RU2634103C1 - Cast iron modification method - Google Patents

Cast iron modification method Download PDF

Info

Publication number
RU2634103C1
RU2634103C1 RU2016122163A RU2016122163A RU2634103C1 RU 2634103 C1 RU2634103 C1 RU 2634103C1 RU 2016122163 A RU2016122163 A RU 2016122163A RU 2016122163 A RU2016122163 A RU 2016122163A RU 2634103 C1 RU2634103 C1 RU 2634103C1
Authority
RU
Russia
Prior art keywords
cast iron
ladle
magnesium
oxide
silicon
Prior art date
Application number
RU2016122163A
Other languages
Russian (ru)
Inventor
Леонид Геннадьевич Знаменский
Ольга Викторовна Ивочкина
Александр Михайлович Каркарин
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)"
Priority to RU2016122163A priority Critical patent/RU2634103C1/en
Application granted granted Critical
Publication of RU2634103C1 publication Critical patent/RU2634103C1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

FIELD: metallurgy.
SUBSTANCE: method of cast iron modification includes introduction of magnesium oxide into composition of lining of casting ladle and its reduction by silicon of liquid cast iron poured into ladle. Silicon-calcium and nano-structured diamond powder are additionally introduced into the ladle lining composition, said ingredients and magnesium oxide are preliminarily mixed and exposed to the action of a silent discharge with a strength of 700…1100 v/m in a boiling layer of materials, and reduction of magnesium from its oxide is performed jointly with nanostructured diamond powder and silicon of liquid cast iron, poured into ladle at temperature 1360…1400°C.
EFFECT: invention makes it possible to modify the cast iron without a pyroeffect by reducing magnesium from its oxide, reduce temperature of cast iron overheating before modification while reducing consumption of spheroidizing mixture, improve physico-mechanical properties of cast iron due to production of spherical graphite and grinding of metal matrix.
2 ex, 2 tbl

Description

Изобретение относится к черной металлургии, а именно к литейному производству, и может быть использовано при производстве высокопрочных чугунов и отливок из них ответственного назначения.The invention relates to ferrous metallurgy, namely to foundry, and can be used in the production of high-strength cast irons and castings from them for critical purposes.

Из уровня техники известен способ выплавки железоуглеродистых сплавов в индукционных печах, включающий завалку металлической части шихты, плавление и легирование расплава комплексной смесью, содержащей кремний и углерод (Пат. РФ №2395589, 27.07.2010. Способ выплавки железоуглеродистых сплавов в индукционных печах / А.Д. Подольчук, М.И. Гасик, В.В. Сербин и др.). Известное техническое решение позволяет улучшить технологический процесс производства отливок из синтетических чугунов за счет одновременного донауглероживания и графитизирующего модифицирования. Однако аналог не обеспечивает сфероидизирующее модифицирующее воздействие на расплав чугуна.The prior art method for smelting iron-carbon alloys in induction furnaces, including filling the metal part of the charge, melting and alloying the melt with a complex mixture containing silicon and carbon (Pat. RF No. 2395589, 07/27/2010. Method for smelting iron-carbon alloys in induction furnaces / A. D. Podolchuk, M.I. Gasik, V.V. Serbin and others). The known technical solution allows to improve the technological process for the production of castings from synthetic cast irons due to the simultaneous pre-carbonization and graphitizing modification. However, the analogue does not provide a spheroidizing modifying effect on the molten iron.

Основным элементом для сфероидизирующего модифицирования чугуна является магний. Обработка чугуна магнием сопровождается обычно образованием паров высокой упругости, что требует создания специальных устройств или применения низкопроцентных (по магнию) лигатур во избежание большого пироэффекта и выплесков металла. Ввод магния в чугун в виде химических соединений с восстановителями исключает процесс кипения магния. Выделяющийся в результате реакции восстановления атомарный магний находится в состоянии высокой химической активности и интенсивно взаимодействует с компонентами чугуна, не накапливаясь в самостоятельную фазу.The main element for spheroidizing modification of cast iron is magnesium. The treatment of cast iron with magnesium is usually accompanied by the formation of vapors of high elasticity, which requires the creation of special devices or the use of low percent (for magnesium) alloys to avoid a large pyroelectric effect and splashes of metal. Entering magnesium into cast iron in the form of chemical compounds with reducing agents eliminates the boiling process of magnesium. Atomic magnesium released as a result of the reduction reaction is in a state of high chemical activity and intensively interacts with the components of cast iron without accumulating in an independent phase.

Наиболее близким по технической сущности и достигаемому результату является способ модифицирования чугуна, включающий восстановление оксида магния кремнием, содержащимся в чугуне, при температуре 1380…1480°С. В качестве источника оксидных соединений магния служит футеровка разливочного ковша или ее отдельные части (Пат. РФ №2058396, 30.04.1996. Способ модифицирования чугуна / Т.А. Шахназаров, Н.Н. Александров, Е.В. Ковалевич и др.). В этом случае исключаются трудности, связанные с экологией и дефицитом материалов, упрощается и удешевляется процесс. В качестве соединения магния применяется дешевый, недефицитный и не поддающийся возгонке оксид магния, а в качестве восстановителя кремний, находящийся в составе обрабатываемого чугуна. Вместе с тем прототип имеет следующие существенные недостатки:The closest in technical essence and the achieved result is a method of modifying cast iron, including the reduction of magnesium oxide with silicon contained in cast iron, at a temperature of 1380 ... 1480 ° C. The lining of the casting ladle or its separate parts serves as a source of magnesium oxide compounds (Pat. RF No. 2058396, 04/30/1996. Method for the modification of cast iron / T.A. Shakhnazarov, N.N. Alexandrov, E.V. Kovalevich, etc.) . In this case, the difficulties associated with the environment and the scarcity of materials are eliminated, the process is simplified and cheapened. As a magnesium compound, cheap, non-deficient and non-sublimable magnesium oxide is used, and as a reducing agent, silicon, which is part of the treated cast iron. However, the prototype has the following significant disadvantages:

- низкая скорость восстановления магния из его оксида;- low rate of reduction of magnesium from its oxide;

- высокая температура перегрева чугуна для модифицирования;- high temperature of overheating of cast iron for modification;

- повышенный расход сфероидизирующей смеси;- increased consumption of a spheroidizing mixture;

- низкая адгезия сфероидизирующей смеси к основной футеровочной массе ковша;- low adhesion of the spheroidizing mixture to the main lining mass of the bucket;

- невысокий коэффициент усвоения магния;- low absorption coefficient of magnesium;

- отсутствие измельчения металлической матрицы чугуна;- the absence of grinding the metal matrix of cast iron;

- незначительное повышение физико-механических свойств чугуна.- a slight increase in the physico-mechanical properties of cast iron.

В основу изобретения положена техническая задача - создание способа модифицирования чугуна без пироэффекта путем восстановления магния из его оксида, который бы обеспечил высокую скорость восстановления магния, снижение температуры перегрева чугуна перед модифицированием при уменьшении расхода сфероидизирующей смеси и, как следствие такого комплексного модифицирования (получение шаровидного графита и измельчение металлической матрицы), повышение физико-механических свойств чугуна и улучшение качества изготовления из него отливок ответственного назначения.The technical problem is the basis of the invention - the creation of a method for modifying cast iron without pyroeffect by reducing magnesium from its oxide, which would provide a high rate of magnesium reduction, lowering the temperature of cast iron overheating before modification, while reducing the consumption of a spheroidizing mixture and, as a result of such complex modification (production of spherical graphite and grinding a metal matrix), increasing the physicomechanical properties of cast iron and improving the quality of castings made from it responsible appointment.

Указанная задача решается таким образом, что в способе модифицирования чугуна, включающем введение в футеровку разливочного ковша оксида магния и его восстановление кремнием жидкого чугуна, согласно изобретению в футеровку ковша дополнительно вводят силикокальций и наноструктурированный алмазный порошок, причем указанные ингредиенты и оксид магния предварительно смешивают и подвергают воздействию тихого разряда напряженностью 700…1100 В/м в кипящем слое материалов, а восстановление магния из его оксида осуществляют совместно кремнием жидкого чугуна и наноструктурированным алмазным порошком при температурах 1360…1400°С.This problem is solved in such a way that in the method of modifying cast iron, comprising introducing magnesium oxide into the lining of the casting ladle and reducing it with silicon, molten iron, according to the invention, silicocalcium and nanostructured diamond powder are additionally introduced into the ladle lining, wherein said ingredients and magnesium oxide are pre-mixed and subjected a silent discharge of 700 ... 1100 V / m in a fluidized bed of materials, and the reduction of magnesium from its oxide is carried out jointly by silicon m of molten iron and nanostructured diamond powder at temperatures of 1360 ... 1400 ° C.

Дополнительное введение силикокальция и наноструктурированного алмазного порошка в футеровку разливочного ковша обеспечивает повышение к ней адгезии сфероидизирующей смеси за счет применения материалов с высокой удельной поверхностью, а также измельчение металлической матрицы чугуна под действием наноструктурированного углерода из алмазного порошка.The additional introduction of silicocalcium and nanostructured diamond powder into the lining of the casting ladle provides an increase in the adhesion of the spheroidizing mixture to it due to the use of materials with a high specific surface, as well as grinding of the metal matrix of cast iron under the action of nanostructured carbon from diamond powder.

Предварительная обработка сфероидизирующей смеси, состоящей из оксида магния, силикокальция и наноструктурированного алмазного порошка, тихим разрядом увеличивает скорость восстановления магния из его оксида в жидком чугуне за счет ускорения взаимодействия между компонентами сфероидизирующей смеси.Pretreatment of a spheroidizing mixture consisting of magnesium oxide, silicocalcium and nanostructured diamond powder with a quiet discharge increases the rate of reduction of magnesium from its oxide in molten iron by accelerating the interaction between the components of the spheroidizing mixture.

Напряженность тихого разряда 700…1100 В/м является оптимальной для повышения степени усвоения магния в жидком чугуне.The quiet discharge intensity of 700 ... 1100 V / m is optimal for increasing the degree of absorption of magnesium in molten iron.

Восстановление магния наноструктурированным алмазным порошком при температурах 1360…1400°С снижает температуру перегрева для модифицирования чугуна и обеспечивает снижение расхода сфероидизирующей смеси за счет ускорения реакции.The reduction of magnesium with a nanostructured diamond powder at temperatures of 1360 ... 1400 ° C reduces the superheat temperature for modifying cast iron and ensures a reduction in the consumption of a spheroidizing mixture due to the acceleration of the reaction.

В результате комплексного модифицирования чугуна (получение шаровидной формы графита и измельчение металлической матрицы) создаются условия для повышения физико-механических свойств и улучшения качества изготовления отливок ответственного назначения из высокопрочного чугуна.As a result of complex modification of cast iron (obtaining spherical graphite and grinding of a metal matrix), conditions are created to increase the physicomechanical properties and improve the quality of manufacturing of castings for critical purposes from high-strength cast iron.

Способ модифицирования чугуна осуществляется следующим образом. Сначала готовится смесь путем перемешивания оксида магния, силикокальция и наноструктурированного алмазного порошка в соотношении 1:2,5:0,1 по объему. Затем подготовленную просушенную смесь подвергают воздействию тихого разряда интенсивностью 700…1100 В/м в «кипящем слое» материалов. При напряженности меньше чем 700 В/м скорость восстановления магния из его оксида под действием сфероидизирующей смеси в жидком чугуне незначительная. Если напряженность тихого разряда больше чем 1100 В/м, то возрастают энергетические затраты на подготовку сфероидизирующей смеси. Активированную смесь используют для футеровки разливочного ковша. Расплавляют чугун в индукционной печи, заливают его в ковш и проводят в нем сфероидизирующее модифицирование при температуре 1360…1400°С в течение 2…5 минут в зависимости от объема расплава.The method of modifying cast iron is as follows. First, a mixture is prepared by mixing magnesium oxide, silicocalcium and nanostructured diamond powder in a ratio of 1: 2.5: 0.1 by volume. Then the prepared dried mixture is subjected to a quiet discharge with an intensity of 700 ... 1100 V / m in a "fluidized bed" of materials. At an intensity of less than 700 V / m, the rate of reduction of magnesium from its oxide under the action of a spheroidizing mixture in liquid iron is negligible. If the intensity of a quiet discharge is more than 1100 V / m, then the energy costs for preparing a spheroidizing mixture increase. The activated mixture is used for lining the casting ladle. Cast iron is melted in an induction furnace, it is poured into a ladle and spheroidizing modification is carried out in it at a temperature of 1360 ... 1400 ° C for 2 ... 5 minutes depending on the volume of the melt.

При температуре модифицирования расплава больше чем 1400°С значительно возрастают угар элементов и энергетические затраты. При температуре расплава в ковше меньше чем 1360°С эффект сфероидизирующего модифицирования чугуна выражен слабо.At a melt modification temperature of more than 1400 ° C, the fumes of elements and energy costs increase significantly. At a melt temperature in the ladle less than 1360 ° C, the effect of spheroidizing modification of cast iron is weakly expressed.

Предлагаемый способ модифицирования чугуна иллюстрируется следующими примерами.The proposed method for modifying cast iron is illustrated by the following examples.

Пример 1. Готовили сфероидизирующую смесь из оксида магния, силикокальция и нанострукутрированного алмазного порошка в соотношении 1:2,5:0,1 по объему путем перемешивания указанных материалов в кипящем слое с одновременным воздействием тихого разряда. Напряженность тихого разряда варьировали 700; 900; 1100 В/м. Затем активированной смесью футеровали разливочный ковш, используя в качестве связующего раствор жидкого стекла. Ковш сушили и прокаливали при температуре 800…850°С.Example 1. A spheroidizing mixture of magnesium oxide, silicocalcium and nanostructured diamond powder was prepared in a ratio of 1: 2.5: 0.1 by volume by mixing these materials in a fluidized bed with simultaneous exposure to a quiet discharge. Quiet discharge intensity varied 700; 900; 1100 V / m. Then the casting ladle was lined with the activated mixture using liquid glass as a binder. The ladle was dried and calcined at a temperature of 800 ... 850 ° C.

Выплавку чугуна осуществляли в индукционной плавильной печи с кислой футеровкой. Расплавленный чугун заливали из печи в ковш. При температуре 1400°С выдерживали чугун в ковше для модифицирования в течение 2…3 минут. Затем обработанный расплав заливали для получения проб в формы, которые были изготовлены из песчано-глинистой смеси влажностью 3,5%. Определены: химический состав чугуна (С=3,5%; Si=2,5%; Mn=0,6%; Р=0,08%; S=0,01%; Mg=0,07%), форма графита - глобулярная, металлическая матрица - перлито-ферритная. Согласно ГОСТ 3443-87 «Отливки из чугуна с различной формой графита. Методы определения структуры» по форме включения графита соответствуют ШГф5, по размеру графита ШГд15, распределение графита ШГр1; структура металлической матрицы П80(Ф20). Для оценки структуры и механических испытаний были получены цилиндрические пробы диаметром 30 мм и длиной 200 мм. Испытания на прочность проводили на разрывной машине INSTRON при скорости растяжения 2 мм/мин. Отбел определяли по клиновидной пробе, жидкотекучесть - по спиральной пробе (ГОСТ 16438-70). Для сравнения осуществляли выплавку чугуна в индукционной печи согласно прототипу.Cast iron was smelted in an induction melting furnace with an acid lining. Molten iron was poured from the furnace into the ladle. At a temperature of 1400 ° C, the cast iron was kept in the ladle for modification for 2 ... 3 minutes. Then, the processed melt was poured to obtain samples in molds that were made from a sand-clay mixture with a moisture content of 3.5%. Determined: chemical composition of cast iron (C = 3.5%; Si = 2.5%; Mn = 0.6%; P = 0.08%; S = 0.01%; Mg = 0.07%), form graphite is a globular, metal matrix is perlite-ferrite. According to GOST 3443-87 "Castings from cast iron with various forms of graphite. Methods for determining the structure "according to the form of inclusion of graphite correspond to SHGf5, according to the size of graphite SHGd15, the distribution of graphite SHGr1; structure of a metal matrix P80 (F20). To assess the structure and mechanical tests, cylindrical samples with a diameter of 30 mm and a length of 200 mm were obtained. Strength tests were carried out on an INSTRON tensile testing machine at a tensile speed of 2 mm / min. Whitening was determined by a wedge-shaped sample, fluidity - by a spiral test (GOST 16438-70). For comparison, iron was smelted in an induction furnace according to the prototype.

Влияние рассматриваемых способов модифицирования на структуру и свойства чугуна представлено в таблице 1.The influence of the considered methods of modification on the structure and properties of cast iron are presented in table 1.

Figure 00000001
Figure 00000001

Figure 00000002
Figure 00000002

Пример 2. Модифицирование чугуна осуществляли аналогично примеру 1, при этом напряженность тихого разряда при обработке сфероидизирующей смеси составляла 800 В/м. Варьировали температуру расплава чугуна при модифицировании 1360; 1390; 1400°С. Влияние этого параметра на структуру и свойства чугуна представлено в таблице 2.Example 2. Modification of cast iron was carried out analogously to example 1, while the intensity of the quiet discharge during processing of the spheroidizing mixture was 800 V / m The temperature of the molten iron was varied upon modification of 1360; 1390; 1400 ° C. The influence of this parameter on the structure and properties of cast iron is presented in table 2.

Figure 00000003
Figure 00000003

Таким образом, полученные результаты показывают, что разработанный способ обеспечивает улучшение физико-механических и литейных свойств чугуна за счет комплексного модифицирования чугуна (получение шаровидной формы графита и измельчение металлической матрицы) сфероидизирующей смесью из оксида магния, силикокальция и нанострукутрированного алмазного порошка, активированных тихим разрядом и введенных в футеровку разливочного ковша, при температуре 1360…1400°С.Thus, the obtained results show that the developed method improves the physicomechanical and casting properties of cast iron by complex modification of cast iron (obtaining spherical graphite and grinding the metal matrix) with a spheroidizing mixture of magnesium oxide, silicocalcium and nanostructured diamond powder activated by a quiet discharge and introduced into the lining of the casting ladle, at a temperature of 1360 ... 1400 ° C.

Claims (1)

Способ модифицирования чугуна, включающий введение в состав футеровки разливочного ковша оксида магния и его восстановление кремнием жидкого чугуна, заливаемого в ковш, отличающийся тем, что в состав футеровки ковша дополнительно вводят силикокальций и наноструктурированный алмазный порошок, причем указанные ингредиенты и оксид магния предварительно смешивают и подвергают воздействию тихого разряда напряженностью 700...1100 В/м в кипящем слое материалов, а восстановление магния из его оксида осуществляют совместно наноструктурированным алмазным порошком и кремнием жидкого чугуна, заливаемого в ковш при температуре 1360…1400°C.A method of modifying cast iron, comprising introducing magnesium oxide into the lining of the casting ladle and restoring it with silicon, liquid cast iron poured into the ladle, characterized in that silicocalcium and nanostructured diamond powder are additionally added to the lining of the ladle, said ingredients and magnesium oxide being pre-mixed and subjected to a quiet discharge of 700 ... 1100 V / m in a fluidized bed of materials, and the reduction of magnesium from its oxide is carried out jointly by nanostructured diamond powder and silicon cast iron, poured into the ladle at a temperature of 1360 ... 1400 ° C.
RU2016122163A 2016-06-03 2016-06-03 Cast iron modification method RU2634103C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016122163A RU2634103C1 (en) 2016-06-03 2016-06-03 Cast iron modification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016122163A RU2634103C1 (en) 2016-06-03 2016-06-03 Cast iron modification method

Publications (1)

Publication Number Publication Date
RU2634103C1 true RU2634103C1 (en) 2017-10-23

Family

ID=60153844

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016122163A RU2634103C1 (en) 2016-06-03 2016-06-03 Cast iron modification method

Country Status (1)

Country Link
RU (1) RU2634103C1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197306A (en) * 1964-08-31 1965-07-27 Dow Chemical Co Method for treating ferrous metals
US4545817A (en) * 1982-03-29 1985-10-08 Elkem Metals Company Alloy useful for producing ductile and compacted graphite cast irons
RU2058396C1 (en) * 1991-12-13 1996-04-20 Институт физики Дагестанского Научного центра АН СССР Method for inoculation of pig iron
RU2395589C2 (en) * 2007-08-01 2010-07-27 Общество с ограниченной ответственностью "НЛАН" Procedure for melting iron-carbon alloys in induction furnaces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197306A (en) * 1964-08-31 1965-07-27 Dow Chemical Co Method for treating ferrous metals
US4545817A (en) * 1982-03-29 1985-10-08 Elkem Metals Company Alloy useful for producing ductile and compacted graphite cast irons
RU2058396C1 (en) * 1991-12-13 1996-04-20 Институт физики Дагестанского Научного центра АН СССР Method for inoculation of pig iron
RU2395589C2 (en) * 2007-08-01 2010-07-27 Общество с ограниченной ответственностью "НЛАН" Procedure for melting iron-carbon alloys in induction furnaces

Similar Documents

Publication Publication Date Title
JP6918846B2 (en) Cast iron inoculant and manufacturing method of cast iron inoculant
KR102494632B1 (en) Cast iron inoculants and methods of producing cast iron inoculants
RU2634103C1 (en) Cast iron modification method
RU2620206C2 (en) Graphitizing modification method of iron
RU2618294C1 (en) Procedure for melting synthetical nodular cast iron in induction furnaces
RU2538850C2 (en) Modification method of aluminium and aluminium-silicone alloys (silumins) by carbon
PL232412B1 (en) Vermicular cast iron with the matrix from ausferrite and carbides
RU2355803C2 (en) Ligature for modification of high-strength cast irons, method of its receiving and usage
RU2439166C2 (en) Cast iron and silumin modifying method
RU2402617C2 (en) Procedure for crumbling graphite inclusions in high strength iron
RU2652932C1 (en) Method for ladle modification of cast iron and steels
RU2588965C1 (en) Method for modification of cast iron
US3367772A (en) Method for treating ferrous metals
SU1211299A1 (en) Method of producing aluminium cast iron with compact graphite
RU2704678C1 (en) Method of cast iron modifying and modifier for implementation of method
RU2177041C1 (en) Method of gray cast iron production
RU2156809C1 (en) Method for making high strength cast iron
RU2585912C1 (en) Method of producing high-strength iron with globular graphite
SU1585372A1 (en) High-strength cast iron
US2822266A (en) Method of preparing nodular graphite iron
SU1239150A1 (en) Method of producing high-strength cast iron with globular graphite
SU1323602A1 (en) Mixture for alloying and inoculating cast iron
SU1320236A1 (en) Inoculating mixture
RU2375461C2 (en) Method of cast iron receiving with globular graphite
US3362814A (en) Process for producing nodular iron

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180604