RU2637333C2 - Металлополимерный нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц Fe3O4 и способ его получения - Google Patents

Металлополимерный нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц Fe3O4 и способ его получения Download PDF

Info

Publication number
RU2637333C2
RU2637333C2 RU2016109211A RU2016109211A RU2637333C2 RU 2637333 C2 RU2637333 C2 RU 2637333C2 RU 2016109211 A RU2016109211 A RU 2016109211A RU 2016109211 A RU2016109211 A RU 2016109211A RU 2637333 C2 RU2637333 C2 RU 2637333C2
Authority
RU
Russia
Prior art keywords
nanoparticles
nanocomposite
monomer
pammf
carried out
Prior art date
Application number
RU2016109211A
Other languages
English (en)
Other versions
RU2016109211A (ru
Inventor
Света Жираслановна Озкан
Галина Петровна Карпачева
Original Assignee
Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) filed Critical Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН)
Priority to RU2016109211A priority Critical patent/RU2637333C2/ru
Publication of RU2016109211A publication Critical patent/RU2016109211A/ru
Application granted granted Critical
Publication of RU2637333C2 publication Critical patent/RU2637333C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение может быть использовано в системах магнитной записи информации, органической электронике, медицине, при создании ионообменных материалов, компонентов электронной техники, солнечных батарей, дисплеев, перезаряжаемых батарей, сенсоров и биосенсоров. Металлополимерный нанокомпозитный магнитный материал включает полимерную матрицу и диспергированные в ней наночастицы Fe3O4. В качестве полимерной матрицы используют матрицу из поли-3-амино-7-метиламино-2-метилфеназина ПАММФ при содержании наночастиц Fe3O4 в материале 1-70 мас.% от массы ПАММФ. Для получения металлополимерного нанокомпозитного магнитного материала окислительной полимеризацией мономера in situ на поверхности наночастиц Fe3O4 в присутствии водного раствора окислителя в качестве мономера используют 3-амино-7-диметиламино-2-метилфеназин гидрохлорид - нейтральный красный, в качестве окислителя - персульфат аммония. Мольное соотношение окислителя к мономеру при проведении окислительной полимеризации равно 2-5. Перед окислительной полимеризацией мономер растворяют в органическом растворителе, в качестве которого используют ацетонитрил, диметилформамид или диметилсульфоксид, до концентрации 0,01-0,05 моль/л. К раствору добавляют наночастицы Fe3O4 в количестве 1-70 мас.% от массы ПАММФ. Окислительную полимеризацию проводят при 0-60°С в течение 1-6 ч. Изобретение позволяет повысить намагниченность насыщения гибридного металлополимерного нанокомпозитного магнитного материала с супермагнитными свойствами, высокой термостабильностью, упростить его получение, снизить энергозатраты. 2 н.п. ф-лы, 10 ил., 1 табл., 24 пр.

Description

Изобретение относится к области создания новых структурированных гибридных металлополимерных нанокомпозитных магнитных материалов (МПНК) на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц Fe3O4 и может быть использовано в системах магнитной записи информации, органической электронике и электрореологии, медицине, как антистатические покрытия и материалы, поглощающие электромагнитное излучение в различных диапазонах длины волны, в качестве электродов аккумуляторов, ионселективных электродов, ионообменных материалов, для получения антикоррозионных покрытий, при создании компонентов электронной техники, электромагнитных экранов, контрастирующих материалов для магниторезонансной томографии, гипертермии, каталитического удаления органических загрязнителей воды в комбинации с магнитным сепарированием для очистки воды, микроэлектромеханических систем, солнечных батарей, дисплеев, перезаряжаемых батарей, сенсоров и биосенсоров, суперконденсаторов, электрокатализаторов и других электрохимических устройств.
Наиболее эффективными методами получения МПНК являются методы соосаждения и in situ полимеризации мономеров в реакционной среде, содержащей магнитные наночастицы.
Метод соосаждения позволяет получить нанокомпозиты Fe3O4/ПАНи путем смешения растворов ПАНи, имеющего структуру эмеральдин-основания, в N-МП и водных растворов FeSO4 с последующим осаждением на ПАНи в щелочной среде наночастиц Fe3O4 [1, 2]. Наночастицы Fe3O4 представляют собой игольчатые кристаллы с
Figure 00000001
и d=8-30 нм. Развитием этого метода является осаждение наночастиц оксида железа с одновременной полимеризацией мономера. Так, нанокомпозиты Fe3O4/ПАНи получают при полимеризации анилина в водном растворе, содержащем FeCl2 и FeCl3 в качестве окислителя [3, 4]. Соотношение FeCl2 : FeCl3 = 1 : 1.5. Наночастицы Fe3O4 образуются при pH > 4.5. С увеличением pH растет содержание железа. Размеры наночастиц Fe3O4 15 < d < 50 нм и зависят от величины pH, уменьшаясь с ее ростом.
Для получения МПНК чаще всего используют метод in situ полимеризации мономера в присутствии магнитных наночастиц. В качестве мономеров используют анилин, пиррол, этилендиокситиофен. Полимеризацию ведут в реакционной среде, содержащей наночастицы Fe3O4, γ-Fe2O3, α-Fe2O3, Co3O4, ферритов Zn, Ni, Mn, в присутствии окислителей (NH4)2S2O8, H2O2 или FeCl3 [5-11].
Рассмотренные гибридные наноматериалы, как правило, являются суперпарамагнетиками благодаря малым размерам и высокой дисперсности магнитных наночастиц. Намагниченность насыщения варьируется в пределах MS ~ 0.06-80.4 Гс⋅см3/г [4, 5] и сильно зависит от состава нанокомпозита, увеличиваясь с ростом содержания магнитных наночастиц.
Наиболее близкими к предложенным являются металлополимерный нанокомпозитный магнитный материал на основе полианилина и наночастиц Fe3O4 и способ получения этого магнитного материала окислительной полимеризацией анилина в присутствии наночастицы Fe3O4 в кислой среде (pH 2.5) под действием H2O2 в качестве окислителя [12]. Магнитные наночастицы имеют размеры 10-12 нм.
Недостатком известного материала и способа является низкая намагниченность насыщения - MS не выше 6.2 Гс⋅см3/г. При этом реакцию полимеризации проводят в течение 20 ч.
Задача предлагаемого изобретения заключается в повышении намагниченности насыщения гибридного металлополимерного нанокомпозитного дисперсного магнитного материала с суперпарамагнитными свойствами, высокой термостойкостью (термостабильностью) и упрощении его получения.
Поставленная задача решается тем, что предложен металлополимерный нанокомпозитный магнитный материал, включающий полимерную матрицу и диспергированные в ней наночастицы Fe3O4, в котором в качестве полимерной матрицы используют матрицу из поли-3-амино-7-метиламино-2-метилфеназина (ПАММФ) при содержании наночастиц Fe3O4 в материале 1-70 масс. % от массы ПАММФ.
Поставленная задача также решается тем, что в способе получения металлополимерного нанокомпозитного магнитного материала окислительной полимеризацией мономера in situ на поверхности наночастиц Fe3O4 в присутствии водного раствора окислителя, для получения указанного материала в качестве мономера используют 3-амино-7-диметиламино-2-метилфеназин гидрохлорид - нейтральный красный, в качестве окислителя - персульфат аммония, мольное соотношение окислителя к мономеру при проведении окислительной полимеризации равно 2-5, перед ней мономер растворяют в органическом растворителе, в качестве которого используют ацетонитрил, диметилформамид или диметилсульфоксид, до концентрации 0.01-0.05 моль/л и добавляют к раствору наночастицы Fe3O4 в количестве 1-70 масс. % от массы ПАММФ, а окислительную полимеризацию проводят при 0-60°С в течение 1-6 ч.
Мономер представляет собой гетероциклическое соединение, имеющее в своей структуре два атома азота, соединяющие два фенильных кольца:
Figure 00000002
Формирование металлополимерного дисперсного магнитного материала Fe3O4/ПАММФ включает синтез наночастиц Fe3O4 путем гидролиза смеси хлоридов железа (II) и (III) в соотношении 1:2 в растворе гидроксида аммония, закрепление мономера на поверхности предварительно полученных наночастиц магнетита, внесенных в реакционную среду синтеза нанокомпозита, с последующей in situ полимеризацией в присутствии водного раствора окислителя - персульфата аммония. ПАММФ способен формировать в ходе синтеза пленочные покрытия на поверхности субстрата, внесенного в реакционный раствор.
Получение металлополимерного дисперсного магнитного материала (нанокомпозита) Fe3O4/поли-3-амино-7-метиламино-2-метилфеназин (Fe3O4/ПАММФ) проводят следующим образом. Сначала осуществляют синтез наночастиц Fe3O4 путем гидролиза смеси хлоридов железа (II) и (III) в соотношении 1:2 в растворе гидроксида аммония при 60°С [13]. Могут также использовать наночастицы Fe3O4, ранее полученные любым другим известным способом. Полученную суспензию нагревают на водяной бане до 80°С и перемешивают в течение 0.5 ч. Охлаждение суспензии проводят при комнатной температуре при постоянном интенсивном перемешивании в течение 1 ч. Для закрепления мономера на поверхности Fe3O4 наночастицы отфильтровывают, промывают дистиллированной водой до нейтральной реакции фильтрата и сразу же без предварительной сушки добавляют в раствор АДМФГ требуемой концентрации (0.01-0.05 моль/л) в органическом растворителе - ацетонитриле, ДМФА или ДМСО. Процесс ведут при 40-60°С при постоянном интенсивном перемешивании в течение 0.5-1 ч. Охлаждение суспензии проводят при комнатной температуре при постоянном интенсивном перемешивании в течение 1 ч. Полученную суспензию Fe3O4/АДМФГ перемешивают в УЗ мойке при комнатной температуре в течение 0.5 ч. Затем для проведения окислительной полимеризации in situ АДМФГ на поверхности наночастиц Fe3O4, к суспензии Fe3O4/АДМФГ в ацетонитриле, термостатированной при постоянном перемешивании при 0-60°С, по каплям добавляют водный раствор окислителя (например, персульфата аммония) (0.01-0.10 моль/л). Соотношение объемов органической и водной фаз составляет 1:1 (Vобщ.=60 мл). Реакцию полимеризации проводят в течение 1-6 ч при постоянном интенсивном перемешивании при 0-60°С. По окончании синтеза реакционную смесь осаждают в пятикратный избыток дистиллированной воды. Полученный продукт отфильтровывают, многократно промывают дистиллированной водой для удаления остатков реагентов и сушат под вакуумом над KOH до постоянной массы.
Образование нанокомпозита Fe3O4/ПАММФ подтверждено данными просвечивающей (ПЭМ) и сканирующей (СЭМ) электронной микроскопии, ИК Фурье спектроскопии и рентгеноструктурного исследования, представленными на фиг. 1-7, где I - интенсивность, 2θ - угол, I/I0 - соотношение интенсивностей падающего и прошедшего излучения, ν - частота излучения.
На фиг. 1 представлены ИК-спектры ПАММФ (а) и нанокомпозита Fe3O4/ПАММФ, полученного при [Fe]=22 (б) и 50% (в). На фиг. 2 представлены дифрактограммы ПАММФ (а) и нанокомпозита Fe3O4/ПАММФ, полученного при [Fe]=22 (б) и 50% (в). На фиг. 3 представлено распределение по размерам кристаллитов Fe3O4 в нанокомпозите Fe3O4/ПАММФ, полученном при [Fe]=22 (1) и 50% (2). На фиг. 4 представлена микрофотография нанокомпозита Fe3O4/ПАММФ, полученного при [Fe]=22%. На фиг. 5 представлена микрофотография нанокомпозита Fe3O4/ПАММФ, полученного при [Fe]=45%. На фиг. 6 представлена микрофотография нанокомпозита Fe3O4/ПАММФ, полученного при [Fe]=50%. На фиг. 7 представлены СЭМ изображения ПАММФ (а) и нанокомпозита Fe3O4/ПАММФ, полученного при [Fe]=22% (б).
Анализ результатов спектральных исследований методами ИК Фурье, электронной, рентгенофотоэлектронной спектроскопии, ЯМР 13С твердого тела высокого разрешения ВМУ позволяет представить химическую структуру поли-3-амино-7-метиламино-2-метилфеназина (ПАММФ) следующим образом:
Figure 00000003
ПАММФ представляет собой полулестничный гетероциклический полимер, содержащий атомы азота, участвующие в общей системе полисопряжения. ПАММФ впервые получен в условиях химической окислительной полимеризации АДМФГ в водных растворах ацетонитрила или ДМФА. Для достижения высокого выхода процесс необходимо проводить при достаточно низких концентрациях мономера (0.02 моль/л), а также при соотношении [окислитель]:[мономер]=2-5 в течение 4 ч. Максимальный выход полимера 60-68% достигается в интервале температур 0-40°С. Использование ДМФА вместо ацетонитрила не влияет на выход продукта [14].
Полученные гетероциклические полимеры, способные формировать в ходе синтеза пленочные покрытия на поверхности субстрата, внесенного в реакционный раствор, являются аморфными, электроактивными и термостабильными. Они сохраняют электроактивность в широком диапазоне значений рН (рН=1-6). 50%-ная потеря массы ПАММФ наблюдается при 475°С на воздухе и 865°С в токе аргона [14].
Сравнение ИК-спектров полимера и нанокомпозита показало, что в ИК-спектрах нанокомпозита Fe3O4/ПАММФ сохраняются все характеристические полосы, присутствующие в ПАММФ (фиг. 1). Как и в ПАММФ, в нанокомпозите рост полимерной цепи осуществляется путем присоединения С-N между 3-аминогруппами и параположением фенильных колец по отношению к азоту с одновременным отщеплением аниона Cl- и одной метальной группы от 7-диметиламиногруппы. Регистрацию ИК-спектров выполняют на ИК Фурье спектрометре «IFS 66v» в области 4000-400 см-1 и обрабатывают по программе Soft-Spectra. Образцы готовят в виде таблеток, прессованных с KBr.
Характеристичным изменением в ИК-спектрах нанокомпозита Fe3O4/ПАММФ по сравнению со спектром полимера является появление полосы поглощения при 572 см-1, отвечающей валентным колебаниям связи Fe-О (фиг. 1). Появление этой полосы подтверждает закрепление мономера на наночастицах Fe3O4 с образованием связи Fe-O. При этом увеличение содержания Fe3O4 в нанокомпозите приводит к значительному росту интенсивности полосы при 572 см-1, характеризующей связь Fe-O.
Образование наночастиц Fe3O4 подтверждено методом РФА. На дифрактограмме нанокомпозита четко идентифицируются пики отражения Fe3O4 в области углов рассеяния 2θ=46.1°, 54.2°, 66.9°, 84.8°, 91.2°, 102.2° (фиг. 2). Рентгеноструктурные исследования проводят при комнатной температуре на рентгеновском дифрактометре «Дифрей» с фокусировкой по Бреггу-Брентано на CrKα-излучении.
По результатам рентгеноструктурного анализа рассчитано распределение по размерам кристаллитов Fe3O4. На фиг. 3 представлено распределение по размерам областей когерентного рассеяния (ОКР) в наночастицах Fe3O4. Кривые распределения по размерам узкие. Около 90-95% кристаллитов Fe3O4 имеют размеры до 8 нм. По данным ПЭМ наночастицы Fe3O4 имеют размеры 4<d<10 нм (фиг. 4-6). По данным атомно-абсорбционной спектроскопии содержание Fe=1-50 масс. %. Электронно-микроскопические исследования осуществляют на просвечивающем электронном микроскопе LEO912 АВ OMEGA и растровом электронном автоэмиссионном микроскопе Supra 25 производства Zeiss с рентгеноспектральной энергодисперсионной приставкой INCA Energy производства Oxford Instruments для определения элементного состава образцов. Разрешение на получаемых изображениях составляет величину 1-2 нм. Содержание металла в нанокомпозите Fe3O4/ПАММФ количественно определяют методом атомно-абсорбционной спектрометрии на спектрофотометре AAS 30 фирмы "Carl Zeiss JENA". Погрешность определения содержания Fe составляла ±1%.
На фиг. 8 представлена намагниченность нанокомпозита Fe3O4/ПАММФ как функция приложенного магнитного поля при комнатной температуре, где Fe3O4/ПАММФ получен при [Fe]=22 (1), 35 (2), 45 (3) и 50% (4).
Остаточная намагниченность наноматериала MR составляет до 0.25 Гс⋅см3/г, коэрцитивная сила НС - до 3.5 Э (фиг. 8).
Намагниченность насыщения заявленного материала - MS=16-75 Гс⋅см3/г, тогда как по прототипу она не превышает 6.2 Гс⋅см3/г. Константа прямоугольности петли гистерезиса kn, представляющая собой отношение остаточной намагниченности MR к намагниченности насыщения MS, составляет до 0.007, что подтверждает его суперпарамагнитные свойства. Полученная величина MR/MS характерна для одноосных, однодоменных частиц. Для измерения магнитных характеристик систем используют вибрационный магнитометр. Ячейка вибрационного магнитометра представляет собой проточный кварцевый микрореактор, позволяющий исследовать химические превращения в условиях in situ. Проводят измерения удельной намагниченности J в зависимости от величины магнитного поля H и на их основании определяют магнитные характеристики образцов при комнатной температуре.
Такие нанокомпозитные материалы, обладающие магнитными свойствами, могут быть использованы в системах магнитной записи информации, медицине, гипертермии, для создания контрастирующих материалов для магниторезонансной томографии, электромагнитных экранов, для каталитического удаления органических загрязнителей воды в комбинации с магнитным сепарированием для очистки воды, как антистатические покрытия и материалы, поглощающие электромагнитное излучение в различных диапазонах длины волны, электрокатализаторов и др.
Нанокомпозит Fe3O4/ПАММФ характеризуется высокой термостабильностью. Термическая стабильность нанокомпозита исследована методами ТГА и ДСК.
На фиг. 9 показана температурная зависимость уменьшения массы ПАММФ (1, 2) и нанокомпозита Fe3O4/ПАММФ (3, 4), полученного при [Fe]=22%, при нагревании до 1000°С со скоростью 10°С/мин в токе аргона (1, 3) и на воздухе (2, 4). На фиг. 10 показаны ДСК-термограммы нанокомпозита Fe3O4/ПАММФ, полученного при [Fe]=22%, при нагревании в токе азота до 350°С со скоростью 10°С/мин (1 - первое нагревание, 2 - второе нагревание).
Как видно, характер кривых потери массы и температуры начала разложения образцов не меняются до 320°С. При этом потеря массы при низких температурах связана с удалением влаги, что подтверждается данными ДСК (фиг. 10).
Термическая стабильность нанокомпозита Fe3O4/ПАММФ немного выше, чем ПАММФ. В инертной среде выше 320°С потеря массы образцов происходит постепенно. ПАММФ теряет половину первоначальной массы в инертной атмосфере при 865°С. В нанокомпозите при 1000°С остаток составляет 43%. Процессы термоокислительной деструкции начинаются при 300°С; 50%-ная потеря массы полимера наблюдается при 475°С, а нанокомпозита - при 460°С. Термический анализ осуществляют на приборе TGA/DSC1 фирмы "Mettler Toledo" в динамическом режиме в интервале 30-1000°С на воздухе и в токе азота. Навеска полимеров - 100 мг, скорость нагревания 10°С/мин, ток азота - 10 мл/мин. В качестве эталона используют прокаленный оксид алюминия. Анализ образцов проводят в тигле Al2O3. ДСК-анализ проводят на калориметре DSC823e фирмы "Mettler Toledo". Нагрев образцов осуществляют со скоростью 10°С/мин, в атмосфере аргона при его подаче 70 мл/мин. Обработка результатов измерения проводят с помощью сервисной программы STARe, поставляемой в комплекте с прибором.
В выбранных условиях формируется термостойкий гибридный наноматериал, в котором магнитные наночастицы Fe3O4 с размерами 4 < d < 10 нм гомогенно диспергированы в электроактивной полимерной матрице ПАММФ, тогда как магнитные наночастицы по прототипу имеют размеры 10-12 нм. Полимер сохраняет электроактивность в широком диапазоне значений pH 1-6. Коэффициент прямоугольности петли гистерезиса κn ~ 0, что свидетельствует о суперпарамагнитном поведении гибридного наноматериала. Нанокомпозитный материал Fe3O4/ПАММФ представляет собой черный порошок, нерастворимый в органических растворителях. Такие нанокомпозитные материалы могут быть использованы в органической электронике и электрореологии, для создания микроэлектромеханических систем, тонкопленочных транзисторов, перезаряжаемых батарей, сенсоров и биосенсоров, суперконденсаторов, солнечных батарей, дисплеев и других электрохимических устройств.
Новизна предлагаемых методов и подходов к созданию гибридного дисперсного материала определяется тем, что впервые полимерный компонент нанокомпозита представляет собой термостойкий электроактивный гетероциклический полимер ПАММФ.
Преимущества предложенного материала и способа:
1. Предлагаемый метод формирования металлополимерного нанокомпозитного материала в условиях окислительной полимеризации in situ позволяет получать наночастицы Fe3O4 различного состава, размеры которых отвечают критерию однодоменности (4 < d < 10 м), обусловливающие суперпарамагнитное поведение нанокомпозитного материала. Магнитные наночастицы Fe3O4 по прототипу имеют размеры 10-12 нм. Константа прямоугольности петли гистерезиса κn, представляющая собой отношение остаточной намагниченности MR к намагниченности насыщения MS, составляет 0-0.007. Остаточная намагниченность материала MR составляет 0-0.25 Гс⋅см3/г, коэрцитивная сила -
Figure 00000004
. Намагниченность насыщения заявленного материала - MS = 16-75 Гс⋅см3/г, тогда как по прототипу она не превышает 6.2 Гс⋅см3/г.
2. Формирование гибридного наноматериала Fe3O4/ПАММФ осуществляется в условиях окислительной полимеризации in situ в нейтральной среде при 0-60°C в течение 1-6 ч - вместо более, чем 20 ч по прототипу, что позволяет исключить сложное оборудование и существенно снизить энергозатраты.
3. Так как ПАММФ сохраняет электроактивность в широком диапазоне pH, нанокомпозит на его основе может быть использован для создания электрохимических устройств, например сенсоров и биосенсоров, перезаряжаемых батарей, суперконденсаторов, тонкопленочных транзисторов, нанодиодов, модулей памяти, датчиков и нанозондов.
4. Высокая термостабильность нанокомпозита Fe3O4/ПАММФ определяется высокой термической и термоокислительной стабильностью ПАММФ. Высокая термостабильность полимерной матрицы на воздухе (до 300-330°C) и в инертной атмосфере (при 1000°C остаток составляет 43-70%) обеспечивает возможность использования предложенного нанокомпозитного дисперсного материала Fe3O4/ПАММФ в высокотемпературных процессах, например в качестве конструкционных материалов, защитных покрытий, носителей катализаторов в топливных элементах, перезаряжаемых и солнечных батарей.
Авторами предложенного изобретения впервые получены гибридные металлополимерные нанокомпозитные магнитные материалы, в которых наночастицы Fe3O4 гомогенно диспергированы в термостойкой полимерной матрице ПАММФ.
Примеры получения металлополимерного нанокомпозитного дисперсного материала Fe3O4/ПАММФ. Характеристики полученных по примерам нанокомпозитных материалов: содержание Fe, размеры наночастиц Fe3O4, термостойкость (термостабильность) и магнитные характеристики (намагниченность насыщения MS, остаточная намагниченность MR, константа прямоугольности петли гистерезиса κn = MR/MS, коэрцитивная сила HC) приведены в таблице 1.
Пример 1
Получение нанокомпозита Fe3O4/поли-3-амино-7-метиламино-2-метилфеназин (Fe3O4/ПАММФ) проводят следующим образом. Сначала осуществляют синтез наночастиц Fe3O4 путем гидролиза смеси хлоридов железа (II) и (III) в соотношении 1:2 в растворе гидроксида аммония при 60°C. Для этого 0.86 г FeSO4 × 7H2O и 2.35 г FeCl3 × 6H2O растворяют в 20 мл дистиллированной воды (содержание [Fe] = 50% от общей массы), нагревают до 60°C, затем добавляют 5 мл NH4OH. Полученную суспензию нагревают на водяной бане до 80°C и перемешивают в течение 0.5 ч. Охлаждение суспензии проводят при комнатной температуре при постоянном интенсивном перемешивании в течение 1 ч. Наночастицы Fe3O4 отфильтровывают, промывают дистиллированной водой до нейтральной реакции фильтрата. Для закрепления мономера на поверхности наночастиц Fe3O4 0.02 моль/л (0.38 г) АДМФГ растворяют в ацетонитриле (30 мл). В полученный раствор добавляют без предварительной сушки свежеприготовленные наночастицы Fe3O4. Процесс ведут при 60°C при постоянном интенсивном перемешивании в течение 1 ч. Охлаждение суспензии проводят при комнатной температуре при постоянном интенсивном перемешивании в течение 1 ч. Полученную суспензию Fe3O4/АДМФГ перемешивают в УЗ мойке при комнатной температуре в течение 0.5 ч. Затем для проведения окислительной полимеризации in situ АДМФГ на поверхности наночастиц Fe3O4, к суспензии Fe3O4/АДМФГ в ацетонитриле, термостатированной при постоянном перемешивании при 15°C, по каплям добавляют водный раствор (30 мл) персульфата аммония 0.04 моль/л (0.548 г). Соотношение объемов органической и водной фаз составляет 1:1 (Vобщ. = 60 мл). Реакцию полимеризации проводят в течение 4 ч при постоянном интенсивном перемешивании при 15°C. По окончании синтеза реакционную смесь осаждают в пятикратный избыток дистиллированной воды. Полученный продукт отфильтровывают, многократно промывают дистиллированной водой для удаления остатков реагентов и сушат под вакуумом над KOH до постоянной массы. Выход Fe3O4/ПАММФ составляет 1.179 г.
Пример 2
Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.172 г FeSO4 × 7H2O и 0.47 г FeCl3 × 6H2O (содержание [Fe] = 10% от общей массы).
Пример 3
Способ получения нанокомпозита проводят аналогично примеру 1, но синтез проводят в течение 6 ч.
Пример 4
Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.946 г FeSO4 × 7H2O и 2.585 г FeCl3 × 6H2O (содержание [Fe] = 55% от общей массы).
Пример 5
Способ получения нанокомпозита проводят аналогично примеру 2, но синтез проводят при интенсивном перемешивании при 40°C.
Пример 6
Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.43 г FeSO4 × 7H2O и 1.175 г FeCl3 × 6H2O (содержание [Fe] = 25% от общей массы).
Пример 7
Способ получения нанокомпозита проводят аналогично примеру 2, но берут 1.37 г персульфата аммония ([окислитель] : [мономер] = 5).
Пример 8
Способ получения нанокомпозита проводят аналогично примеру 1, но синтез проводят при интенсивном перемешивании при 0°C.
Пример 9
Способ получения нанокомпозита проводят аналогично примеру 1, но синтез проводят при интенсивном перемешивании при 60°C.
Пример 10
Способ получения нанокомпозита проводят аналогично примеру 3, но синтез проводят при интенсивном перемешивании при 0°C.
Пример 11
Способ получения нанокомпозита проводят аналогично примеру 10, но берут 1.37 г персульфата аммония ([окислитель] : [мономер] = 5).
Пример 12
Способ получения нанокомпозита проводят аналогично примеру 1, но синтез проводят в течение 1 ч.
Пример 13
Способ получения нанокомпозита проводят аналогично примеру 12, но берут 0.378 г FeSO4 × 7H2O и 1.034 г FeCl3 × 6H2O (содержание [Fe] = 22% от общей массы).
Пример 14
Способ получения нанокомпозита проводят аналогично примеру 6, но синтез проводят в течение 3 ч.
Пример 15
Способ получения нанокомпозита проводят аналогично примеру 7, но берут 0.825 г FeSO4 × 7H2O и 2.256 г FeCl3 × 6H2O (содержание [Fe] = 48% от общей массы).
Пример 16
Способ получения нанокомпозита проводят аналогично примеру 3, но берут 0.95 г АДМФГ ([мономер] = 0.05 моль/л).
Пример 17
Способ получения нанокомпозита проводят аналогично примеру 2, но берут 0.19 г АДМФГ ([мономер] = 0.01 моль/л).
Пример 18
Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.258 г FeSO4 × 7H2O и 0.705 г FeCl3 × 6H2O (содержание [Fe] = 15% от общей массы).
Пример 19
Способ получения нанокомпозита проводят аналогично примеру 15, но берут 0.822 г персульфата аммония ([окислитель] : [мономер] = 3).
Пример 20
Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.274 г персульфата аммония ([окислитель] : [мономер] = 1).
Пример 21
Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.504 г FeSO4 × 7H2O и 2.115 г FeCl3 × 6H2O (содержание [Fe] = 45% от общей массы).
Пример 22
Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.602 г FeSO4 × 7H2O и 1.645 г FeCl3 × 6H2O (содержание [Fe] = 35% от общей массы).
Пример 23
Способ получения нанокомпозита проводят аналогично примеру 13, но синтез проводят в течение 4 ч.
Пример 24
Способ получения нанокомпозита проводят аналогично примеру 1, но нанокомпозит получают в растворе ДМФА.
Замена растворителя на ДМСО не приводит к значимому изменению показателей, а также практически не сказывается на свойствах полученного материала
Figure 00000005
Figure 00000006
1. Wan M., Zhou W., Li J. Composite of polyaniline containing iron oxides with nanometer size. // Synth. Met. 1996. V. 78. №1. P. 27-31.
2. Wan M., Li W. A composite of polyaniline with both conducting and ferromagnetic functions. // J. Polym. Sci. A. Polym. Chem. 1997. V. 35. №11. P. 2129-2136.
3. Wan M, Li J. Synthesis and electrical-magnetic properties of polyaniline composites. // J. Polym. Sci. A. Polym. Chem. 1998. V. 36. №15. P. 2799-2805.
4. Aphesteguy J.C., Jacobo S.E. Composite of polyaniline containing iron oxides. // Physica B. 2004. V. 354. №1-4. P. 224-227.
5. Qiu G., Wang Q., Nie M. Polyaniline/Fe3O4 magnetic nanocomposite prepared by ultrasonic irradiation. // J. Appl. Polym. Sci. 2006. V. 102. №3. P. 2107-2111.
6. Mallikarjuna N.N., Manohar S.K., Kulkarni P.V., Venkataraman A., Aminabhavi T.M. Novel high dielectric constant nanocomposites of polyaniline dispersed with γ-Fe2O3 nanoparticles. // J. Appl. Polym. Sci. 2005. V. 97. №5. P. 1868-1874.
7. Li L., Jiang J., Xu F. Novel polyaniline-LiNi0.5La0.02Fe1.98O4 nanocomposites prepared via an in situ polymerization. // Eur. Polym. J. 2006. V. 42. №10. P. 2221-2227.
8. Prasanna G.D., Jayanna H.S., Prasad V. Preparation, structural, and electrical studies of polyaniline/ZnFe2O4 nanocomposites. // J. Appl. Polym. Sci. 2011. V. 120. №5. P. 2856-2862.
9. Bhaumik M., Leswifi T.Y., Maity A., Shrinivasu V.V., Onyango M.S. Removal of fluoride from aqueous solution by polypyrrole/Fe3O4 magnetic nanocomposite. // J. Hasardous Mater. 2011. V. 186. №1. P. 150-159.
10. Jokar M., Foroutani R., Safaralizadeh M.H., Farhadi K. Synthesis and Characterization of Polyaniline/Fe3O4 Magnetic Nanocomposite as Practical Approach for Fluoride Removal Process. // Annual Research and Review in Biology. 2014. V. 4. №21. P. 3262-3273.
11. Umare S.S., Shambharkar B.H., Ninghthoujam R.S. Synthesis and characterization of polyaniline-Fe3O4 nanocomposite: Electrical conductivity, magnetic, electrochemical studies. // Synth. Met. 2010. V. 160. №17-18. P. 1815-1821.
12. Yang C., Du J., Peng Q., Qiao R., Chen W., Xu C, Shuai Z., Gao M. Polyaniline/Fe3O4 Nanoparticle Composite: Synthesis and Reaction Mechanism. // J. Phys. Chem. B. 2009. V. 113. №15. P. 5052-5058.
13. Massart R. // Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981. V. 17. №2. P. 1247-1248.
14. Озкан С.Ж., Карпачева Г.П., Бондаренко Г.Н., Колягин Ю.Г. Полимеры на основе 3-амино-7-диметиламино-2-метилфеназин гидрохлорида: синтез, структура и свойства. // Высокомолек. соед. Б. 2015. Т. 57. №2. С. 113-123.

Claims (2)

1. Металлополимерный нанокомпозитный магнитный материал, включающий полимерную матрицу и диспергированные в ней наночастицы Fe3O4, отличающийся тем, что в качестве полимерной матрицы используют матрицу из поли-3-амино-7-метиламино-2-метилфеназина ПАММФ при содержании наночастиц Fe3O4 в материале 1-70 мас.% от массы ПАММФ.
2. Способ получения металлополимерного нанокомпозитного магнитного материала окислительной полимеризацией мономера in situ на поверхности наночастиц Fe3O4 в присутствии водного раствора окислителя, отличающийся тем, что для получения материала по п. 1 в качестве мономера используют 3-амино-7-диметиламино-2-метилфеназин гидрохлорид - нейтральный красный, в качестве окислителя - персульфат аммония, мольное соотношение окислителя к мономеру при проведении окислительной полимеризации равно 2-5, перед ней мономер растворяют в органическом растворителе, в качестве которого используют ацетонитрил, диметилформамид или диметилсульфоксид, до концентрации 0,01-0,05 моль/л и добавляют к раствору наночастицы Fe3O4 в количестве 1-70 мас.% от массы ПАММФ, а окислительную полимеризацию проводят при 0-60°С в течение 1-6 ч.
RU2016109211A 2016-03-15 2016-03-15 Металлополимерный нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц Fe3O4 и способ его получения RU2637333C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016109211A RU2637333C2 (ru) 2016-03-15 2016-03-15 Металлополимерный нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц Fe3O4 и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016109211A RU2637333C2 (ru) 2016-03-15 2016-03-15 Металлополимерный нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц Fe3O4 и способ его получения

Publications (2)

Publication Number Publication Date
RU2016109211A RU2016109211A (ru) 2017-09-18
RU2637333C2 true RU2637333C2 (ru) 2017-12-04

Family

ID=59893671

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016109211A RU2637333C2 (ru) 2016-03-15 2016-03-15 Металлополимерный нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц Fe3O4 и способ его получения

Country Status (1)

Country Link
RU (1) RU2637333C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019141779A1 (en) * 2018-01-18 2019-07-25 F. Hoffmann-La Roche Ag Hypercrosslinking with diamine crosslinkers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2004124067A (ru) * 2002-01-08 2006-01-20 Коммонвелт Сайентифик Энд Индастриал Рисерч Органикоммонвелт Сайентифик Энд Индастриал Рисерч Организейшн (Au) Зейшн (Au) Комплексообразующие смолы и способ их получения
CN103289400A (zh) * 2013-06-21 2013-09-11 山西大同大学 四氧化三铁/聚吡咯复合材料及其制备方法
CN105315461A (zh) * 2015-12-03 2016-02-10 西北师范大学 溶剂热制备聚苯胺-四氧化三铁纳米复合材料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2004124067A (ru) * 2002-01-08 2006-01-20 Коммонвелт Сайентифик Энд Индастриал Рисерч Органикоммонвелт Сайентифик Энд Индастриал Рисерч Организейшн (Au) Зейшн (Au) Комплексообразующие смолы и способ их получения
CN103289400A (zh) * 2013-06-21 2013-09-11 山西大同大学 四氧化三铁/聚吡咯复合材料及其制备方法
CN105315461A (zh) * 2015-12-03 2016-02-10 西北师范大学 溶剂热制备聚苯胺-四氧化三铁纳米复合材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANG C. et al. Polyaniline/Fe 3 O 4 Nanoparticle Composite: Synthesis and Reaction Mechanism, Journal of Physical Chemistry B, 2009, v. 113, N 15, pp. 5052-5058. *
БОНДАРЕНКО Г.Н. и др. Полимеры на основе 3-амино-7-диметиламино-2-метилфеназин гидрохлорида: синтез, структура и свойства. Высокомолекулярные соединения. Серия Б, 2015, т. 57, N 2, cc. 113-123. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019141779A1 (en) * 2018-01-18 2019-07-25 F. Hoffmann-La Roche Ag Hypercrosslinking with diamine crosslinkers

Also Published As

Publication number Publication date
RU2016109211A (ru) 2017-09-18

Similar Documents

Publication Publication Date Title
Nandapure et al. Magnetic and transport properties of conducting polyaniline/nickel oxide nanocomposites
Guo et al. Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites
Reddy et al. Organosilane modified magnetite nanoparticles/poly (aniline-co-o/m-aminobenzenesulfonic acid) composites: synthesis and characterization
Deng et al. Magnetic and conducting Fe3O4–cross-linked polyaniline nanoparticles with core–shell structure
Wang et al. Preparation and electromagnetic properties of Polyaniline (polypyrrole)-BaFe12O19/Ni0. 8Zn0. 2Fe2O4 ferrite nanocomposites
Durmus et al. Preparation and characterization of polyaniline (PANI)–Mn3O4 nanocomposite
Jiang et al. A novel poly (o-anisidine)/CoFe2O4 multifunctional nanocomposite: preparation, characterization and properties
Aydın et al. Synthesis and characterization of poly (3-thiophene acetic acid)/Fe3O4 nanocomposite
Kavas et al. Negative permittivity of polyaniline–Fe 3 O 4 nanocomposite
Hussein et al. The impact of graphene nano-plates on the behavior of novel conducting polyazomethine nanocomposites
Chitra et al. Effect of ultrasonication on particle size and magnetic properties of polyaniline NiCoFe2O4 nanocomposites
Kumar et al. Poly (p-phenylenediamine)-based nanocomposites with metal oxide nanoparticle for optoelectronic and magneto-optic application
Donescu et al. Synthesis and magnetic properties of inverted core-shell polyaniline-ferrite composite
Sun et al. One-step solution synthesis of Fe2O3 nanoparticles at low temperature
Mallick et al. Paramagnetic polyaniline nanospheres
Unal et al. Synthesis, dielectric and magnetic characteristics of poly (1-vinyl-1, 2, 4-triazole)(PVTri)–barium hexaferrite composite
Meng et al. Hybrid conjugated polymer/magnetic nanoparticle composite nanofibers through cooperative non-covalent interactions
RU2663049C1 (ru) Нанокомпозитный магнитный материал и способ его получения
Singh et al. Synthesis and humidity sensing property of α-Fe2O3 and polyaniline composite
RU2601005C2 (ru) Металлополимерный дисперсный магнитный материал и способ его получения
Zakaria et al. Molecular magnetic thin films made from Ni-Co Prussian blue analogue anchored on silicon wafers
RU2637333C2 (ru) Металлополимерный нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц Fe3O4 и способ его получения
RU2635254C2 (ru) Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц Fe3O4, закрепленных на одностенных углеродных нанотрубках, и способ его получения
Jiang et al. Synthesis and magnetic performance of polyaniline/Mn–Zn ferrite nanocomposites with intrinsic conductivity
US9847157B1 (en) Ferromagnetic β-MnBi alloy