RU2635145C1 - Способ консервации металлов - Google Patents

Способ консервации металлов Download PDF

Info

Publication number
RU2635145C1
RU2635145C1 RU2016138505A RU2016138505A RU2635145C1 RU 2635145 C1 RU2635145 C1 RU 2635145C1 RU 2016138505 A RU2016138505 A RU 2016138505A RU 2016138505 A RU2016138505 A RU 2016138505A RU 2635145 C1 RU2635145 C1 RU 2635145C1
Authority
RU
Russia
Prior art keywords
coating
electric arc
metal
corrosion
arc treatment
Prior art date
Application number
RU2016138505A
Other languages
English (en)
Inventor
Дмитрий Петрович Батин
Михаил Юрьевич Науменко
Дмитрий Борисович Шадрин
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом"), Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Priority to RU2016138505A priority Critical patent/RU2635145C1/ru
Application granted granted Critical
Publication of RU2635145C1 publication Critical patent/RU2635145C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Изобретение относится к консервации металлов и может быть использовано для защиты от окислительной коррозии и воздействий водорода изделий машиностроения, приборостроения и т.п., а также для упрочнения поверхностей деталей с целью повышения их износостойкости. Способ включает нанесение металлического покрытия и электродуговую обработку этого покрытия. Электродуговую обработку производят по уже нанесенному металлическому покрытию с формированием защитного слоя, состоящего исключительно из интерметаллидов. После электродуговой обработки наносят дополнительное тонкое металлическое покрытие. 1 з.п. ф-лы, 1 пр.

Description

Изобретение относится к консервации металлов и может быть использовано для защиты от окислительной коррозии и воздействий водорода изделий машиностроения, приборостроения и т.п., а также для упрочнения поверхностей деталей с целью повышения их износостойкости.
Известен способ консервации металлов путем создания на поверхности защитного слоя, который подвергают воздействию в вакууме (пат. РФ №2024649, МПК С23F 11/00, опубл. 1994 г.). На поверхности создают защитный слой ингибитора, который подвергают воздействию тлеющего разряда.
Данное изобретение достаточно эффективно для защиты металлов ингибиторами от атмосферной коррозии. Однако способ не предназначен для защиты от воздействия водородосодержащей среды и поверхности, полученные данным способом, не обладают достаточной стойкостью к воздействию абразивных частиц.
Наиболее близким аналогом заявляемого изобретения, выбранным в качестве прототипа, является способ нанесения покрытий в вакууме, включающий нанесение металлического покрытия и электродуговую обработку (ЭДО) этого покрытия (а.с. РФ №1070948, МПК С23С 14/24, 14/58, опубл. 1992 г.). Предварительно проводят очистку поверхности подложки, затем испарение материала покрытия и осаждение его на подложку. На поверхности, в процессе осаждения материала покрытия, осуществляют обработку покрываемой поверхности электродуговым разрядом, причем разряд возбуждают в парах автономного источника испарения.
Данное изобретение достаточно эффективно для защиты металлов от атмосферной коррозии. Однако способ предназначен для нанесения толстых покрытий и применение его для получения тонких пленок (5…10 мкм) невозможно; нанесение покрытия возможно только методом конденсации с ионной бомбардировкой, что может значительно усложнить технологический процесс.
Задача, на решение которой направлено изобретение, - создание универсального способа защиты от окислительной коррозии и воздействий водорода изделий из металлов различной формы по всем поверхностям, а также для упрочнения металлических поверхностей.
Технический результат, получаемый при использовании предлагаемого технического решения, - модифицирование поверхности металла, подлежащего защите.
Указанный технический результат достигается тем, что в способе консервации металлов, включающем нанесение металлического покрытия и электродуговую обработку этого покрытия, особенность заключается в том, что электродуговую обработку производят по нанесенному металлическому покрытию с формированием защитного слоя, состоящего из интерметаллидов.
Для улучшения поверхностных свойств после электродуговой обработки наносят дополнительное тонкое металлическое покрытие.
В настоящее время защита целостности и предохранения изделий из металла от коррозии на протяжении всего срока службы изделий весьма актуальна. Особенно это проявляется в нефтегазовой промышленности. Высокая минерализация технологических сред усугубляется наличием в них сероводорода, что приводит к сульфидному растрескиванию. Водородное охрупчивание и сульфидное растрескивание - это наиболее опасная форма коррозионно-механического разрушения, возможность появления которого возрастает в связи с наличием в технологических средах абразивных частиц, что предъявляет дополнительные требования к износостойкости деталей оборудования. Это важно не только ввиду высоких финансовых затрат на создание некоторых изделий, таких как запорная арматура, задвижки и штуцеры, но и в целях предотвращения утечек. Как из экономических соображений, так и вследствие потенциальной опасности таких утечек, связанных с нанесением вреда обслуживающему персоналу, загрязнением окружающей среды и возможностью возникновения сильных пожаров и других серьезных последствий. Также качественная зашита деталей от окислительной и водородной коррозии позволяет предотвратить затраты на проведение дополнительных технологических осмотров и обслуживание изделий, на замену изделий или составных частей изделий в результате потери работоспособности.
Хорошо известно использование ингибиторов для защиты металлов от коррозии, использование ингибиторов коррозии с дополнительной обработкой, такой как воздействие температуры в вакууме, воздействие тлеющего разряда. Хорошо известно использование металлических защитных покрытий, нанесенных различными методами - плазменное, ионно-плазменное, гальваническое и другие. Но эти методы защиты не вполне достаточны для предохранения деталей в течение достаточно длительного времени использования некоторых изделий в довольно агрессивных подземных средах, находящихся в среде воздух - вода, или погруженных в воду. Рабочая среда может содержать сероводород и абразивные частицы. Кроме того, в таких средах эксплуатации оборудования велика вероятность возникновения электрохимической коррозии, связанной как с разрушением основы - металла, так и с разрушением самого покрытия.
В некоторых областях промышленности наиболее целесообразной признана защита от коррозии стальных металлоконструкций алюминием, так как стойкость алюминия и его сплавов во много раз превышает стойкость стали в условиях, характерных для эксплуатации, например, газонефтепромыслового оборудования. Алюминий и его сплавы создают эффективный барьер для проникновения кислорода и водорода. Но существенное влияние на защитный эффект алюминиевых покрытий в условиях диффузии водорода оказывают пористость и структура материала покрытия, переходных зон и оксидных пленок, зависящие от особенностей технологии их формирования.
Все имеющиеся технологии формирования покрытий не позволяют получить сплошное, безпористое покрытие. Проблема пористости зачастую решается многослойностью покрытий или увеличением толщины покрытия. Многослойность покрытия неизбежно ведет к увеличению толщин покрытий, а применение покрытий большой толщины не всегда возможно и может приводить к отслаиванию покрытий от подложки.
Кроме того, и ингибирующие составы на поверхности, и алюминиевые покрытия обладают совершенно неудовлетворительной износостойкостью и не могут работать в средах, содержащих абразивные частицы, то есть не могут комплексно защищать сталь от коррозионно-механического разрушения. Также, ряд технологических операций сборки и монтажа изделий может привести к небольшим случайным повреждениям, таким как забоины и царапины в покрытии, которые впоследствии могут стать очагами распространения коррозии.
Таким образом, в течение длительного срока службы изделий неизбежно происходят процессы, под воздействием которых возможно возникновение коррозии. Применение изделий в таких жестких условиях эксплуатации способствует тому, что металл изделия при воздействии широкого диапазона рабочих температур, ударов и вибраций, воздействия абразивных частиц рабочей среды может вести себя непредсказуемым образом. В результате сульфидного растрескивания и водородного охрупчивания может произойти заклинивание или разрушение задвижек, запорной арматуры, корпусов штуцеров, а следовательно, и разгерметизация или падение давления в магистральных трубопроводах. Для определения причин поломок и разгерметизации необходимо останавливать работу изделия, выполнять сложные операции разборки, ремонта с последующей сборкой изделия или производить замену изделия целиком. В ходе решения этой проблемы возникла необходимость разработки такого метода защиты металлов, который бы обеспечил надежную работу всего изделия в течение длительного срока службы. Т.е. создать покрытие, способное противостоять оксидной и водородной коррозии, с высокими механическими свойствами сопротивления износу и небольшой толщины (менее 10 мкм).
Большинство предлагаемых способов защиты разработаны или для защиты от коррозии или для упрочнения поверхности и имеют недостатки, связанные с рядом ограничений, вызванных применением изделий - покрытия, предназначенные для защиты от коррозии, имеют плохую износостойкость, покрытия, предназначенные для упрочнения поверхности, не имеют коррозионно-защитных свойств. Также, в некоторых случаях невозможно применение покрытий большой толщины. Поэтому существующие методы и способы защиты металлов от коррозии, применяемые в настоящее время, несостоятельны.
Все предшествующие усилия не привели к созданию способа защиты металлов с необходимым качеством: не обеспечена надежная работа в жестких условиях эксплуатации. Существующие способы нуждаются в усовершенствовании и не позволяют производить защиту металлов на достаточно высоком уровне качества и надежности.
Для решения этой проблемы авторами предложено проводить ЭДО для нанесения покрытий по уже нанесенному (в том числе и холодными методами) металлическому покрытию.
Для выяснения применимости данного метода непосредственно к металлам были проведены экспериментальные работы. В ходе экспериментов и проведенного анализа полученных результатов авторами впервые был установлен факт образования интерметаллидов после проведения ЭДО. Интерметаллид, например Fe2Al5, обладает износостойкостью, жаростойкостью и коррозионной стойкостью к воздействию кислорода и водорода. Ранее, факт образования интерметаллидных соединений фиксировался только при термодиффузионном взаимодействии. Целесообразность данного способа была впервые установлена авторами при проведении экспериментальных исследований и анализа полученных данных.
Для того чтобы защитный слой мог выполнять свои функции должным образом, на всей поверхности детали обеспечивается формирование тонкого интерметаллидного слоя, обладающего высокими износостойкими, жаростойкими и коррозионными свойствами. В этом случае (при условии правильного подбора режимов ЭДО, времени воздействия ЭДО, толщины предварительно нанесенного металлического покрытия) происходит процесс расплавления нанесенного металла покрытия и поверхностного слоя металла основы, с их взаимным перемешиванием и мгновенной кристаллизацией. Таким образом, обеспечивается модифицирование поверхности металла, подлежащего защите. В итоге решается задача создания универсального способа защиты от окислительной коррозии и воздействий водорода изделий из металлов различной формы по всем поверхностям, а также упрочнения металлических поверхностей.
Защита происходит путем создания тонкой (меньше 10 мкм) металлической пленки, обволакивающей деталь по всем поверхностям. При этом не требуются значительные нагревы защищаемой детали до предельно высоких температур (как при термодиффузионном взаимодействии) и для формирования покрытия может быть использован любой известный метод нанесения покрытий.
В соответствии с настоящим изобретением предложена исчерпывающая методика надежной защиты металлов от коррозии.
Таким образом, указанные выше ограничения и недостатки существующих способов, преодолеваются настоящим изобретением, при этом предложен новый способ консервации металлов. Такой усовершенствованный способ для гарантированно надежной защиты изделий из металлов от окислительной коррозии и воздействия водорода не был известен ранее.
Несмотря на простоту, изобретение имеет изобретательский уровень, поскольку приводит к техническому результату, который не был очевиден при новом способе.
При проведении анализа уровня техники, включающего поиск по патентным и научно-техническим источникам информации, и выявлении источников, содержащих сведения об аналогах заявленного изобретения, не обнаружено аналогов, характеризующихся признаками, тождественными всем существенным признакам данного изобретения. Определение из перечня выявленных аналогов прототипа как наиболее близкого по совокупности существенных признаков аналога, позволило выявить совокупность существенных отличительных признаков от прототипа, изложенных в формуле изобретения. При этом способ в соответствии с настоящим изобретением явно демонстрирует новизну и обеспечивает надежную защиту металлических изделий в течение длительного срока службы, что весьма актуально с точки зрения промышленной экономики. Следовательно, заявленное изобретение соответствует условию «новизна».
Способ осуществляют следующим образом. Предварительно производится очистка поверхностей деталей от загрязнений и окисных пленок, например, методом электродуговой обработки в вакууме или электрохимическим травлением, или механической зачисткой абразивными материалами с последующим их удалением. На деталь наносят необходимое металлическое покрытие заданной толщины методами катодного распыления в вакууме, или магнитоионного распыления в вакууме, или гальваническим методом, или методом плазменного напыления, или методом холодного газодинамического напыления. После этого поверхность детали (являющуюся катодом) подвергают воздействию электродугового разряда с целью формирования тонкого интерметаллидного слоя на всей поверхности детали, подлежащей защите, и, при необходимости, наносят дополнительное тонкое металлическое покрытие методами катодного распыления в вакууме, или магнитоионного распыления в вакууме, или гальваническим методом, или методом плазменного напыления, или методом холодного газодинамического напыления.
Пример. Поверхность детали из стали 20 в виде сегмента шара, которая может быть частью газовой задвижки, формировался интерметаллидный слой в следующем порядке:
- поверхность детали очищалась от окисных пленок, и загрязнений методом электродуговой обработки в вакууме при давлении в вакуумной камере 10-4 мм рт.ст.;
- на поверхность детали методом катодного распыления в вакууме наносился слой алюминия толщиной 10…13 мкм;
- поверхность детали модифицировалась методом электродуговой обработки в вакууме при давлении в вакуумной камере 10-4 мм рт.ст.;
- дополнительно на поверхность был нанесен слой комбинированного покрытия алюминий/оксид алюминия толщиной 2…3 мкм методом катодного распыления в вакууме.
Коррозионные испытания детали в атмосфере влажного воздуха показали стойкость покрытия к окислительной коррозии.
Исследования на стойкость покрытия к проникновению водорода показали, что коэффициент сплошности покрытия 0,0075 (для незащищенной детали 1). Т.е. в деталь с таким покрытием водорода проникнет в 133 раза меньше, чем в деталь без покрытия.
Измерение микротвердости приповерхностного слоя детали на поперечном шлифе показали, что твердость модифицированного слоя (5…10 мкм от края поверхности) в 1,5 раза выше, чем у металла на глубине 40…60 мкм от края поверхности.
Таким образом, представленные данные свидетельствуют о выполнении при использовании способа по заявляемому изобретению следующей совокупности условий:
- процесс, воплощающий заявленный способ при его осуществлении, предназначен для использования в нефтегазодобывающей отрасли, механической, автомобильной и аэрокосмической промышленности;
- для заявляемого способа в том виде, в котором оно охарактеризовано в формуле изобретения, подтверждена возможность его осуществления.
Следовательно, заявляемый способ соответствует условию «промышленная применимость».

Claims (2)

1. Способ консервации металлов, включающий нанесение металлического покрытия и электродуговую обработку этого покрытия, отличающийся тем, что электродуговую обработку производят по нанесенному металлическому покрытию, при этом в процессе электродуговой обработки осуществляют расплавление предварительно нанесенного металлического слоя и поверхностного слоя металла с взаимным их перемешиванием и формированием защитного интерметаллидного слоя.
2. Способ по п. 1, отличающийся тем, что после электродуговой обработки наносят дополнительное тонкое металлическое покрытие.
RU2016138505A 2016-09-28 2016-09-28 Способ консервации металлов RU2635145C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016138505A RU2635145C1 (ru) 2016-09-28 2016-09-28 Способ консервации металлов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016138505A RU2635145C1 (ru) 2016-09-28 2016-09-28 Способ консервации металлов

Publications (1)

Publication Number Publication Date
RU2635145C1 true RU2635145C1 (ru) 2017-11-09

Family

ID=60263703

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016138505A RU2635145C1 (ru) 2016-09-28 2016-09-28 Способ консервации металлов

Country Status (1)

Country Link
RU (1) RU2635145C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2728051C1 (ru) * 2019-11-29 2020-07-28 Федеральное государственное казенное военное образовательное учреждение высшего образования "Рязанское гвардейское высшее воздушно-десантное ордена Суворова дважды Краснознаменное командное училище имени генерала армии В.Ф. Маргелова" Министерства обороны Российской Федерации Способ консервации с использованием эфирных масел

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU429117A1 (ru) * 1972-10-17 1974-05-25 М. М. Шустерн , А. С. Ганцевич Способ изготовления изделий с износостойким покрытием
DE2360547A1 (de) * 1972-12-12 1974-06-20 Skf Kugellagerfabriken Gmbh Verfahren zur verbesserung von aufgespritzten ueberzuegen auf lager- und werkzeugteilen
SU1465226A1 (ru) * 1987-02-25 1989-03-15 Ленинградский Институт Водного Транспорта Способ получени многослойных покрытий на восстанавливаемых детал х
RU2092611C1 (ru) * 1995-01-11 1997-10-10 Опытное конструкторское бюро "Факел" Способ обработки режущего инструмента для обработки органических материалов и керамики
RU2177050C2 (ru) * 1998-11-27 2001-12-20 ОАО "Пермский моторный завод" Способ нанесения уплотнительного покрытия
RU2191218C2 (ru) * 2000-11-02 2002-10-20 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Способ получения защитного покрытия на изделии из жаростойкого жаропрочного сплава

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU429117A1 (ru) * 1972-10-17 1974-05-25 М. М. Шустерн , А. С. Ганцевич Способ изготовления изделий с износостойким покрытием
DE2360547A1 (de) * 1972-12-12 1974-06-20 Skf Kugellagerfabriken Gmbh Verfahren zur verbesserung von aufgespritzten ueberzuegen auf lager- und werkzeugteilen
SU1465226A1 (ru) * 1987-02-25 1989-03-15 Ленинградский Институт Водного Транспорта Способ получени многослойных покрытий на восстанавливаемых детал х
RU2092611C1 (ru) * 1995-01-11 1997-10-10 Опытное конструкторское бюро "Факел" Способ обработки режущего инструмента для обработки органических материалов и керамики
RU2177050C2 (ru) * 1998-11-27 2001-12-20 ОАО "Пермский моторный завод" Способ нанесения уплотнительного покрытия
RU2191218C2 (ru) * 2000-11-02 2002-10-20 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Способ получения защитного покрытия на изделии из жаростойкого жаропрочного сплава

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RU2177050С2C2, 20.12.2001. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2728051C1 (ru) * 2019-11-29 2020-07-28 Федеральное государственное казенное военное образовательное учреждение высшего образования "Рязанское гвардейское высшее воздушно-десантное ордена Суворова дважды Краснознаменное командное училище имени генерала армии В.Ф. Маргелова" Министерства обороны Российской Федерации Способ консервации с использованием эфирных масел

Similar Documents

Publication Publication Date Title
Rodriguez et al. Comparison of aluminum coatings deposited by flame spray and by electric arc spray
JP7002443B2 (ja) ガスタービンのコンプレッサー構成部品用の輪郭追従保護層
Javaherdashti Corrosion under Insulation (CUI): A review of essential knowledge and practice
RU2635145C1 (ru) Способ консервации металлов
WO2020099605A1 (en) Coating for enhanced performance and lifetime in plastic processing applications
Malek et al. Critical process and performance parameters of thermal arc spray coating
Fuad et al. Thermal spray coating for corrosion under insulation (CUI) prevention
Akinci et al. The effect of epoxy‐polyester sealing of sprayed metal coatings for additional corrosion protection
JP2001170823A (ja) 金属製構造物の亀裂部の補修方法
Sanni et al. Gluconates as corrosion inhibitor of aluminum in various corrosive media
WO2012130929A2 (en) Cathodic protection by coating for cooling circuits or other holes or channels
Zubairu et al. Corrosion inhibition of Polyalthia longifolia leaves extract in 1m HCl solution on mild steel
Wongpanya et al. Corrosion behaviors and mechanical properties of CrN film
Tsipas et al. Thermochemical treatments for protection of steels in chemically aggressive atmospheres at high temperatures
Gábor SEAWATER RESISTANCE TESTING AND EQUIPMENT DESIGN
Nakatsuka et al. Novel Anti-Fouling Surface Treatment for Heat Exchangers
Zhu et al. Decontamination Chemical Compatibility with Protective Coatings
Venkateswaran et al. Offshore Atmospheric Coating Performance Evaluation Test Standards-NACE Vs. ISO
Kim A Comparative Study on Coating Performance of Inorganic Zinc Primer System and Inorganic Copolymer System by Long-Term Durability Test Including High Temperature Exposure at 540° C
Serenario et al. Anti-Corrosion Coatings Based on Nb2O5-a Comparison Between two Coatings Technology: Thermal Spray Coating and Epoxy Paint
Surdu A METHOD OF CORROSION PROTECTION APPLIED TO HEAT EXCHANGERS INSTALLATIONS.
Felipe et al. New Eco-Friendly Chemistry for Passivation of Galvanized Coatings
McIntyre et al. Behavior of ion vapor deposited aluminum in marine environments
Morales et al. CAN YOU USE A ZINC-RICH PRIMER WHEN PAINTING OFFSHORE?
Mahajanam et al. Offshore Platform Materials Integrity-Remediation Measures