RU2637158C2 - Уплотнительное устройство насоса - Google Patents

Уплотнительное устройство насоса Download PDF

Info

Publication number
RU2637158C2
RU2637158C2 RU2014152826A RU2014152826A RU2637158C2 RU 2637158 C2 RU2637158 C2 RU 2637158C2 RU 2014152826 A RU2014152826 A RU 2014152826A RU 2014152826 A RU2014152826 A RU 2014152826A RU 2637158 C2 RU2637158 C2 RU 2637158C2
Authority
RU
Russia
Prior art keywords
fluid
channel
mechanical seal
manifold
seal
Prior art date
Application number
RU2014152826A
Other languages
English (en)
Other versions
RU2014152826A (ru
Inventor
Николя НЕБУ
Гийом БЕКУАРН
Original Assignee
Дженерал Электрик Текнолоджи Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47172751&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2637158(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Дженерал Электрик Текнолоджи Гмбх filed Critical Дженерал Электрик Текнолоджи Гмбх
Publication of RU2014152826A publication Critical patent/RU2014152826A/ru
Application granted granted Critical
Publication of RU2637158C2 publication Critical patent/RU2637158C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/064Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces the packing combining the sealing function with other functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/08Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being radioactive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • F04D29/126Shaft sealings using sealing-rings especially adapted for liquid pumps
    • F04D29/128Shaft sealings using sealing-rings especially adapted for liquid pumps with special means for adducting cooling or sealing fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/04Pumping arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Mechanical Sealing (AREA)
  • Gasket Seals (AREA)

Abstract

Изобретение относится к устройству (1) для уплотнения насоса атомной электростанции, содержащему механическое уплотнение (70), отдельный коллектор для текучей среды, содержащий: первое множество поверхностей (35), которые взаимодействуют с указанным механическим уплотнением (70); второе множество поверхностей (36), которые выполнены с возможностью взаимодействия с корпусом (10) насоса; множество каналов (44, 45, 46, 47), которые в рабочем состоянии образуют первый контур (33) циркуляции текучей среды, который образует тепловой барьер (31) между первым множеством поверхностей (35) и вторым множеством поверхностей (36), и второй контур (34) циркуляции текучей среды, который подает текучую среду к указанному механическому уплотнению (70) для его охлаждения. Изобретение обеспечивает повышение надежности устройства. 6 з.п. ф-лы, 1 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Изобретение относится к уплотнительному устройству насоса. В частности, оно относится к устройству для уплотнения насоса атомной электростанции. Оно также может относиться к электростанции на ископаемом топливе, в частности к электростанции, которая вырабатывает электроэнергию сжиганием угля, нефтяного топлива или природного газа. В случае атомной электростанции оно представляет собой насос, который выполняет функцию подачи воды к нагревателям, расположенным выше по потоку от впуска в реактор.
УРОВЕНЬ ТЕХНИКИ
В соответствии с уровнем техники функция теплового барьера и функция охлаждения фрикционных элементов механического уплотнения выполняются посредством присоединительных отверстий (каналы, которые обеспечивают подачу в определенные зоны и имеют впуск(-и) и выпуск(-и), названы присоединительными отверстиями), расположенных в корпусе насоса, механическом уплотнении и в коллекторе для текучей среды, если он имеется. Существующие технические решения затрудняют техническое обслуживание, поскольку трубопровод должен быть заранее удален. Более того, расположение многочисленных присоединительных отверстий в стандартных компонентах вызывает увеличение затрат, в частности, из-за отверстий и сварки питающего трубопровода. Подобные устройства затрудняют выполнение технического обслуживания и текущего ремонта уплотнительного устройства, так как присоединительные отверстия выполнены в механическом уплотнении и корпусе насоса.
В этой связи проблема, стоящая в данном случае, состоит в получении предназначенного для насоса, уплотнительного устройства вышеупомянутого типа, которое имеет простую конструкцию и облегчает техническое обслуживание указанного устройства и обеспечивает увеличение эксплуатационного срока службы устройства.
Механическое уплотнение обеспечивает уплотнение на конце вала и с наружной стороны корпуса насоса. Температура механического уплотнения и воды, протекающей вблизи механического уплотнения, не должна превышать пороговой температуры, обычно составляющей 100°С. Однако, как правило, вода, которая протекает через насос, имеет температуру, составляющую около 200°С. Принимая во внимание механические свойства уплотнения и, в особенности, неподвижного торцевого кольца и вращающегося торцевого кольца и схему их расположения в уплотнительном устройстве, важно защитить их от чрезмерного нагрева для их защиты от повреждения в их рабочем состоянии. В частности, теплообмен за счет переноса тепла между корпусом насоса и механическим уплотнением может привести к нарушению правильной работы уплотнения и, в частности, уплотнения в месте между неподвижным торцевым кольцом и вращающимся торцевым кольцом. Кроме того, трение между вращающимся компонентом механического уплотнения, образуемым вращающимся торцевым кольцом уплотнения, с одной стороны, и неподвижным компонентом, образуемым неподвижным торцевым кольцом уплотнения, с другой стороны, обеспечивает рассеяние энергии в виде тепла, приводящее к повышению температуры и преждевременному износу неподвижного торцевого кольца и вращающегося торцевого кольца. Таким образом, для увеличения эксплуатационного срока службы механического уплотнения предусмотрено охлаждение механического уплотнения в местах, в которых возникает трение, то есть в том месте в механическом уплотнении и, в частности, в месте, в котором имеет место относительное перемещение неподвижного торцевого кольца и вращающегося торцевого кольца.
Кроме того, настоящее изобретение направлено, в частности, на оптимизацию технического обслуживания и текущего ремонта уплотнительного устройства и увеличение эксплуатационного срока службы уплотнительного устройства.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Решение, предложенное настоящим изобретением, заключается в том, что уплотнительное устройство насоса содержит:
механическое уплотнение,
коллектор для текучей среды, содержащий:
первое множество поверхностей, которые взаимодействуют с указанным механическим уплотнением;
второе множество поверхностей, которые выполнены с возможностью взаимодействия с корпусом насоса;
множество каналов, которые в рабочем состоянии образуют первый контур циркуляции текучей среды, который образует тепловой барьер между первым множеством поверхностей и вторым множеством поверхностей, и второй контур циркуляции текучей среды, который подает текучую среду к указанному механическому уплотнению для его охлаждения.
Подобная конструкция предпочтительно облегчает техническое обслуживание и текущий ремонт и обеспечивает увеличение эксплуатационного срока службы уплотнительного устройства за счет того, что предложено уплотнительное устройство, в которое включен коллектор для текучей среды. Коллектор для текучей среды, который предусмотрен между механическим уплотнением, которое должно быть защищено, и корпусом насоса, который образует горячую зону, включает в себя первый и второй контуры. Функция первого контура, в котором осуществляется циркуляция в коллекторе для текучей среды между корпусом насоса и уплотнением, состоит в образовании теплового барьера для защиты уплотнения от тепла, рассеиваемого корпусом насоса и выделяемого горячей водой, проходящей через указанный насос. Функция второго контура циркуляции текучей среды, который подает текучую среду к уплотнению, состоит в охлаждении уплотнения для снижения температуры так, чтобы обеспечить возможность использования уплотнительного устройства без какого-либо риска утечки - в этом случае предотвращается вход подаваемой насосом воды в контакт с внешней средой.
Кроме того, техническое обслуживание и текущий ремонт облегчаются вследствие того, что коллекторный резервуар, механически приваренный между корпусом насоса и уплотнением, обеспечивает возможность объединения двух функций простым образом. Таким образом, отсутствует необходимость в обеспечении наличия присоединительных отверстий в корпусе насоса и в уплотнении.
Кроме того, устройство не включает в себя уплотнение в месте расположения теплового барьера и не имеет никакого отверстия в корпусе насоса для обеспечения теплового барьера.
В другом варианте осуществления изобретения тепловой барьер может быть образован углублением, которое разделяет первую часть и вторую часть указанного коллектора для текучей среды, при этом указанная первая часть выполнена с возможностью ориентирования ее вблизи горячей зоны и указанная вторая часть выполнена с возможностью ориентирования ее вблизи указанного уплотнения, при этом указанное углубление содержит текучую среду.
В еще одном варианте осуществления изобретения область, образующая зону обмена, между механическим уплотнением и коллектором для текучей среды, смежным с фрикционными элементами указанного механического уплотнения, может содержать текучую среду для охлаждения указанных элементов.
В одном варианте осуществления коллектор для текучей среды содержит первый канал и второй канал соответственно для подачи во второй контур циркуляции текучей среды и отвода из второго контура циркуляции текучей среды, при этом каждый из указанных первого канала и второго канала продолжается от радиально наружной поверхности коллектора для текучей среды к указанной области, которая сообщается с уплотнением.
В одном варианте осуществления коллектор для текучей среды содержит:
третий канал для подачи в указанное углубление, при этом указанный третий канал продолжается от радиально наружной поверхности коллектора к первому внутреннему каналу, расположенному внутри указанного коллектора для текучей среды;
четвертый канал для отвода из указанного углубления, при этом указанный четвертый канал продолжается от указанной радиально наружной поверхности коллектора ко второму внутреннему каналу, расположенному внутри указанного коллектора для текучей среды.
В одном варианте осуществления углубление продолжается радиально внутри коллектора, образуя кольцевую конфигурацию.
В еще одном варианте осуществления изобретения первый контур циркуляции текучей среды и второй контур циркуляции текучей среды соединены с устройством для охлаждения текучей среды.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Другие признаки и преимущества станут более очевидными из описания, приведенного ниже в качестве неограничивающих вариантов осуществления, со ссылкой на Фиг. 1, которая показывает сечение примерного уплотнительного устройства.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Два уплотнительных устройства 1 предусмотрены для предотвращения попадания горячей воды под давлением в окружающую атмосферу, и при этом в то же время они не препятствуют вращению вала 20. Каждое из двух уплотнительных устройств 1 расположено у каждой выходной части вала 20.
Каждое из данных устройств 1 содержит:
корпус 10 насоса, который содержит горячую воду под давлением, а также элементы для рекуперации энергии;
вращающийся вал 20, который служит опорой для рабочего колеса, лопатки которого передают энергию от двигателя данной горячей воде, при этом указанный вал 20 выступает наружу от каждой стороны корпуса 10 для обеспечения его установки в подшипниках, создающих опору для него; один из его концов соединен с системой привода (непоказанной); выходные части вала 20 уплотнены посредством уплотнительных устройств 1;
коллектор 30 для текучей среды, который прикреплен к корпусу 10 насоса посредством средств крепления;
фиксирующую крышку 60, которая обеспечивает фиксацию механического уплотнения 70 к насосу и, в частности, к внутренней стороне коллектора 30 для текучей среды;
вращающееся торцевое кольцо 72, которое вращается вместе с валом 20 и поверхность которого находится в контакте с поверхностью неподвижного торцевого кольца 71; уплотнение реализуется на поверхности контакта между данными двумя торцевыми кольцами;
неподвижное торцевое кольцо 71, которое удерживается прижатым к вращающемуся торцевому кольцу 72 и может быть выполнено с возможностью только поступательного перемещения;
вращающийся держатель торцевого кольца, который удерживает вращающееся торцевое кольцо;
невращающийся держатель торцевого кольца, который удерживается неподвижное торцевое кольцо 71 и обеспечивает возможность поступательного перемещения торцевого кольца;
втулку механического уплотнения 70, соединенную с валом 20; данная втулка образует стенку механического уплотнения 70, находящуюся в контакте с валом 20 и при этом обеспечивающую защиту вала.
Уплотнительное устройство 1 предназначено для его размещения между вращающимся валом 20 и корпусом 10 насоса. В частности, устройство 1 расположено у выходной части вала 20, снаружи корпуса 10 насоса для предотвращения вытекания горячей воды под давлением, которая циркулирует в корпусе 10 насоса, из указанного корпуса 10 насоса. Кроме того, уплотнительное устройство 1, вращающийся вал 20 и корпус 10 насоса расположены вместе так, что они не препятствуют вращению вала 20 относительно корпуса 10 насоса. Вал 20 вращается вокруг оси 20а.
Механическое уплотнение 70, которое образует уплотнительное средство, установлено в уплотнительном устройстве 1. Механическое уплотнение 70 содержит указанное неподвижное уплотнительное торцевое кольцо 71, которое герметично соединено с коллектором 30 для текучей среды, и указанное вращающееся уплотнительное торцевое кольцо 72, которое герметично соединено с вращающимся валом 20. Когда вал 20 вращается вокруг своей оси 20а, вращающееся торцевое кольцо 72 трется о неподвижное торцевое кольцо 71 на кольцевой фрикционной поверхности. Каждое из неподвижного торцевого кольца и вращающегося торцевого кольца имеет: радиально наружные поверхности и радиально внутренние поверхности. По меньшей мере участок радиально наружных поверхностей сообщается с областью 90, которая образует зону обмена. Область 90, которая образует зону обмена, образована между той частью уплотнения 70, которая ориентирована радиально наружу, и коллектором 30 для текучей среды и расположена смежно фрикционным элементам, образованным неподвижным торцевым кольцом 71 и вращающимся торцевым кольцом 72. В рабочем состоянии область 90 содержит текучую среду для охлаждения фрикционных элементов. Каждое из неподвижного торцевого кольца 71 и вращающегося торцевого кольца 72 также имеет радиально внутренние поверхности, соседние с валом 20.
Устройство 1 может содержать средства для поджима торцевых колец, предназначенные для поджима неподвижного торцевого кольца 71 и вращающегося торцевого кольца 72 друг к другу в аксиальном направлении. Функция данных средств заключается в поддержании контакта между неподвижным торцевым кольцом 71 и вращающимся торцевым кольцом 72.
Коллектор 30 для текучей среды расположен между корпусом 10 насоса и механическим уплотнением 70. Функция коллектора 30 для текучей среды состоит в образовании теплового барьера 31 между корпусом 10 насоса и механическим уплотнением 70 и в охлаждении механического уплотнения 70, в частности, неподвижного торцевого кольца и вращающегося торцевого кольца. Таким образом, данный коллектор 30 предназначен по существу для защиты механического уплотнения 70 от внешнего агрессивного воздействия, в частности, в виде тепла, и для увеличения его эксплуатационного срока службы. Коллектор 30 для текучей среды содержит множество каналов 44, 45, 46, 47, которые в рабочем состоянии образуют первый контур 33 циркуляции текучей среды, который образует тепловой барьер 31 между первым множеством поверхностей 35 и вторым множеством поверхностей 36 коллектора 30 для текучей среды, и второй контур 34 циркуляции текучей среды, который обеспечивает подачу воды к механическому уплотнению 70 для его охлаждения.
В другом варианте осуществления изобретения коллектор 30 для текучей среды имеет четыре присоединительных отверстия: первое присоединительное отверстие 40 для подачи текучей среды к механическому уплотнению 70, второе присоединительное отверстие 41 для отвода текучей среды от механического уплотнения 70, третье присоединительное отверстие 42 для подачи в тепловой барьер 31 и четвертое присоединительное отверстие 43 для отвода текучей среды из теплового барьера 31.
Первый канал 44 предпочтительно продолжается от радиально наружной поверхности 38 коллектора 30 для текучей среды (смежно первому присоединительному отверстию 40) к области 90, которая сообщается с уплотнением 70. В качестве примера данный первый канал 44 может продолжаться через коллектор 30 для текучей среды от одного конца к другому, радиально.
Второй канал 45 предпочтительно продолжается от области 90, которая сообщается с уплотнением 70, к радиальной наружной поверхности 38 коллектора 30 для текучей среды (смежно второму присоединительному отверстию 41). Данный второй канал 45 продолжается во втором направлении, при этом он продолжается от одного конца коллектора 30 для текучей среды до другого. Первый канал 44 и второй канал 45 расположены так, что первое и второе направления не являются совпадающими.
В одном варианте осуществления третий канал 46 предпочтительно продолжается от радиально наружной поверхности 38 коллектора 30 для текучей среды и сообщается с углублением 50, которое образует тепловой барьер 31 в рабочем состоянии.
Для отвода воды из теплового барьера 31 углубление 50 сообщается с четвертым каналом 47, которых продолжается к радиально наружной поверхности 38 коллектора 30 для текучей среды, смежно четвертому присоединительному отверстию 43.
В одном варианте осуществления первое присоединительное отверстие 40, второе присоединительное отверстие 41, третье присоединительное отверстие 42 и четвертое присоединительное отверстие 43 также могут быть расположены на поверхности 39 так, что они будут по существу перпендикулярными к оси 20а и будут ориентированы в сторону, противоположную к той, где расположен корпус 10 насоса. В этом случае первый канал 44, второй канал 45, третий канал 46 и четвертый канал 47 будут образованы как следствие этого; в качестве примера, направления, определяемые первым каналом 44, вторым каналом 45, третьим каналом 46 и четвертым каналом 47, будут заданы так, что они не будут совпадать.
Контур, предназначенный для охлаждения уплотнения 70, в этом случае снабжается посредством первого присоединительного отверстия 40, продолжается по первому каналу 44 и затем обеспечивает сообщение текучей среды с неподвижным торцевым кольцом и вращающимся торцевым кольцом в области 90. Текучая среда, содержащаяся в области 90, затем отводится посредством второго канала 45 и выходит из коллектора 30 для текучей среды через второе присоединительное отверстие 41.
При этом контур циркуляции текучей среды, который образует тепловой барьер 31, снабжается посредством третьего присоединительного отверстия 42, продолжается по третьему каналу 46, затем, возможно, по первому внутреннему каналу перед постепенным заполнением углубления 50 в направлении вдоль окружности. Текучая среда, содержащаяся в углублении 50, затем может быть отведена по четвертому каналу 47 и может выходить из коллектора 30 для текучей среды через четвертое присоединительное отверстие 43.
В варианте осуществления, показанном на Фиг. 1, углубление 50 разделяет первую часть 51 и вторую часть 52 резервуара коллектора 30. Первая часть 51 представляет собой часть, которая выполнена с возможностью ориентирования ее вдоль горячей зоны, рядом с корпусом 10 насоса, и вторая часть 52 выполнена с возможностью ориентирования ее рядом с уплотнением 70, то есть с элементом, для которого должна быть обеспечена тепловая защита.
Фиг. 1 показывает вариант осуществления, в котором углубление 50 продолжается радиально внутри коллектора 30 для текучей среды и образует кольцо.
В одном варианте осуществления изобретения второй контур 34 циркуляции текучей среды, который обеспечивает подачу воды к уплотнению 70, продолжается через теплообменник для охлаждения воды, содержащейся в нем. Аналогичным образом, первый контур 33 циркуляции текучей среды обеспечивает снабжение теплового барьера 31 - предпочтительно постоянно - водой, поступающей из источника холодной речной воды или морской воды.
Уплотнительное устройство 1 насоса содержит механическое уплотнение 70 и коллектор для текучей среды. Данный коллектор для текучей среды имеет первое множество поверхностей 35, которые взаимодействуют с механическим уплотнением 70, и второе множество поверхностей 36, которые выполнены с возможностью взаимодействия с корпусом 10 насоса.
Кроме того, в рабочем состоянии коллектор для текучей среды содержит первый контур 33 циркуляции текучей среды, который образует тепловой барьер 31 между первым множеством поверхностей 35 и вторым множеством поверхностей 36, и второй контур 34 циркуляции текучей среды, который обеспечивает подачу воды к указанному механическому уплотнению 70 для его охлаждения.
В соответствии с другим вариантом осуществления область 90, которая образует зону обмена между механическим уплотнением 70 и коллектором 30 для текучей среды, смежным с фрикционными элементами указанного механического уплотнения 70, содержит текучую среду для охлаждения указанных элементов.

Claims (14)

1. Устройство (1) для уплотнения насоса атомной электростанции, содержащее:
механическое уплотнение (70),
отдельный коллектор для текучей среды, расположенный между корпусом (10) насоса и механическим уплотнением (70) и содержащий:
первое множество поверхностей (35), которые взаимодействуют с указанным механическим уплотнением (70);
второе множество поверхностей (36), которые выполнены с возможностью взаимодействия с корпусом (10) насоса;
множество каналов (44, 45, 46, 47), которые в рабочем состоянии образуют первый контур (33) циркуляции текучей среды, который образует тепловой барьер (31) между первым множеством поверхностей (35) и вторым множеством поверхностей (36), и второй контур (34) циркуляции текучей среды, который подает текучую среду к указанному механическому уплотнению (70) для его охлаждения.
2. Устройство (1) по п. 1, в котором тепловой барьер (31) образован углублением (50), которое разделяет первую часть (51) и вторую часть (52) указанного промежуточного компонента, при этом указанная первая часть (51) выполнена с возможностью ориентирования ее вблизи горячей зоны, а указанная вторая часть (52) выполнена с возможностью ориентирования ее вблизи указанного уплотнения (70), причем указанное углубление (50) содержит текучую среду.
3. Устройство (1) по п. 1 или 2, в котором область (90), образующая зону обмена, между механическим уплотнением (70) и промежуточным компонентом, смежным фрикционным элементам (71, 72) указанного механического уплотнения (70), содержит текучую среду для охлаждения указанных элементов (71, 72).
4. Устройство (1) по п. 3, в котором коллектор (30) для текучей среды содержит первый канал (44) и второй канал (45) соответственно для подачи во второй контур (34) циркуляции текучей среды и отвода из второго контура (34) циркуляции текучей среды, при этом каждый из указанных первого канала (44) и второго канала (45) продолжается от радиально наружной поверхности (38) коллектора (30) для текучей среды к указанной области (90), которая сообщается с уплотнением (70).
5. Устройство (1) по п. 2, в котором коллектор (30) для текучей среды содержит:
третий канал (46) для подачи в указанное углубление (50), при этом указанный третий канал (46) продолжается от радиально наружной поверхности (38) коллектора (30) к первому внутреннему каналу, расположенному внутри указанного коллектора (30) для текучей среды;
четвертый канал (47) для отвода из указанного углубления (50), при этом указанный четвертый канал (47) продолжается от указанной радиально наружной поверхности (38) коллектора (30) ко второму внутреннему каналу, расположенному внутри указанного коллектора (30) для текучей среды.
6. Устройство (1) по п. 2, в котором углубление (50) продолжается радиально в указанном коллекторе (30), образуя кольцевую конфигурацию.
7. Устройство (1) по п. 1, в котором первый контур (33) циркуляции текучей среды и второй контур (34) циркуляции текучей среды соединены с устройством для охлаждения текучей среды.
RU2014152826A 2012-06-06 2013-06-03 Уплотнительное устройство насоса RU2637158C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1255282A FR2991736A1 (fr) 2012-06-06 2012-06-06 Dispositif d'etancheite d'une pompe
FR1255282 2012-06-06
PCT/EP2013/061406 WO2013182528A1 (en) 2012-06-06 2013-06-03 Pump sealing device

Publications (2)

Publication Number Publication Date
RU2014152826A RU2014152826A (ru) 2016-08-10
RU2637158C2 true RU2637158C2 (ru) 2017-11-30

Family

ID=47172751

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014152826A RU2637158C2 (ru) 2012-06-06 2013-06-03 Уплотнительное устройство насоса

Country Status (7)

Country Link
US (1) US9964213B2 (ru)
EP (1) EP2859238B1 (ru)
CN (1) CN104334886B (ru)
FR (1) FR2991736A1 (ru)
IN (1) IN2014DN10554A (ru)
RU (1) RU2637158C2 (ru)
WO (1) WO2013182528A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015124414A1 (de) * 2014-02-19 2015-08-27 Sulzer Management Ag Rotationsmaschine sowie verfahren für den wärmeaustausch in einer rotationsmaschine
CN106151098A (zh) * 2016-08-22 2016-11-23 嘉善川田环保科技有限公司 一种自冷却轴封、系统和方法
DE102021129695A1 (de) * 2021-11-15 2023-05-17 KSB SE & Co. KGaA Kreiselpumpe mit Kühleinsatz

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2467396A (en) * 1946-01-15 1949-04-19 Luisi Luigi Universal drill jig
GB2106593A (en) * 1981-09-16 1983-04-13 Klein Schanzlin & Becker Ag Preventing shaft warping in centrifugal pumps
DE3404964A1 (de) * 1984-02-11 1985-08-14 Allweiler Ag, 7760 Radolfzell Wellenabdichtung
SU1178952A1 (ru) * 1984-01-18 1985-09-15 Ордена Ленина И Ордена Трудового Красного Знамени Производственное Объединение "Невский Завод" Им.В.И.Ленина Торцовое уплотнение вала центробежного нагнетател
FR2607874A1 (fr) * 1986-12-09 1988-06-10 Alsthom Dispositif de sortie d'arbre pour pompe a eau sous hautes pression et temperature, notamment pour pompe alimentaire de centrale electrique a vapeur
US20110198813A1 (en) * 2009-09-24 2011-08-18 Hidekazu Takahashi Mechanical seal

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2687695A (en) * 1949-12-12 1954-08-31 Byron Jackson Co Motor pump
US3467396A (en) * 1967-05-10 1969-09-16 Durametallic Corp Internally cooled seal assembly
US3597102A (en) * 1968-06-10 1971-08-03 English Electric Co Ltd Turbines
US3843140A (en) * 1971-11-24 1974-10-22 Feodor Burgmann Fa Cooled mechanical seal
SE419128B (sv) * 1974-09-05 1981-07-13 Projectus Ind Produkter Ab Forfarande for drift av vermepumpanleggning
WO1995035457A1 (en) * 1994-06-20 1995-12-28 Ramsay Thomas W Seal/bearing assembly
DE19501900A1 (de) * 1995-01-23 1996-07-25 Klein Schanzlin & Becker Ag Gleitringdichtung für Kesselspeisepumpen
US6200108B1 (en) * 1998-03-11 2001-03-13 Aqua-Flo, Incorporated Heat exchanging means for a pump motor using a bypass tube within a recirculating water system
US5908020A (en) * 1998-07-13 1999-06-01 Uis, Inc. Marine fuel pump and cooling system
US6397822B1 (en) * 2000-04-18 2002-06-04 Uis, Inc. Integrated fuel system unit with two-stage marine fuel pump
DE50206223D1 (de) * 2001-10-22 2006-05-18 Sulzer Pumpen Ag Wellenabdichtungsanordnung für eine Pumpe zur Förderung heisser Fluide
US7581517B2 (en) * 2007-06-07 2009-09-01 Brown Myron L Automatic by-pass safety cooling system for fire pump engines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2467396A (en) * 1946-01-15 1949-04-19 Luisi Luigi Universal drill jig
GB2106593A (en) * 1981-09-16 1983-04-13 Klein Schanzlin & Becker Ag Preventing shaft warping in centrifugal pumps
SU1178952A1 (ru) * 1984-01-18 1985-09-15 Ордена Ленина И Ордена Трудового Красного Знамени Производственное Объединение "Невский Завод" Им.В.И.Ленина Торцовое уплотнение вала центробежного нагнетател
DE3404964A1 (de) * 1984-02-11 1985-08-14 Allweiler Ag, 7760 Radolfzell Wellenabdichtung
FR2607874A1 (fr) * 1986-12-09 1988-06-10 Alsthom Dispositif de sortie d'arbre pour pompe a eau sous hautes pression et temperature, notamment pour pompe alimentaire de centrale electrique a vapeur
US20110198813A1 (en) * 2009-09-24 2011-08-18 Hidekazu Takahashi Mechanical seal

Also Published As

Publication number Publication date
RU2014152826A (ru) 2016-08-10
CN104334886A (zh) 2015-02-04
IN2014DN10554A (ru) 2015-08-21
WO2013182528A1 (en) 2013-12-12
US9964213B2 (en) 2018-05-08
US20150083370A1 (en) 2015-03-26
EP2859238A1 (en) 2015-04-15
EP2859238B1 (en) 2020-04-15
CN104334886B (zh) 2018-11-06
FR2991736A1 (fr) 2013-12-13

Similar Documents

Publication Publication Date Title
CN108625917B (zh) 一种超临界二氧化碳布雷顿循环动力部件冷却密封隔热系统
RU2534253C1 (ru) Уплотнительное устройство для насоса
CN104727862B (zh) 用于燃气涡轮的密封系统
KR101703930B1 (ko) 터빈발전장치
US20170362963A1 (en) Passive alternator depressurization and cooling system
BRPI0709131A2 (pt) unidade de compressor
JP5543029B2 (ja) ターボ機械のための内部冷却装置
RU2637158C2 (ru) Уплотнительное устройство насоса
RU2670994C2 (ru) Роторная машина и способ теплообмена в роторной машине
US9376929B2 (en) Turbine generator
US9228588B2 (en) Turbomachine component temperature control
RU2386054C2 (ru) Электродвигатель с коаксиально расположенным насосом
JP5756886B2 (ja) スラストバランスピストンを備えている蒸気タービン
CN103195742A (zh) 一种用于余热排出泵的机械密封
WO2023084619A1 (ja) 冷熱発電用タービン及び冷熱発電用タービンを備える冷熱発電動システム
JP5604684B2 (ja) 蒸気タービンおよび該蒸気タービンの冷却法
RU2664750C2 (ru) Турбомашина с уплотнением для разделения рабочей среды и охлаждающей среды турбомашины и применение турбомашины
KR101770769B1 (ko) 발전 사이클 시스템
CN211174788U (zh) 离心泵机械密封腔体冷却机构
KR102077731B1 (ko) 터빈 일체형 회전자가 구비되는 발전기 및 이를 포함하는 발전 사이클 시스템
KR102087054B1 (ko) 다단 배치되는 터빈 일체형 회전자가 구비된 발전기 및 이를 포함하는 발전 사이클 시스템
CN102937090A (zh) 一种高温介质泵热屏蔽装置
CN107294288A (zh) 一种带有循环冷却水系统的不锈钢振动电机
JP6125756B2 (ja) シール構造及び回転機械
KR101938138B1 (ko) 발전 사이클 시스템

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant