RU2638608C1 - Способ получения металлических гранул с открытой пористостью - Google Patents
Способ получения металлических гранул с открытой пористостью Download PDFInfo
- Publication number
- RU2638608C1 RU2638608C1 RU2016139067A RU2016139067A RU2638608C1 RU 2638608 C1 RU2638608 C1 RU 2638608C1 RU 2016139067 A RU2016139067 A RU 2016139067A RU 2016139067 A RU2016139067 A RU 2016139067A RU 2638608 C1 RU2638608 C1 RU 2638608C1
- Authority
- RU
- Russia
- Prior art keywords
- metal
- sample
- granules
- salt
- water
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/08—Alloys with open or closed pores
- C22C1/088—Foaming process with solid metal other than by powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0836—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with electric or magnetic field or induction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1103—Making porous workpieces or articles with particular physical characteristics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/14—Making metallic powder or suspensions thereof using physical processes using electric discharge
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/08—Alloys with open or closed pores
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
Изобретение относится к получению гранул пенометалла. Способ включает смешивание порошка металла с водорастворимой, не смачиваемой металлом солью, имеющей температуру плавления, большую температуры плавления металла. Полученную смесь прессуют до получения компактного образца в виде стержня или прутка. Осуществляют нагрев образца, плавление и диспергирование путем пропускания через образец короткого импульса электрического тока с заданной амплитудой и длительностью. Помещают полученные гранулы после затвердевания в воду для растворения соли. Обеспечивается получение гранул пеннометалла с открытой пористостью. 2 з.п. ф-лы, 5 пр.
Description
Изобретение относится к металлургии, в частности к получению пенометаллов, и может быть использовано при изготовлении каталитических фильтров и других материалов и изделий для строительства, промышленности, транспорта и в других областях деятельности, где требуются легкие, прочные, износостойкие, безопасные наполнители и композиционные материалы на их основе, обеспечивающие звукотеплоизоляцию и защиту от вредных факторов окружающей среды.
Гранулы могут использоваться сами по себе, например для заполнения полостей деталей, которые в этом случае могут использоваться в качестве каталитических фильтров. Также, путем прессования и спекания, из них могут быть получены пенометаллические материалы и изделия, в том числе сложной формы, с пористостью, близкой к пористости гранул, а путем спекания без давления могут быть получены материалы с двойной пористостью: пористостью гранул и дополнительной пористостью межгранульного пространства. Такие материалы целесообразно использовать в качестве каталитических фильтров, а также они могут эффективно поглощать энергию ударных волн.
Несмотря на преимущества применения новых материалов в машиностроении, строительстве, электротехнике и других отраслях промышленности, масштабы их внедрения в настоящее время невелики. Технология производства гранул пенометаллов все еще находится на начальной стадии своего становления и ее необходимо совершенствовать.
Существует большое число способов получения различных пенометаллов: никеля, меди, титана, сталей и других, как с открытой, так и с закрытой пористостью.
Известен способ получения полуфабрикатов из пеноалюминия (см. патент RU 2202443, МПК B22F 3/11, B22F 3/24, опубликован 20.04.2003), включающий приготовление смеси из порошка алюминиевого сплава и порошка порофора, засыпку смеси в емкость из алюминиевого сплава, ее уплотнение горячей деформацией, измельчение полученной плотной заготовки на частицы, высокотемпературную термообработку и окончательное охлаждение. При этом порошок алюминиевого сплава смешивают с порофором, имеющим температуру разложения в диапазоне температур солидуса-ликвидуса алюминиевого сплава. Высокотемпературную термообработку ведут, подвергая каждую отдельную частицу нагреву до температуры образования в ее объеме 50-98% жидкой фазы, исключая контакт с другими частицами. Нагретую частицу выдерживают при этой температуре до достижения формы готового полуфабриката, после чего ведут охлаждение частицы до температуры солидуса со скоростью не менее 0,1°C/с.
Изобретение позволяет получить сыпучий пористый материал пониженной плотности и повысить выход годного материала. При этом образуются пеногранулы сферической формы с размером (5-20) мм. Недостатком известного способа является очень узкая номенклатура получаемых пенометаллов. Он применим только для тех сплавов, у которых имеется большой диапазон между температурами солидуса и ликвидуса, и есть порофор, который разлагается с выделением газа именно в этом температурном диапазоне. Если он разлагается при температуре ниже солидуса, то выделяющийся газ разрушит еще твердый образец, и гранулы не образуются. При температуре выше ликвидуса газ выйдет из жидкого металла. Порофор при этом должен химически не взаимодействовать с расплавом металла и не ухудшать существенно свойства конечного продукта. Количество подходящих порофоров ограничено, вследствие чего ограничена номенклатура гранулируемых материалов. Другим недостатком является низкая производительность процесса, а также сложность получения малоразмерных гранул, которые необходимы для формирования деталей с тонкостенными элементами.
Известен способ получения изделий из пеноалюминия (см. патент RU 2492257, МПК С22С 1/08, опубликован 10.09.2013). Способ включает заливку перегретого алюминиевого расплава в форму, заполненную гранулами из водорастворимой соли с температурой плавления выше температуры нагрева расплава и температуры нагрева формы и с плотностью выше плотности алюминиевого расплава. После затвердевания слиток извлекают из формы и помещают в воду для растворения соли. В качестве водорастворимой соли используют бромид или йодид кальция или бария.
В известном способе выбрана водорастворимая тугоплавкая соль, которая хорошо смачивается расплавом, с тем, чтобы он мог проникать в пространство между солевыми гранулами. Недостатком данного способа является невозможность получения сыпучего материала, недостаточная пористость получаемых изделий.
Известен способ получения металлических гранул (см. патент RU 2582846, МПК B22F 9/14, B22F 3/11, С22С 1/08 опубликован 27.04.2016), совпадающий с настоящим техническим решением по наибольшему числу существенных признаков и принятый за прототип. Способ-прототип включает смешивание порошка металла с порофором, прессование полученной смеси до получения компактного образца в виде стержня или прутка и его нагрев, плавление и диспергирование. При этом порофор используют с температурой разложения, меньшей температуры плавления металла, а нагрев, плавление и последующее диспергирование образца ведут путем пропускания через образец короткого импульса электрического тока с амплитудой I и длительностью t, которые определяют по следующим соотношениям:
1,8⋅104d⋅(P0/μ)<I<2⋅109⋅рγ1/2/μ+(4⋅1018⋅ρ2γ/μ2+5⋅106⋅γd2e/μ)1/2,
t=1,2γd4e/ρI2+103d2γ1/2/I,
где I - амплитуда импульса тока, А;
t - длительность импульса тока, с;
d - диаметр диспергируемого образца, м;
Р0 - конечное давление газа в газовых пузырьках жидкого пенометалла после его полного расширения, которое, при диспергировании образца на воздухе, приближено к атмосферному давлению 105 Н/м2;
μ - относительная магнитная проницаемость материала диспергируемого образца, безразмерная;
ρ - удельное электрическое сопротивление материала диспергируемого образца, Ом⋅м;
γ - плотность материала диспергируемого образца, кг/м3;
е - удельная энергия, необходимая для нагрева и расплавления материала диспергируемого образца, Дж/кг,
причем е=сΔТ+ΔН,
где с - теплоемкость материала диспергируемого образца, Дж/кг⋅град;
ΔТ - температура, на которую нагревают материал диспергируемого образца до плавления, град;
ΔН - удельная теплота плавления материала диспергируемого образца, Дж/кг.
Импульс электрического тока осуществляет плавление и диспергирование образца за счет развития магнитогидродинамической перетяжечной неустойчивости его формы (Абрамова К.Б., Златин Н.А., Перегуд Б.П. Магнитогидро-динамическая неустойчивость жидких и твердых проводников, Разрушение проводников электрическим током, ЖЭТФ, 1975, т. 69, вып. 6, с. 2007-2022).
Известный способ позволяет получать гранулы с лишь закрытыми порами, так как при выходе пузырьков газа на поверхность жидкая капля схлопывается. В то же время для изготовления каталитических фильтров требуются гранулы с открытой пористостью. Кроме того, материал из гранул с открытой пористостью лучше поглощает звук и ударные волны, так как энергия волны гасится при движении газа через поры.
Задачей настоящего изобретения является разработка способа получения металлических гранул с открытой пористостью.
Поставленная задача решается тем, что способ получения металлических гранул включает смешивание порошка металла с порофором в виде водорастворимой, не смачиваемой металлом соли, имеющей температуру плавления, большую температуры плавления металла, прессование полученной смеси до получения компактного образца в виде стержня или прутка, его нагрев, плавление и диспергирование путем пропускания через образец короткого импульса электрического тока с амплитудой / и длительностью t, определяемых соотношениями:
где р - массовая доля металла в составе образца
D - диаметр диспергируемого образца (заготовки), м;
γ0 - плотность диспергируемого образца, кг/м3;
с - теплоемкость металла, Дж/кг⋅град;
ΔT – температура, на которую нужно нагреть металл до плавления, град;
ΔН - удельная теплота плавления металла, Дж/кг;
ρo - удельное электрическое сопротивление диспергируемого образца, Ом⋅м;
tп – время, необходимое для плавления металла образца, с;
tМГД - время разрушения образца МГД неустойчивостью, с;
помещение гранул после затвердевания в воду для растворения соли.
В качестве водорастворимой соли могут быть использованы фторид калия или фторид натрия, сульфат магния.
Новым в настоящем способе является введение порофора в виде водорастворимой, не смачиваемой металлом соли, имеющей температуру плавления, большую температуры плавления металла, такой как фторид калия или фторид натрия, сульфат магния, а также амплитуда I импульса электрического тока и его длительность t, определяемые соотношениями (1) и (2).
Сущность предлагаемого способа заключается в следующем.
Через образец (пруток или стержень) пропускают импульс тока с указанными в соотношениях (1), (2) заданными параметрами, После расплавления металла в образце развивается магнитогидродинамическая неустойчивость, которая разбивает образец на диски. Диски впоследствии силами поверхностного натяжения трансформируются в сферические капли, в которых имеются твердые включения частиц соли. Так как выбрана соль, которая не смачивается расплавом металла и не расплавляется при температуре плавления металла, то металл не обволакивает эти включения соли и они выступают на поверхность капель. В полете, либо в охлаждающей жидкости, капли кристаллизуются и образуют гранулы. После растворения соли водой в гранулах формируются открытые поры. К моменту разрушения образца источник тока должен полностью исчерпать свою энергию. В противном случае после паузы тока между образовавшимися фрагментами возникает дуговой разряд, который приведет к испарению части металла гранул. Дуговой разряд ведет к неоправданному увеличению параметров источника тока, затратам энергии, ухудшению качества гранул и снижению выхода годного, загрязнению продукта металлическим порошком. Для исключения дугового разряда необходимо, чтобы время нагрева и плавления металла образца было соизмеримо с временем его разрушения МГД неустойчивостью: tп≤3tМГД, а общая длительность импульса электрического тока t была равна их сумме: t=tп+tМГД.
tп=2π2ργoD4(cΔT+ΔН)/ρoI2≤3tМГД=5⋅103 γoD2)/I.
Отсюда получаем следующее выражение для амплитуды импульса электрического тока I:
I≥10-3 pD2γo 1/2(cΔT+ΔН)/ρo
t=tп+tМГД=20pγoD4(cΔT+ΔH)/ρoI2+5⋅103 γo1/2D2)/I
Любой металлический или электропроводящий порошок смешивают с порошком, гранулами, чешуйками или волокнами водорастворимой соли. Размер и форму частиц соли выбирают в соответствии с необходимой формой и размером будущих пор. Температура плавления соли должна быть выше, чем у металла. Соль выбирают из числа тех, которые плохо смачиваются расплавом соответствующего металла, например: фторид калия или фторид натрия, сульфат магния. Соотношение металла и соли выбирают исходя из необходимости получения заданной пористости гранул, однако оно должно быть таким, чтобы после изготовления образца он обладал проводимостью, то есть имел сплошной металлический каркас, а частицы соли внутри образца также контактировали бы между собой. Из смеси методами порошковой металлургии изготавливают стержень или пруток. Может использоваться обычное прессование, прессование и спекание, спарк-плазменное, электроимпульсное или мангнитоимпульсное спекание. Либо изготавливают образец путем литья как в способе-аналоге. Соль помещают в форму и пропитывают расплавом металла, т.к. образцы тонкие, диаметром несколько миллиметров, сделать это относительно легко, даже если соль не смачивается металлом. Через образец пропускается импульс тока с заданными параметрами, определяемыми соотношениями (1), (2). Увеличение амплитуды импульса тока сверх заданной минимальной нецелесообразно, т.к. ведет к более высоким требованиям к параметрам источника тока. Неустойчивость разбивает образец на диски, разрывает ток, а запас энергии источника тока к этому моменту израсходован, это позволяет избежать последующего газового разряда между жидкими дисками. Капли разлетаются и кристаллизуются в полете или в охлаждающей жидкости. После растворения соли формируются поры.
Пример 1. Изготавливали гранулы пеноалюминия. Взяли порошок чистого алюминия, у которого температуры солидуса и ликвидуса совпадают и равны 660°C, и смешали его с порофором - фторидом калия (который плавится при температуре 846°C), в соотношении 1:1 по массе. Смешивание провели с помощью вибростенда. Из полученной смеси путем прессования изготовили прутки диаметром 5 мм и длиной 100 мм. Измерили электрическое сопротивление образцов и их массу. Рассчитали удельное электрическое сопротивление и плотность образцов: ρo=8⋅10-6 Ом⋅м, γo=2,5⋅103 кг/м3. Произвели расчеты по соотношениям (1), (2). I минимальное составило 78 кА. Задали амплитуду тока 100 кА. Тогда длительность импульса тока t=tп+tМГД=188 мкс+68 мкс≈250 мкс. Закрепили образец в зажимах установки и пропустили импульсный ток с заданными параметрами. Процесс проводили на воздухе, а охлаждение, кристаллизацию полученных гранул и удаление соли - в воде. В результате получили гранулы с открытой пористостью из алюминия с пористостью ~50%.
Пример 2. Провели аналогичное изготовление гранул, как в примере 1, но при длительности импульса тока 100 мкс. Произошло разрушение твердого проводника, получены алюминиевый порошок и рыхлые комья из порошка.
Пример 3. Провели аналогичное изготовление гранул, как в примере 1, но при длительности импульса 400 мкс. Получена смесь алюминиевых гранул с пониженной пористостью, меньшего размера и в меньшем количестве и металлического сильно окисленного порошка.
Пример 4. Провели аналогичное изготовление гранул, как в примере 1, но при амплитуде тока меньше заданной минимальной - 50 кА. Длительность импульса будет t=tп+tМГД=136 мкс+752 мкс≈900 мкс. Получена смесь алюминиевых гранул с пониженной пористостью, меньшего размера и в меньшем количестве и металлического сильно окисленного порошка.
Пример 5. Изготавливали гранулы пористой меди. Взяли порошок чистой меди, у которой температуры солидуса и ликвидуса совпадают и равны 1083°C, и смешали его с порофором - сульфатом магния (который плавится при температуре 1137°C), в количестве 80% медного порошка и 20% порофора по массе. С учетом плотности компонентов по объему это составит примерно 1:1. Смешивание провели с помощью вибростенда. Из полученной смеси путем прессования изготовили прутки диаметром 5 мм и длиной 100 мм. Измерили электрическое сопротивление образцов и их массу. Рассчитали удельное электрическое сопротивление и плотность образцов: ρo=3⋅10-6 Ом⋅м, γo=6⋅103 кг/м3. Произвели расчеты по соотношениям (1), (2). I минимальное составило 308 кА. Задали амплитуду тока 350 кА. Тогда длительность импульса тока t=tп+tМГД=96 мкс+27 мкс≈120 мкс. Закрепили образец в зажимах установки и пропустили импульсный ток с заданными параметрами. Процесс проводили на воздухе, а охлаждение, кристаллизацию полученных гранул и удаление соли - в воде. В результате получили гранулы меди с открытой пористостью ~50%.
Claims (15)
1. Способ получения гранул пенометалла, включающий смешивание порошка металла с водорастворимой, не смачиваемой металлом солью, имеющей температуру плавления, большую температуры плавления металла, прессование полученной смеси до получения компактного образца в виде стержня или прутка, его нагрев, плавление и диспергирование путем пропускания через образец короткого импульса электрического тока с амплитудой I и длительностью t, которые определяют по следующим соотношениям:
где р - массовая доля металла в составе образца;
D - диаметр диспергируемого образца, м;
γо - плотность диспергируемого образца, кг/м3;
с - теплоемкость металла, Дж/кг⋅град;
ΔT – температура, на которую нужно нагреть металл до плавления, град;
ΔН - удельная теплота плавления металла, Дж/кг;
ρо - удельное электрическое сопротивление диспергируемого образца, Ом⋅м;
tп – время, необходимое для плавления металла образца, с;
tМГД - время разрушения образца магнитогидродинамической (МГД) неустойчивостью, с;
при этом полученные гранулы после затвердевания помещают в воду для растворения соли с получением гранул пенометалла.
2. Способ по п. 1, отличающийся тем, что в качестве водорастворимой соли используют фторид калия или фторид натрия.
3. Способ по п. 1, отличающийся тем, что в качестве водорастворимой соли используют сульфат магния.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016139067A RU2638608C1 (ru) | 2016-10-04 | 2016-10-04 | Способ получения металлических гранул с открытой пористостью |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016139067A RU2638608C1 (ru) | 2016-10-04 | 2016-10-04 | Способ получения металлических гранул с открытой пористостью |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2638608C1 true RU2638608C1 (ru) | 2017-12-14 |
Family
ID=60718597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016139067A RU2638608C1 (ru) | 2016-10-04 | 2016-10-04 | Способ получения металлических гранул с открытой пористостью |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2638608C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2193948C2 (ru) * | 1999-07-06 | 2002-12-10 | Лебедев Виктор Иванович | Способ получения пористого металла и изделий из него |
WO2006005150A1 (en) * | 2004-07-15 | 2006-01-19 | Serguei Vatchiants | Processes for production of foamed aluminum bodies from coated aluminum powder |
RU2312913C1 (ru) * | 2006-03-13 | 2007-12-20 | Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" | Способ получения полуфабриката для изготовления пенометалла |
US7597840B2 (en) * | 2005-01-21 | 2009-10-06 | California Institute Of Technology | Production of amorphous metallic foam by powder consolidation |
RU2582846C2 (ru) * | 2014-07-25 | 2016-04-27 | ООО "Электрический гранулятор пенометаллов" (ООО ЭГПМ) | Способ получения гранул пенометаллов |
-
2016
- 2016-10-04 RU RU2016139067A patent/RU2638608C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2193948C2 (ru) * | 1999-07-06 | 2002-12-10 | Лебедев Виктор Иванович | Способ получения пористого металла и изделий из него |
WO2006005150A1 (en) * | 2004-07-15 | 2006-01-19 | Serguei Vatchiants | Processes for production of foamed aluminum bodies from coated aluminum powder |
US7597840B2 (en) * | 2005-01-21 | 2009-10-06 | California Institute Of Technology | Production of amorphous metallic foam by powder consolidation |
RU2312913C1 (ru) * | 2006-03-13 | 2007-12-20 | Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" | Способ получения полуфабриката для изготовления пенометалла |
RU2582846C2 (ru) * | 2014-07-25 | 2016-04-27 | ООО "Электрический гранулятор пенометаллов" (ООО ЭГПМ) | Способ получения гранул пенометаллов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Radjai et al. | An investigation of the effects caused by electromagnetic vibrations in a hypereutectic Al-Si alloy melt | |
US4929415A (en) | Method of sintering powder | |
Braszczyńska-Malik et al. | AZ91 magnesium matrix foam composites with fly ash cenospheres fabricated by negative pressure infiltration technique | |
Smorygo et al. | High-porosity titanium foams by powder coated space holder compaction method | |
Zhang et al. | Microstructural evolvement and formation of selective laser melting W–Ni–Cu composite powder | |
CN106623959A (zh) | 一种增材制造用Waspalloy球形粉末的制备方法 | |
Vorozhtsov et al. | Synthesis of Micro‐and Nanoparticles of Metal Oxides and Their Application for Reinforcement of Al‐Based Alloys | |
CN105039770B (zh) | 一种利用定向凝固技术制备多孔金属材料的方法 | |
JP6412128B2 (ja) | 金属成分の形成 | |
Yan et al. | Morphological evolution of semi-solid Mg2Si/AM60 magnesium matrix composite produced by ultrasonic vibration process | |
Casati | Aluminum matrix composites reinforced with alumina nanoparticles | |
RU2400552C2 (ru) | Способ получения пеноалюминия | |
Vivès | Crystallization of aluminium alloys in the presence of cavitation phenomena induced by a vibrating electromagnetic pressure | |
Ji et al. | Ultrafine-grain and isotropic Cu/SAC305/Cu solder interconnects fabricated by high-intensity ultrasound-assisted solidification | |
Eskin | Ultrasonic melt processing: Achievements and challenges | |
Rubino et al. | An innovative method to produce metal foam using cold gas dynamic spray process assisted by fluidized bed mixing of precursors | |
Stašić et al. | Laser sintering of Cu–Zr–ZrB2 composite | |
Olga et al. | Pore structure and mechanical properties of directionally solidified porous aluminum alloys. | |
RU2638608C1 (ru) | Способ получения металлических гранул с открытой пористостью | |
Zhao et al. | Synergetic energetic kinetics of Mg-Zn alloys and pyrotechnics | |
CN111940731A (zh) | 一种纯铜制件的激光熔化成形方法及成形装置 | |
JP5322049B2 (ja) | ベリリウム材充填体およびベリリウム材充填体の成形方法 | |
RU2582846C2 (ru) | Способ получения гранул пенометаллов | |
Li et al. | Microstructure evolution of gas-atomized Fe–6.5 wt% Si droplets | |
Mizutani et al. | Grain refinement of tough pitch copper by electromagnetic vibrations during solidification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20181005 |