RU2634707C2 - Способ избирательного удаления О-ацетильных защитных групп в присутствии О-бензоильных - Google Patents

Способ избирательного удаления О-ацетильных защитных групп в присутствии О-бензоильных Download PDF

Info

Publication number
RU2634707C2
RU2634707C2 RU2015130610A RU2015130610A RU2634707C2 RU 2634707 C2 RU2634707 C2 RU 2634707C2 RU 2015130610 A RU2015130610 A RU 2015130610A RU 2015130610 A RU2015130610 A RU 2015130610A RU 2634707 C2 RU2634707 C2 RU 2634707C2
Authority
RU
Russia
Prior art keywords
methanol
mixture
hydrazine hydrate
acetyl
methylene chloride
Prior art date
Application number
RU2015130610A
Other languages
English (en)
Other versions
RU2015130610A (ru
Inventor
Дмитрий Владимирович Яшунский
Юрий Евгеньевич Цветков
Николай Эдуардович Нифантьев
Original Assignee
Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт особо чистых биопрепаратов" Федерального медико-биологического агентства
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт особо чистых биопрепаратов" Федерального медико-биологического агентства filed Critical Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт особо чистых биопрепаратов" Федерального медико-биологического агентства
Priority to RU2015130610A priority Critical patent/RU2634707C2/ru
Publication of RU2015130610A publication Critical patent/RU2015130610A/ru
Application granted granted Critical
Publication of RU2634707C2 publication Critical patent/RU2634707C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Saccharide Compounds (AREA)

Abstract

Изобретение относится к способу удаления защитных групп в синтетической химии углеводов, который может быть использован в химической промышленности. Предложенный способ состоит в том, что избирательно удаляют О-ацетильные защитные группы в присутствии О-бензоильных в олигосахаридах, обрабатывая производные олигосахаридов гидразингидратом в органическом растворителе, содержащем хлористый метилен и метанол, причем реакцию проводят под действием 30-100 мольных эквивалентов гидразингидрата по отношению к производным олигосахаридов в смеси хлористого метилена и метанола в объемном соотношении 1:2. Предложен новый эффективный способ избирательного удаления О-ацетильных защитных групп в присутствии О-бензоильных, что существенно расширяет возможности эффективного построения олигосахаридных цепей. 1 з.п. ф-лы, 3 пр.

Description

Данное изобретение относится к области использования защитных групп в синтетической химии углеводов. Синтетические производные олигосахаридов находят в настоящее время широкое применение в биохимии и медицинской практике.
Ключевой стадией при синтезе и направленной модификации полигидроксильных органических соединений является избирательное введение и удаление временных защит гидроксильных групп (ОН-групп), так называемые О-защиты, при удалении которых происходит высвобождение ОН-групп. В настоящее время известен широкий спектр защитных групп, различающихся устойчивостью в различных реакционных условиях (T.W. Greene, P.G.M. Wuts. Protective group in organic synthesis. - 3rd edition, John Wiley & Sons, 1999, pp. 17-245). Однако многие из предложенных ранее защитных групп требуют использования весьма дорогих и малодоступных реагентов для их введения или удаления. Это вносит ограничения для их препаративного использования в практических синтезах органических соединений, включая промышленные синтезы.
К видам наиболее широко используемых О-защит относятся ацильные, прежде всего ацетильные и бензоильные группы. Введение О-ацетильных и О-бензоильных защит осуществляется при ацилировании соответствующим реагентом соединений со свободными ОН-группами. Удаление же О-цетильных и О-бензоильных защит с образованием соответствующих производных со свободными ОН-группами может быть проведено в щелочных (карбонат калия в метаноле, цианид калия в этаноле, аммиак в метаноле, метилат натрия в метаноле, гидроксид натрия в метаноле и др.) или кислых условиях. Помимо методов исчерпывающего удаления О-ацетильных и О-бензоильных групп, особую практическую значимость имеют методы, позволяющие избирательно удалять О-ацетильные группы в присутствии О-бензоильных групп.
N.E. Byramova, M.V. Ovchinnikov, L.V. Backinowsky, N.K. Kochetkov [Carbohydr. Res., 1983, 124, C8] описали удаление О-ацетильных групп в присутствии О-бензоильных при обработке разбавленным раствором хлористого водорода в метаноле. V. Pozsgay [J. Am. Chem. Soc, 1995, 117, 6673] описал аналогичное превращение под действием 0.3 М HBF4 в метаноле. Ограничение данного метода состоит в несовместимости условий снятия ацетильных защит с наличием в молекуле других кислотолабильных групп, таких как силильные, ацетальные, тритильные и др.
Y.-C. Xu, A. Bizuneh и С. Walker [Tetrahedron Lett., 1996, 37, 455] предложили использовать раствор метоксида магния в метаноле для избирательного удаления О-ацетильной защиты в присутствии О-бензоильной или других О-ацильных групп. Недостатком данного метода является его малая эффективность применительно к сложно построенным углеводным системам.
N. Kunesch, С. Meit и J. Poisson [Tetrahedron Lett., 1987, 28, 3569] использовали для селективного дезацетилирования раствор гуанидина в этаноле, Т. Neilson и E.S. Werstiuk [Can. J. Chem. 1971, 49, 493] - раствор аммиака в метаноле, a L.Н.В. Baptistella, J.F. Dos Santos, К.С. Ballabio и A.J. Marsaioli [Synthesis, 1989, 436-438] - раствор 1,8-диазабицикло[5.4.0]ундец-7-ена (ДБУ) в бензоле. В этих трех перечисленных примерах недостатком была также невысокая эффективность процесса.
В патенте US 5629433 «Избирательный процесс для дезацилирования и дезацетилирования таксола и таксанов» описывается одностадийный процесс, при котором под действием пероксида водорода в THF в присутствии различных основных реагентов (NaHCO3, Na2CO3, CaCO3, BaCO3 и др.) ацильные группы, расположенные у атомов углерода 2', 10 и 7 таксола и других таксановых соединений, могут быть избирательно удалены.
В работах Н.М. Verheij, P.F. Smith, P.P.М. Bonsen и L.L.М. Van Deenen [Biochim. Biophys. Acta, 1970, 218, 97], а также P. Greimel, M. Lapeyre, Y. Nagatsuka, Y. Hirabayashi и Y. Ito [Bioorg. Med. Chem. 2008, 16, 7210] для селективного снятия ацетильных защит в присутствии сложных эфиров жирных кислот были использованы моногидроацетат гидразина или смесь гидразингидрат - уксусная кислота (молярное соотношение 4:1) соответственно. Данные методы имеют явное ограничение, поскольку подразумевали первоначальное де-О-ацетилирование первичного гидроксила с последующим деблокированием вторичных гидроксильных групп за счет внутримолекулярного соучастия освободившегося первичного, а затем и вторичных гидроксильных групп.
Наиболее близкой к данному изобретению является работа W.R. Roush и X.-F. Lid [J. Am. Chem. Soc. 1995, 117, 2236], в которой описан пример селективного снятия аномерного ацетата в присутствии аксиального ацетата с использованием 1.5 эквивалента гидразингидрата в метаноле. Однако в данном случае происходит селективное снятие ацетильной группы с полуацетального гидроксила, не затрагивая при этом ацетильной группы на вторичном гидроксиле. Подобные селективные превращения широко известны в литературе и легко реализуются под действием широкого круга реагентов.
Перечисленные методы не имеют общего характера и поэтому имеют ограниченное практическое применение. Так, например, проведенные нами попытки получения диола 2 путем обработки диацетата-монобензоата 1 указанными выше реагентами (разбавленный раствор метилата натрия в метаноле, метоксид магния [Y.-C. Xu, A. Bizuneh, С. Walker, Tetrahedron Lett., 1996, 37, 455], триэтиламин в метаноле, ДБУ в бензоле, моногидроацетат гидразина [Н.М. Verheij, P.F. Smith, P.P.М. Bonsen, L.L. M. Van Deenen, Biochim. Biophys. Acta 1970, 218, 97] или смесь гидразингидрата - уксусная кислота (молярное соотношение 4:1) [P. Greimel, М. Lapeyre, Y. Nagatsuka, Y. Hirabayashi, Y. Ito, Bioorg. Med. Chem. 2008, 16, 7210], гидразингидрат 2-5 эквивалентов), для которых в научной литературе сообщалось о применении для селективного снятия ацетильной группы в присутствии бензоильной, приводили к неселективному превращению либо, как в случае моногидроацетата гидразина, - к малой (~10-20%) конверсии исходного соединения 1 (см. Примеры 1а-д).
Figure 00000001
Использование небольшого избытка (2-3 эквивалента) гидразингидрата в смеси метанол - хлористый метилен при комнатной температуре в течение нескольких часов приводили к образованию смеси продуктов неизбирательного снятия как ацетильных, так и бензоильных групп со значительным количеством непрореагировавшего исходного 1.
Предметом настоящего изобретения является метод избирательного удаления О-ацетильных групп в присутствии О-бензоильных при обработке большими избытками гидразингидрата - от 30 до 100 мольных эквивалентов (преимущественно 50) В интервале 1-15 эквивалентов гидразингидрата наблюдается неполная конверсия (<50%), при этом через несколько часов наблюдается образование побочного продукта снятия бензоильной группы - триола 2а. Оптимальным интервалом соотношения субстрат - реагент является значение 40-50. Использование большего (проверено вплоть до 1:100) количества гидразингидрата незначительно сокращает время реакции, но не рационально с точки зрения экономии реагентов.
Так, в результате обработки 1 50 экв. гидразингидрата в смеси хлористого метилена и метанола (1:2 по объему) при комнатной температуре в течение 25 минут получили 8.5% непрореагировавшего 1 и 91.5% продукта дезацетилирования 2. При повторной обработке выделенного из реакционной смеси непрореагировавшего исходного 1 в аналогичных условиях образуется дополнительное количество диола 2, суммарный выход которого практически количественный (см. Пример 2Г).
Аналогично эффективно могут быть превращены и другие соединения, одновременно содержащие О-ацетильные и О-бензоильные защиты, например, трисахарид 3, в котором содержится по две О-ацетильные и О-бензоильные защиты. Обработка этого соединения гидразингидратом (~44 экв.) в метаноле при комнатной температуре в течение 25 минут (Пример 3) дает продукт избирательного де-О-ацетилирования 4 с высоким выходом 79%.
Figure 00000002
Пример 1. Де-О-ацетилирование дисахарида 1 под действием известных реагентов.
А) Де-О-ацетилирование дисахарида 1 под действием разбавленного раствора метилата натрия в метаноле:
Раствор 0.05 г (0.067 ммоль) 1 в смеси 0.5 мл хлористого метилена и 1.0 мл метанола обрабатывали 5 мкл (0.005 ммоль, 0.07 экв.) 1 М раствора метилата натрия в метаноле при комнатной температуре в течение 25 минут. Смесь нейтрализовали ионообменной смолой Amberlite IR-120 (Н+), фильтровали, упаривали досуха и остаток анализировали методом ТСХ на пластинке с силикагелем в системе толуол-этилацетат (2:1). Продуктом данного превращения явилась смесь исходного дисахарида 1, диола 2 и триола 2а примерно в равных количествах.
Б) Де-О-ацетилирование дисахарида 1 под действием метоксида магния [Y.-С. Xu, A. Bizuneh, С. Walker, Tetrahedron Lett, 37, 455 (1996)]:
Раствор 0.05 г (0.067 ммоль) 1 в смеси 0.5 мл хлористого метилена и 1.0 мл метанола обрабатывали 5 мкл (0.005 ммоль, 0.07 экв.) свежеприготовленного 1 М раствора метоксида магния в метаноле при комнатной температуре в течение 12 часов. Смесь нейтрализовали ионообменной смолой Amberlite IR-120 (Н+), фильтровали, упаривали досуха и остаток анализировали методом ТСХ на пластинке с силикагелем в системе толуол-этилацетат (2:1). Продуктом данного превращения явилась смесь исходного дисахарида 1, диола 2 и триола 2а примерно в равных количествах.
В) Де-О-ацетилирование дисахарида 1 под действием триэтиламина в метаноле
Раствор 0.05 г (0.067 ммоль) 1 в смеси 0.5 мл хлористого метилена и 1.0 мл метанола обрабатывали 50 мкл (0.68 ммоль, 10 экв.) триэтиламина при комнатной температуре в течение 2 часов. Смесь упаривали досуха и остаток анализировали методом ТСХ на пластинке с силикагелем в системе толуол-этилацетат (2:1). Продуктом данного превращения явилась смесь исходного дисахарида 1, диола 2 и триола 2а примерно в равных количествах.
Г) Де-О-ацетилирование дисахарида 1 под действием ДБУ в бензоле [Synthesis}
Раствор 0.05 г (0.067 ммоль) 1 в 2.0 мл бензола обрабатывали 15 мкл (0.097 ммоль, 1.44 экв.) ДБУ при комнатной температуре в течение 2.5 часов. Смесь разбавили хлористым метиленом, промыли 1 М водным раствором соляной кислоты, сушили фильтрованием через вату, упаривали досуха и остаток анализировали методом ТСХ на пластинке с силикагелем в системе толуол-этилацетат (2:1). Продуктом данного превращения явилась смесь исходного дисахарида 1, диола 2 и триола 2а примерно в равных количествах.
Д) Де-О-ацетилирование дисахарида 1 под действием моногидроацетата гидразина [Н.М. Verheij, P.F. Smith, P.P.М. Bonsen, L.L. М. Van Deenen, Biochim. Biophys. Acta, 1970, 218, 97] или смеси гидразингидрат - уксусная кислота (молярное соотношение 4:1) [P. Greimel, М. Lapeyre, Y. Nagatsuka, Y. Hirabayashi, Y. Ito, Bioorg. Med. Chem. 2008, 16 7210].
Раствор 0.05 г (0.067 ммоль) 1 в 0.5 мл диметилформамида обрабатывали 18 мг (0.2 ммоль, 1.5 экв.) моногидроацетата гидразина (или смесью 25 мг гидразингидрата и 9 мкл уксусной кислоты) при комнатной температуре в течение 2 часов. Смесь экстрагировали этилацетатом, сушили, упаривали досуха и остаток анализировали методом ТСХ на пластинке с силикагелем в системе толуол-этилацетат (2:1). Продуктом данного превращения явилась смесь исходного дисахарида 1 и диола 2, с явным преобладанием исходного дисахарида 1 (>90%).
Пример 2. Де-О-ацетилирование дисахарида 1 под действием гидразингидрата в метаноле.
А) Де-О-ацетилирование дисахарида 1 под действием 1.5 эквивалентов гидразингидрата в метаноле.
Раствор 0.05 г (0.067 ммоль) 1 в смеси 0.5 мл хлористого метилена и 1.0 мл метанола обрабатывали 5 мкл (0.1 ммоль, 1.5 экв.) гидразингидрата при комнатной температуре в течение 25 минут. Смесь разбавили 5 мл воды, экстрагировали хлористым метиленом (3×3 мл), объединенный экстракт промыли насыщенным раствором хлористого натрия, сушили фильтрованием через вату, концентрировали в вакууме и остаток анализировали методом ТСХ на пластинке с силикагелем в системе толуол-этилацетат (2:1). Продуктом данного превращения явилась смесь исходного дисахарида 1 и диола 2, с явным преобладанием исходного дисахарида 1 (>80%).
Б) Де-О-ацетилирование дисахарида 1 под действием 5 эквивалентов гидразингидрата в метаноле.
Раствор 0.05 г (0.067 ммоль) 1 в смеси 0.5 мл хлористого метилена и 1.0 мл метанола обрабатывали 17 мкл (0.33 ммоль, 5 экв.) гидразингидрата при комнатной температуре в течение 25 минут. Смесь разбавили 5 мл воды, экстрагировали хлористым метиленом (3×3 мл), объединенный экстракт промыли насыщенным раствором хлористого натрия, сушили фильтрованием через вату, концентрировали в вакууме и остаток анализировали методом ТСХ на пластинке с силикагелем в системе толуол-этилацетат (2:1). Продуктом данного превращения явилась смесь исходного дисахарида 1 и диола 2, с явным преобладанием исходного дисахарида 1 (>80%). Кроме того наблюдалось образование триола 2а в видимых количествах.
В) Де-О-ацетилирование дисахарида 1 под действием 15 эквивалентов гидразингидрата в метаноле.
Раствор 0.05 г (0.067 ммоль) 1 в смеси 0.5 мл хлористого метилена и 1.0 мл метанола обрабатывали 50 мкл (1 ммоль, 15 экв.) гидразингидрата при комнатной температуре в течение 25 минут. Смесь разбавили 5 мл воды, экстрагировали хлористым метиленом (3×3 мл), объединенный экстракт промыли насыщенным раствором хлористого натрия, сушили фильтрованием через вату, концентрировали в вакууме и остаток анализировали методом ТСХ на пластинке с силикагелем в системе толуол-этилацетат (2:1). Продуктом данного превращения явилась смесь исходного дисахарида 1 и диола 2, с явным преобладанием исходного дисахарида 1 (>70%). Кроме того, наблюдалось образование триола 2а в видимых количествах.
Г) Де-О-ацетилирование дисахарида 1 под действием 50 и более (проверено вплоть до значений 100) эквивалентов гидразингидрата в метаноле.
Раствор 1.42 г (1.89 ммоль) 1 в смеси 14 мл хлористого метилена и 28 мл метанола обрабатывали 4.7 мл (97 ммоль, ~50 экв.) гидразингидрата при комнатной температуре в течение 25 минут. Смесь разбавили 150 мл воды, экстрагировали хлористым метиленом (3×50 мл), объединенный экстракт промыли насыщенным раствором хлористого натрия, сушили фильтрованием через вату, концентрировали в вакууме и остаток очищали на силикагеле в градиенте ацетон - хлористый метилен (0→15%), получая 120 мг (8.5%) непрореагировавшего 1 и 1.15 (91.5%) 2. Повторная обработка регенерированного 1 в условиях, аналогичных указанным выше, привела к получению дополнительно 110 мг 2. Суммарный выход 2 - 1.26 г (колич.), твердое аморфное вещество, [α]D - 54 (с 1, CHCl3). Спектр 1Н ЯМР (CDCl3, 600 МГц): δ 1.26 (т, 3H, J=7.4 Гц, CH3CH2S), 2.53 (с, 1Н, ОН-32), 2.76 (м, 2Н, CH3CH2S), 2.90 (д, 1H, JOH,2=2.4 Гц, ОН-22), 3.30 (м, 1Н, Н-52), 3.46 (м, 3H, Н-22, 42, 62а), 3.62 (м, 2Н, Н-32, 51), 3.81 (т, 1Н, J=9.6 Гц, Н-41), 3.85 (м, 2Н, H-61а, 62b), 4.21 (т, 1Н, J=9.0 Гц, Н-31), 4.43 (дд, 1H, J6b,5=5.1 Гц, J6b,6а=10.5 Гц,, Н-61b), 4.47 (д, 1Н, J1,2=7.8 Гц, Н-12), 4.73 (д, 1Н, J1,2=10.2 Гц, Н-11), 5.37 (т, 1Н, J=9.3 Гц, Н-21), 5.43, 5.63 (2 с, каждый 1Н, 2 PhCH), 7.32-8.08 (м, 15Н, 3 Ph). Спектр 13С ЯМР (CDCl3, 150 МГц): δ 14.8 (CH3CH2S), 24.1 (CH3CH2S), 66.6 (С-52), 68.4 (С-62), 68.5 (С-61), 70.9 (С-51), 71.9 (С-21), 72.8 (С-32), 73.4 (С-22), 79.1 (С-41), 79.3 (С-31), 80.2 (С-42), 84.3 (С-11), 101.6, 101.8 (2 PhCH), 103.0 (С-12), 126.1-136.9 (3 Ph), 156.8 (PhCO). Данные масс-спектра: рассчитано для C35H38O11S [М+К]+ 705.1766; найдено - 705.1778.
Пример 3. Де-О-ацетилирование трисахарида 3 под действием гидразингидрата в метаноле.
Раствор 1.55 г (1.24 ммоль) 3 в смеси 8 мл хлористого метилена и 16 мл метанола обрабатывали 2.6 мл (54 ммоль, ~44 экв.) гидразингидрата при комнатной температуре в течение 25 минут. Смесь разбавили 100 мл воды, экстрагировали хлористым метиленом (3×30 мл), объединенный экстракт промыли насыщенным раствором хлористого натрия, сушили фильтрованием через вату, концентрировали в вакууме и остаток очищали на силикагеле в градиенте хлористый метилен - ацетон (0→15%), получая 200 мг (13%) непрореагировавшего 3 и 1.03 (71%) 4. Повторная обработка регенерированного 3 в условиях, аналогичных указанным выше, привела к получению дополнительно 110 мг 4. Суммарный выход 4 - 1.14 г (79%), твердое аморфное вещество, [α]D - 21 (с 1, CHCl3). Спектр 1Н ЯМР (CDCl3, 600 МГц, характеристичные сигналы): δ 1.64 (м, 2Н, NHCH2CH2CH2O), 3.08, 3.12 (2 м, 2Н, NHCH2CH2CH2O), 3.26 (м, 1H, Н-53), 3.43 (м, 4Н, Н-23, 43, 63а, NHCH2CH2CHaHbO), 3.48 (м, 1Н, Н-51), 3.62 (м, 2Н, Н-33, Н-52), 3.68 (т, 1Н, J=10.2 Гц, Н-61а), 3.83 (м, 3H, Н-62а, 63b, NHCH2CH2CHaHbO), 3.86 (т, 1Н, J=9.1 Гц, Н-41), 4.91 (т, 1H, J=9.2 Гц, Н-42), 4.04 (т, 1Н, J=8.1 Гц, Н-31), 4.20 (м, 2Н, Н-32, 61b), 4.39 (дд, 1Н, J6b,5=4.7 Гц, J6b,6a=10.5 Гц, Н-62b), 4.44 (д, 1Н, J1,2=7.8 Гц, Н-13), 4.62 (д, 1Н, J1,2=7.0 Гц, Н-11), 4.97 (уширенный т, 1Н, NH), 5.03 (д, 1Н, J1,2=6.6 Гц, Н-12), 5.07 (с, 2Н, PhCH2), 5.25 (м, 2Н, Н-21, 22), 5.35, 5.41, 5.58 (3 с, каждый 1Н, PhCH), 7.30-8.89 (м, 30Н, 6 Ph). Спектр 13С ЯМР (CDCl3, 150 МГц): δ 29.4 (NHCH2CH2CH2O), 38.0 (NHCH2CH2CH2O), 65.9 (С-51), 66.2 (С-52), 66.4 (С-53), 66.6 (PhCH2), 67.2 (NHCH2CH2CH2O), 68.3 (С-63), 68.6 (С-61), 68.8 (С-62), 72.7 (С-33), 73.5 (2С), 73.6 (С-21, 22, 23), 77.9 (С-32), 78.2 (С-31), 78.5 (С-41), 79.3 (С-42), 80.2 (С-43), 100.0 (С-12), 100.9 (С-11), 101.3, 101.7, 101.8 (3 PhCH), 102.5 (С-13), 126.0-137.0 (6 Ph), 156.4 (OCONH), 164.9, 165.3 (2 PhCO). Данные масс-спектра: рассчитано для C64H65NO20 [М+Na]+ 1190.3992; найдено - 1190.4002.

Claims (2)

1. Способ избирательного удаления О-ацетильных защитных групп в присутствии О-бензоильных в олигосахаридах, включающий в себя обработку производных олигосахаридов гидразингидратом в органическом растворителе, содержащем хлористый метилен и метанол, отличающийся тем, что реакция проводится под действием 30-100 мольных эквивалентов гидразингидрата по отношению к производным олигосахаридов в смеси хлористого метилена и метанола в объемном соотношении 1:2.
2. Способ по п. 1, отличающийся тем, что реакция проводится под действием 50 мольных эквивалентов гидразингидрата по отношению к производным олигосахаридов.
RU2015130610A 2015-07-23 2015-07-23 Способ избирательного удаления О-ацетильных защитных групп в присутствии О-бензоильных RU2634707C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015130610A RU2634707C2 (ru) 2015-07-23 2015-07-23 Способ избирательного удаления О-ацетильных защитных групп в присутствии О-бензоильных

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015130610A RU2634707C2 (ru) 2015-07-23 2015-07-23 Способ избирательного удаления О-ацетильных защитных групп в присутствии О-бензоильных

Publications (2)

Publication Number Publication Date
RU2015130610A RU2015130610A (ru) 2017-01-26
RU2634707C2 true RU2634707C2 (ru) 2017-11-03

Family

ID=58450981

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015130610A RU2634707C2 (ru) 2015-07-23 2015-07-23 Способ избирательного удаления О-ацетильных защитных групп в присутствии О-бензоильных

Country Status (1)

Country Link
RU (1) RU2634707C2 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011014793A2 (en) * 2009-07-31 2011-02-03 Reliable Biopharmaceutical Corporation Process for preparing fondaparinux sodium and intermediates useful in the synthesis thereof
RU2011144838A (ru) * 2009-04-07 2013-05-20 Глюком А/С Синтез 2'-о-фукозиллактозы

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011144838A (ru) * 2009-04-07 2013-05-20 Глюком А/С Синтез 2'-о-фукозиллактозы
WO2011014793A2 (en) * 2009-07-31 2011-02-03 Reliable Biopharmaceutical Corporation Process for preparing fondaparinux sodium and intermediates useful in the synthesis thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W.R. Roush et al, J. Am. Chem. Soc., 1995, 117, 2236-2250. *

Also Published As

Publication number Publication date
RU2015130610A (ru) 2017-01-26

Similar Documents

Publication Publication Date Title
Boons et al. Dispiroketals in synthesis (Part 5): A new opportunity for oligosaccharide synthesis using differentially activated glycosyl donors and acceptors
Zunk et al. A new approach towards the synthesis of pseudaminic acid analogues
KR20110101207A (ko) L-푸코실 이당류- 또는 올리고-당 및 그의 신규한 2,3,4 트리벤질-푸코실 유도체 중간체의 합성 방법
Mendoza et al. Synthesis of trisaccharides containing internal galactofuranose O-linked in Trypanosoma cruzi mucins
WO2012135049A1 (en) Compounds and methods for chemical and chemo-enzymatic synthesis of complex glycans
Yi et al. Synthesis of 4, 5-disubstituted-3-deoxy-d-manno-octulosonic acid (Kdo) derivatives
Wang et al. Expedient synthesis of an α-S-(1→ 6)-linked pentaglucosyl thiol
RU2634707C2 (ru) Способ избирательного удаления О-ацетильных защитных групп в присутствии О-бензоильных
Hargreaves et al. Linear synthesis of the branched pentasaccharide repeats of O-antigens from Shigella flexneri 1a and 1b demonstrating the major steric hindrance associated with type-specific glucosylation
Kaya et al. Selective anomeric deacetylation using zinc acetate as catalyst
WO2016063058A1 (en) Anthelminthic macrolide synthesis
Carter et al. A new approach to the synthesis of legionaminic acid analogues
Schmölzer et al. Gram scale de novo synthesis of 2, 4-diacetamido-2, 4, 6-trideoxy-D-galactose
McConnell et al. Stereoselective α-glycosylation of C (6)-hydroxyl myo-inositols via nickel catalysis—application to the synthesis of GPI anchor pseudo-oligosaccharides
KR20140042802A (ko) N-치환된 만노사민 유도체, 그의 제조 방법 및 그의 용도
HU177271B (en) Process for preparing neamine-6-0- and -3-0-d-glycosyl analogues
Yashunsky et al. Synthesis of 3-aminopropyl glycosides of branched β-(1→ 3)-glucooligosaccharides
zu Reckendorf Diaminosugars—IV: The synthesis of 2, 6-diamino-2, 6-dideoxy-l-idose
Vannam et al. A practical and scalable synthesis of carbohydrate based oxepines
US6933382B2 (en) Process for the synthesis of 2-deoxy-D-glucose
Dasgupta et al. Synthesis of a core disaccharide from the Streptococcus pneumoniae type 23F capsular polysaccharide antigen
Zhang et al. An Efficient and Concise Synthesis of a β-(1→ 6)-linked D-galactofuranosyl Hexasaccharide
Lin et al. Tetranuclear zinc cluster: a dual purpose catalyst for per-O-acetylation and de-O-acetylation of carbohydrates
DE1620636A1 (de) Verfahren zur Herstellung von Nucleosidphosphaten
JPS617284A (ja) 糖類アセチル誘導体の選択的脱アセチル化方法