобретение относится к области получения материалов детекторов для регистрации ионизирующего χ- и γ-излучения, а именно кристаллов на основе бромида таллия, а также может быть использовано как оптический материал для инфракрасной оптики, лазерной техники, акустооптики.The invention relates to the field of obtaining detector materials for detecting ionizing χ and γ radiation, namely crystals based on thallium bromide, and can also be used as an optical material for infrared optics, laser technology, acousto-optics.

Бромид таллия (TIBr) имеет высокие атомные номера составляющих компонентов (Tl-81, Br-35), большую плотность - 7,56 г/см2 и, соответственно, высокую поглощающую способность x- и γ-излучений. Широкая запрещенная зона (2,68 эВ) потенциально позволяет детекторам на его основе работать при комнатных температурах с низкими токами утечки. Невысокая температура плавления 460°С и отсутствие фазовых переходов при охлаждении от температуры кристаллизации до комнатной дают возможность выращивать из расплава монокристаллы диаметром до 100 мм на сравнительно простом оборудовании. Негигроскопичность TlBr допускает его использование без дополнительных защитных покрытий.Thallium bromide (TIBr) has high atomic numbers of the constituent components (Tl-81, Br-35), a high density of 7.56 g / cm 2 and, accordingly, a high absorption capacity of x- and γ-radiation. A wide forbidden zone (2.68 eV) potentially allows detectors based on it to operate at room temperatures with low leakage currents. The low melting temperature of 460 ° C and the absence of phase transitions upon cooling from crystallization to room temperature make it possible to grow single crystals with a diameter of up to 100 mm from a melt using relatively simple equipment. Non-hygroscopicity of TlBr allows its use without additional protective coatings.

Однако при использовании детекторов ионизирующего излучения на основе TlBr детекторные свойства материала сохраняются не более одного-двух часов.However, when using TlBr-based ionizing radiation detectors, the detector properties of the material are retained for no more than one or two hours.

Технической задачей изобретения является повышение детекторных характеристик материала и сохранение стабильности работы детекторов на их основе в течение всего периода эксплуатации.An object of the invention is to increase the detector characteristics of the material and maintain the stability of the detectors based on them throughout the entire period of operation.

Известны кристаллы TlBr, полученные из солей, прошедших многократную очистку методом зоной плавки, и выращенные методом плавающей зоны при атмосферном давлении. Такой материал имеет следующие детекторные характеристики: подвижность носителей заряда μτе и μτh не более 2,6⋅10-4 см2/В и 3,7⋅10-5 см2/В для электронов и дырок, соответственно и удельное сопротивление 3⋅1010 Ом⋅см, что недостаточно для длительного детектирования с высоким разрешением, поскольку применение для выращивания кристаллов метода плавающей зоны ведет к значительным термическим напряжениям при выращивании, структурной неоднородности получаемых кристаллов и к ухудшению свойств материала в процессе эксплуатации (Hitomi K., Muroi О., Matsumoto М., Hirabuki R., Shoji Т., Suehiro Т., Hiratate Y. Recent progress in thallium bromide detectors for x- and γ-ray spectroscopy // Nuclear Instruments and Methods in Physics Research A. 2001. №458. P. 365-369.TlBr crystals are known, obtained from salts that have undergone multiple purification by the melting zone method and grown by the floating zone method at atmospheric pressure. Such a material has the following detector characteristics: carrier mobility μτ e and μτ h not more than 2.6⋅10 -4 cm 2 / V and 3.7⋅10 -5 cm 2 / V for electrons and holes, respectively, and resistivity 3 ⋅10 10 Ohm⋅cm, which is not enough for long-term high-resolution detection, since the use of the floating zone method for growing crystals leads to significant thermal stresses during growth, structural heterogeneity of the obtained crystals and to deterioration of material properties during operation (Hitomi K., Muroi O., Matsumo to M., Hirabuki R., Shoji T., Suehiro T., Hiratate Y. Recent progress in thallium bromide detectors for x- and γ-ray spectroscopy // Nuclear Instruments and Methods in Physics Research A. 2001. No. 458. P . 365-369.

Известны кристаллы бромида таллия, легированные бромидом кальция, полученные путем загрузки бромида таллия в контейнер, добавления в бромид таллия легирующей примеси бромида кальция, откачки и запаивания ампулы, плавления материала, выдержки расплава при 500°С в течение 100 часов, роста кристаллов перемещением расплава в температурном градиенте. Полученные кристаллы бромида таллия, легированные бромидом кальция, из-за неоднородности по составу и образующейся при этом нестабильности оптических и электрофизических свойств материала ухудшают детекторные характеристики и их воспроизводимость (патент РФ №2506352, МПК С30В 29/12, опубл. 10.02.2014). Способ принят за прототип.Thallium bromide crystals doped with calcium bromide are known, obtained by loading thallium bromide in a container, adding dopant of calcium bromide to thallium bromide, pumping and sealing an ampoule, melting the material, holding the melt at 500 ° C for 100 hours, and growing crystals by moving the melt into temperature gradient. The obtained crystals of thallium bromide doped with calcium bromide, due to heterogeneity in composition and the resulting instability of the optical and electrophysical properties of the material, worsen the detector characteristics and their reproducibility (RF patent No. 2506352, IPC C30B 29/12, publ. 02/10/2014). The method adopted for the prototype.

Техническим результатом изобретения является повышение детекторных характеристик материала и обеспечение стабильности свойств в процессе эксплуатации.The technical result of the invention is to increase the detector characteristics of the material and ensure the stability of properties during operation.

Технический результат достигается тем, что кристалл на основе бромида таллия для детекторов ионизирующего χ- и γ-излучения, согласно изобретению дополнительно содержит бромид магния при следующем соотношении компонентов (мас.%):The technical result is achieved in that a crystal based on thallium bromide for detectors of ionizing χ and γ radiation, according to the invention additionally contains magnesium bromide in the following ratio of components (wt.%):

бромид таллияthallium bromide 99,9972-99,9999299,9972-99,99992 бромид магнияmagnesium bromide 0,0028-0,000080.0028-0.00008

Сущность изобретения заключается в том, что в отличие от прототипа, где кристаллы бромида таллия легированы соединением двухвалентного кальция, бромид таллия содержит дополнительно бромид магния в количестве 0,0028-0,00008 мас.%.The essence of the invention lies in the fact that, unlike the prototype, where thallium bromide crystals are doped with a compound of divalent calcium, thallium bromide additionally contains magnesium bromide in an amount of 0.0028-0.00008 wt.%.

Наличие в кристаллах ионов магния на уровне примеси стабилизирует детекторные свойства кристалла и увеличивает время работы детектора на весь период эксплуатации, так как стабилизирует рост структурно однородных кристаллов с градиентом концентрации легирующей примеси не более 0,6⋅10-6 масс/см по длине кристалла.The presence of magnesium ions in the crystals at the impurity level stabilizes the crystal’s detector properties and increases the detector’s operating time for the entire period of operation, since it stabilizes the growth of structurally homogeneous crystals with a dopant concentration gradient of no more than 0.6⋅10 -6 mass / cm along the length of the crystal.

При концентрации примеси бромида магния более 0,0028 мас.% не обеспечивается стабилизация детекторных характеристик во времени. При концентрации легирующей примеси менее 0,00008 мас.% происходит ликвация примеси по длине кристалла при выращивании, в результате нарушается структурная целостность и осевая стабильность электрофизических характеристик, что не позволяет использовать бромид таллия в качестве детекторного материала.When the concentration of magnesium bromide impurity is more than 0.0028 wt.%, Stabilization of the detector characteristics in time is not ensured. When the concentration of the doping impurity is less than 0.00008 wt.%, The impurity is segregated along the length of the crystal during growth; as a result, the structural integrity and axial stability of the electrophysical characteristics are violated, which does not allow the use of thallium bromide as a detector material.

Примеры получения материалаExamples of obtaining material

В ампулу термостойкого боросиликатного стекла, имеющую диаметр 20 мм, с коническим носиком, оливкой для вакуумирования и перетяжкой для запаивания загружают 200 г TlBr. Добавляют легирующую примесь - бромид магния - в количестве 0,0018 г. Ампулу вакуумируют до остаточного давления воздуха 10-3 мм рт.ст. и запаивают на газовой горелке.In an ampoule of heat-resistant borosilicate glass having a diameter of 20 mm, with a conical spout, olive for evacuation and a hauling for sealing, 200 g of TlBr are loaded. Add a dopant - magnesium bromide - in an amount of 0.0018 g. The ampoule is evacuated to a residual air pressure of 10 -3 mm Hg. and sealed on a gas burner.

Запаянную ампулу с материалом помещают в вертикальную двухзонную печь сопротивления. Бромид таллия нагревают до температуры 480°С и расплавляют. Включают привод опускания ампулы и проводят кристаллизацию расплава перемещением ампулы в нижнюю низкотемпературную (350°С) зону печи со скоростью 2 мм/ч. После полной кристаллизации расплава кристалл охлаждают до комнатной температуры со скоростью 30 град/ч.A sealed ampoule with material is placed in a vertical dual-zone resistance furnace. Thallium bromide is heated to a temperature of 480 ° C and melted. The drive for lowering the ampoule is turned on and the melt is crystallized by moving the ampoule to the lower low-temperature (350 ° C) zone of the furnace at a speed of 2 mm / h. After complete crystallization of the melt, the crystal is cooled to room temperature at a rate of 30 deg / h.

По данным измерения методом Ван дер Пау при напряжении 20 В на вырезанных из кристаллов образцах размером 4×4×2 мм с нанесенными индиевыми омическими контактами легирование материала бромидом магния увеличивает удельное сопротивление до 1⋅1012 Ом⋅см. Удельное сопротивление рассчитано для температуры 18°С с учетом энергии активации темновой проводимости Еа=0,9 эВ. Рассчитанные методом Гехта значения подвижностей носителей заряда достигают μτе=7,8⋅10-4 см2/В и μτh=2,5⋅10-4 см2/В для концентрации MgBr2 0,00085 мас.%. Было проведено 10 измерений в течение 24 месяцев, данные по составу и значения детекторных характеристик с учетом их изменения во времени приведены в таблице 1.According to Van der Pau measurement data at a voltage of 20 V, on samples cut from crystals 4 × 4 × 2 mm in size with deposited indium ohmic contacts, alloying of the material with magnesium bromide increases the resistivity to 1 до10 12 Ohm 12cm. The resistivity was calculated for a temperature of 18 ° C taking into account the activation energy of dark conductivity E a = 0.9 eV. The values of the mobilities of the charge carriers calculated by the Hecht method reach μτ е = 7.8⋅10 -4 cm 2 / V and μτ h = 2.5⋅10 -4 cm 2 / V for MgBr 2 concentration of 0.00085 wt.%. 10 measurements were carried out over 24 months, data on the composition and values of the detector characteristics taking into account their changes in time are given in table 1.

Figure 00000001
Figure 00000001

Claims (2)

Кристалл на основе бромида таллия для детекторов ионизирующего χ- и γ-излучения, отличающийся тем, что он дополнительно содержит бромид магния при следующем соотношении компонентов (мас.%):A crystal based on thallium bromide for detectors of ionizing χ and γ radiation, characterized in that it additionally contains magnesium bromide in the following ratio of components (wt.%): бромид таллияthallium bromide 99,9972-99,9999299,9972-99,99992 бромид магнияmagnesium bromide 0,0028-0,000080.0028-0.00008
RU2016126112A 2016-06-30 2016-06-30 Crystals based on thallium bromide for detectors of ionizing radiation RU2638863C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016126112A RU2638863C1 (en) 2016-06-30 2016-06-30 Crystals based on thallium bromide for detectors of ionizing radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016126112A RU2638863C1 (en) 2016-06-30 2016-06-30 Crystals based on thallium bromide for detectors of ionizing radiation

Publications (1)

Publication Number Publication Date
RU2638863C1 true RU2638863C1 (en) 2017-12-18

Family

ID=60718886

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016126112A RU2638863C1 (en) 2016-06-30 2016-06-30 Crystals based on thallium bromide for detectors of ionizing radiation

Country Status (1)

Country Link
RU (1) RU2638863C1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2506352C1 (en) * 2012-08-09 2014-02-10 Открытое акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности ОАО "Гиредмет" Thallium bromide based crystals for ionising radiation detectors
US9194958B2 (en) * 2012-10-05 2015-11-24 Lawrence Livermore National Security, Llc Stabilized thallium bromide radiation detectors and methods of making the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2506352C1 (en) * 2012-08-09 2014-02-10 Открытое акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности ОАО "Гиредмет" Thallium bromide based crystals for ionising radiation detectors
US9194958B2 (en) * 2012-10-05 2015-11-24 Lawrence Livermore National Security, Llc Stabilized thallium bromide radiation detectors and methods of making the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
I. B. Oliveira et al. Purification and crystal growth of TlBr for application as a radiation detector,"Crystal Research & Technology", 2004, vol. 39, No. 10, pp. 849-854. *
I. B. Oliveira et al. Purification and crystal growth of TlBr for application as a radiation detector,"Crystal Research & Technology", 2004, vol. 39, No. 10, pp. 849-854. K HITOMI et al. Characterization of thallium bromide crystals for radiation detector applications, "Journal of Crystal Growth", 2001, vol. 225, No. 2-4, pp. 129-133. V. KOZLOV et al. TlBr crystal growth, purification and characterization, "Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Proceedings of the 5th International Workshop on Radiation Imaging Detectors", 2004, vol. 531, No. 1-2, pp. 165-173. *
K HITOMI et al. Characterization of thallium bromide crystals for radiation detector applications, "Journal of Crystal Growth", 2001, vol. 225, No. 2-4, pp. 129-133. *
V. KOZLOV et al. TlBr crystal growth, purification and characterization, "Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Proceedings of the 5th International Workshop on Radiation Imaging Detectors", 2004, vol. 531, No. 1-2, pp. 165-173. *

Similar Documents

Publication Publication Date Title
Bell et al. Cadmium telluride, grown from tellurium solution, as a material for nuclear radiation detectors
Tupitsyn et al. Lithium containing chalcogenide single crystals for neutron detection
Yan et al. Czochralski growth of the mixed halides BaBrCl and BaBrCl: Eu
Lindsey et al. Multi-ampoule Bridgman growth of halide scintillator crystals using the self-seeding method
Singh et al. Growth of CsI: Tl crystals in carbon coated silica crucibles by the gradient freeze technique
RU2638863C1 (en) Crystals based on thallium bromide for detectors of ionizing radiation
US10444379B2 (en) High transmittance single crystal YAP scintillators
Wen et al. Investigation of point defects and electrical properties of the In-doped CdMnTe grown by traveling heater method
Wu et al. Effects of Bi3+ codoping on the optical and scintillation properties of CsI: Tl single crystals
Manoel et al. Growth and characterization of HgI2, PbI2 and PbI2: HgI2 layered semiconductors
RU2506352C1 (en) Thallium bromide based crystals for ionising radiation detectors
Popovych et al. The effect of chlorine doping concentration on the quality of CdTe single crystals grown by the modified physical vapor transport method
Veissid et al. Gap energy studied by optical transmittance in lead iodide monocrystals grown by Bridgman's Method
Chattopadhyay et al. Characterization of semi-insulating CdTe crystals grown by horizontal seeded physical vapor transport
Franc et al. Melt growth and post‐grown annealing of semiinsulating (CdZn) Te by vertical gradient freeze method
Matuchova et al. Electrical, optical and structural properties of lead iodide
US8969803B2 (en) Room temperature aluminum antimonide radiation detector and methods thereof
Radomska et al. Phase diagram and growth of single crystals in the anthracene-acridine binary system
Wei et al. Growth and characterization of indium-doped Cd1− xZnxTe crystal by traveling heater method
US9437692B2 (en) Production and distribution of dilute species in semiconducting materials
US10557215B2 (en) CdTe-based compound single crystal and method for producing the same
CN114808133B (en) Doping method for optimizing hollow defects in compound semiconductor crystal
Hömmerich et al. Crystal growth and characterization of undoped and Dy-doped TlPb2Br5 for infrared lasers and nuclear radiation detection
JP2011225742A (en) Raw material purification device and method of manufacturing single crystal for scintillator
Matuchova et al. Electrical resistivity and photoluminescence of lead iodide crystals