RU2633523C1 - Способ бромирования поверхности порошка СВМПЭ - Google Patents

Способ бромирования поверхности порошка СВМПЭ Download PDF

Info

Publication number
RU2633523C1
RU2633523C1 RU2016147407A RU2016147407A RU2633523C1 RU 2633523 C1 RU2633523 C1 RU 2633523C1 RU 2016147407 A RU2016147407 A RU 2016147407A RU 2016147407 A RU2016147407 A RU 2016147407A RU 2633523 C1 RU2633523 C1 RU 2633523C1
Authority
RU
Russia
Prior art keywords
uhmwpe
bromine
uhmpe
bromination
reaction
Prior art date
Application number
RU2016147407A
Other languages
English (en)
Inventor
Раиса Васильевна Борисова
Татьяна Андреевна Охлопкова
Леонид Александрович Никифоров
Александр Михайлович Спиридонов
Айталина Алексеевна Охлопкова
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет имени М.К.Аммосова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет имени М.К.Аммосова" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет имени М.К.Аммосова"
Priority to RU2016147407A priority Critical patent/RU2633523C1/ru
Application granted granted Critical
Publication of RU2633523C1 publication Critical patent/RU2633523C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/12Incorporating halogen atoms into the molecule
    • C08C19/14Incorporating halogen atoms into the molecule by reaction with halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к способу бромирования поверхности порошка сверхвысокомолекулярного полиэтилена (СВМПЭ). Способ включает приготовление раствора галогена в низкокипящем органическом растворителе с последующим бромированием поверхности СВМПЭ с использованием ультрафиолетового излучения в качестве инициатора. Органический растворитель выбирают как инертный по отношению к СВМПЭ и брому. Реакционную смесь выдерживают в течение 18-72 часов в зависимости от требуемого содержания привитого брома на поверхности СВМПЭ при температуре кипения органического растворителя не более 120°С, под действием ультрафиолетового излучения и при постоянном перемешивании реакционной смеси. По окончании реакции модифицированный СВМПЭ нейтрализуют и очищают. Способ позволяет получить СВМПЭ с содержанием брома на поверхности 10-46 мас. %. Технический результат – эффективное протекание реакции бромирования поверхности порошка СВМПЭ в жидкой среде, без растворения полимера. 2 ил.

Description

Способ бромирования поверхности порошка СВМПЭ
Изобретение относится к способу бромирования поверхности порошка сверхвысокомолекулярного полиэтилена (СВМПЭ), применяемого для изготовления полимерных нанокомпозитов с высокими эксплуатационными свойствами.
СВМПЭ - это модификация полиэтилена низкого давления с молекулярной массой от 2 млн. К уникальным свойствам СВМПЭ, обуславливающие его применение, относятся исключительно высокая износостойкость и прочность, низкий коэффициент трения и высокая морозостойкость, химическая стойкость, а также стойкость к излучениям высокой энергии (УФ, гамма и рентгеновские лучи) и т.д. Комплекс эксплуатационных характеристик СВМПЭ позволяет применять его в качестве средств бронезащиты, в узлах сухого трения машин и механизмов, в качестве имплантов в эндопротезировании, в спортивной, военно-промышленной, космической и машиностроительной технике.
СВМПЭ отличается от полиэтилена (ПЭ) традиционных марок (ПЭВД, ПЭНД), прежде всего, высокой молекулярной массой и, следовательно, невозможностью перехода в расплав и трудностями в подборе растворителя, тогда как большинство предлагаемых способов галогенирования полиэтиленов требуют перевода полимера в раствор.
Перспективными в настоящее время считаются полимерные композиционные материалы (ПКМ) на основе сверхвысокомолекулярного полиэтилена и неорганических наполнителей, которые обладают эксплуатационными характеристиками, превышающими исходный СВМПЭ. Однако главным препятствием к достижению подобных результатов является недостаточная адгезия между компонентами ПКМ. Проблема увеличения адгезии между неполярной полимерной матрицей и полярным наполнителем является одной из основных в современном материаловедении. В настоящее время существуют разные способы увеличения адгезии, такие как химическая, термомеханическая, механохимическая, плазменная, радиационная обработка полимера или наполнителя, поверхностная прививка гидрофильного мономера и т.д. Предлагаемое изобретение направлено на решение данной проблемы путем создания порошка СВМПЭ с поверхностью, модифицированной бромом - компонентом пластических масс, повышающего адгезию между неорганическими и органическими веществами и не действующего как пластификатор.
Среди галогенирующих агентов предпочтительнее бром, т.к. данный процесс более контролируемый и реакционная способность бромпроизводных в реакциях нуклеофильного замещения выше, чем у хлорпроизводных, а йод является менее технологичным и реакционноспособным по сравнению с бромом в реакциях свободнорадикального замещения. Легкость протекания реакции нуклеофильного замещения является основным важным критерием с точки зрения универсальности модифицированного СВМПЭ, как исходного вещества для получения широкого спектра компонентов пластических масс.
Способы галогенирования полиэтиленов (ПЭВД, ПЭНД) известны еще с 1940-х гг. (см. US №2316481, кл. C08K 5/10, C08K 5/10, C08L 23/286, опубл. 13.04.1943, US №2405971, кл. C08F 10/00, C08F 8/20, C08F 8/20, опубл. 20.08.1946).
В традиционных способах процесс галогенирования состоит из трех этапов: полное растворение полиэтилена в органических растворителях, реакция галогенирования, нейтрализация и очистка от свободного галогена (см. US № 2503252, кл. C08F 8/20, C08F 8/20, C08F 10/00, опубл. 11.04.1950; US № 3260694, кл. C08K 5/14, C08L 23/286, C08K 5/14, C08L 23/286, C08L 23/286, C08L 2666/04, опубл. 12.07.1966). Данные методы не применимы по отношению к СВМПЭ из-за его ограниченной растворимости в органических жидкостях.
Для устранения проблемы совместимости и смачиваемости в ПКМ применяется поверхностное бромирование готовых полиэтиленовых изделий, например, пленок.
Известен способ бромирования полиэтиленовой пленки под кратковременным воздействием (до 1 сек.) насыщенных паров брома с последующим УФ-облучением (см. Noppavan Chanunpanich, Abraham Ulman, Y. M. Strzhemechny, S. A. Schwarz, A. Janke, H. G. Braun, and T. Kraztmuller. Surface Modification of Polyethylene through Bromination // Langmuir 1999, 15, P. 2089-2094). В данном случае, бромированные пленки промывали холодной дистиллированной водой и сушили в среде азота с последующей выдержкой в вакууме с целью удаления адсорбированного брома.
Существует аналогичный способ бромирования полиэтиленовой пленки в газовой фазе (см. S. Balamurugana, A.B. Mandaleb, S. Badrinarayananb, S.P. Vernekara. Photochemical bromination of polyolefin surfaces // Polymer. Vol 42. 2001. PP. 2501–2512), отличающийся временем облучения и мощностью генератора УФ-лучей. Однако, пары брома, образующиеся в результате газофазной реакции, токсичны и представляют технологические трудности.
Кроме того, вышеперечисленные способы бромирования ПЭ не подходят для СВМПЭ из-за особенностей его физико-химических характеристик, обусловленных высоким значением молекулярной массы (более 1 млн).
Наиболее близким по технической сущности к заявленному способу является бромирование готовых волокон СВМПЭ марки Spectra-1000 (Allied Signal) для увеличения полярности поверхности волокон и увеличения диэлектрической активности (см. Transcrystallinity in brominated UHMWPE fiber reinforced HDPE composites: morphology and dielectric properties. Linda Vaisman, M. Fernanda González, Gad Marom. Polymer. Volume 44, Issue 4, February 2003, Pages 1229–1235).
В известном способе волокна СВМПЭ подвешивают внутри кварцевой трубки, при этом предварительно продувают сухим газообразным азотом в течение 10 мин. Далее две капли брома вводят в трубу, через резиновую перегородку и дают испариться. Затем трубку помещают на расстоянии 5-10 см от UV-C лампы (Vilber Lournat 6 Вт, 254 нм) и облучают в течение 30 сек. После облучения волокна выдерживают в вакуумной печи в течение 12 часов для удаления непрореагировавшего остаточного брома.
Недостатком данного способа является низкая площадь реакционной поверхности: по данным авторов массовая концентрация брома составляет всего 1,4 %, что можно объяснить невысокой скоростью бромирования готового изделия СВМПЭ в подобных условиях.
Кроме того, известен способ бромирования полиэтилена со средней молекулярной массой 4550 (см. US № 2183556, кл. C08F 8/20; D01F 6/08; H01B 3/18; C08F 8/20; C08F 10/00, опубл. 19.12.1939), заключающийся в растворении полиэтилена в минимальном количестве кипящего четыреххлористого углерода (ЧХУ) с последующим быстрым охлаждением до комнатной температуры и «порционным» добавлением брома в течение 1 часа. Полученную смесь выдерживают в течение 2 часов, затем фильтруют и сушат. Недостатком метода является то, что данный метод применим только для низкомолекулярных полиэтиленов.
Таким образом, недостатками существующих методов галогенирования ПЭ и СВМПЭ являются то, что в одних случаях химическая реакция проводится в газовой фазе, что представляет собой технологические трудности из-за токсичности галогенов, а в других случаях процессы требуют полного растворения ПЭ с последующим удалением растворителя, что не подходит для СВМПЭ из-за его высокого значения молекулярной массы. Кроме того, в случае уже готового изделия, например волокон из СВМПЭ, процессы отличаются низкой эффективностью (низкое содержание брома в СВМПЭ).
Задача, на решение которой направлено изобретение, заключается в получении галогенированного СВМПЭ путем реакции бромирования СВМПЭ в целях изготовления ПКМ, характеризующиеся высокими эксплуатационными свойствами.
Технический эффект, получаемый при решении поставленной задачи, выражается в получении, благодаря поверхностной обработке СВМПЭ бромом, ПКМ с улучшенной адгезией на границе раздела фаз между компонентами системы, а именно полярными наполнителями и неполярной полимерной матрицей.
Для решения поставленной задачи способ бромирования поверхности порошка СВМПЭ, включающий реакцию бромирования под воздействием электромагнитного (ультрафиолетового) излучения, нейтрализацию и очистку модифицированного СВМПЭ от свободного брома, отличается тем, что реакцию бромирования проводят в жидкой среде низкокипящего органического растворителя, инертного к СВМПЭ и брому, при температуре не более 120°С, причем СВМПЭ используется в порошкообразном состоянии, а продолжительность реакции бромирования определяют в зависимости от требуемого содержания привитого брома на поверхности СВМПЭ в пределах 18-72 часов. Кроме того, техническое решение позволяет осуществить контроль содержания массовой доли брома на поверхности СВМПЭ путем варьирования времени обработки. Также весь процесс осуществляется в жидкой среде, без растворения полимера, что обеспечивает более эффективное протекание реакции бромирования поверхности СВМПЭ. Полученный бромированный СВМПЭ характеризуется высоким содержанием химически связанного брома (до 46 %) и служит в качестве компонента ПКМ, повышающего адгезию между полимерной матрицей неполярного СВМПЭ и полярными наноразмерными неорганическими наполнителями.
Сопоставительный анализ признаков заявленного решения с признаками аналогов свидетельствует о соответствии заявленного решения критерию «новизна».
Признаки отличительной части формулы изобретения:
1) использованный в данном способе СВМПЭ находится в виде порошка;
2) бромирование проводится не в газовой среде, а в жидкой;
3) бромирование происходит без растворения СВМПЭ, т.е. реакция идет только на поверхности реакторного порошка СВМПЭ.
Предпочтительно реакцию бромирования осуществлять в среде низкокипящего органического растворителя, который химически инертен по отношению к галогену и полимеру, например ЧХУ, хлороформ, трихлорэтилен и т.д. Важно также, чтобы температура кипения жидкой среды была меньше 120°С для исключения плавления, размягчения и/или растворения полимера.
Химическое модифицирование СВМПЭ осуществляли в реакторе непрерывного действия со стенками из боросиликатного стекла, пропускающего ультрафиолетовое излучение в диапазоне 200-400 см-1, снабженного механической мешалкой и обратным холодильником с водяным охлаждением. Источником ультрафиолетового излучения служит кварцевая лампа мощностью 7 Вт.
В реактор загружали 250 мл 10 % раствора брома (Br2) в ЧХУ (CCl4) и 100 г порошка СВМПЭ. Процесс проводили при температуре теплоносителя реактора 80°C при непрерывном ультрафиолетовом излучении и интенсивном перемешивании смеси. Для установления кинетики процесса бромирования на поверхности СВМПЭ через 12; 18; 24; 36; 48; 60; 72; 84; 96; 108 ч после начала процесса отбирали небольшую порцию смеси СВМПЭ с CCl4 из реактора, фильтровали на воронке Бюхнера и отделили смесь от жидкой фракции на вакуумном сушильном шкафу при 353К и остаточном давлении 100 Па в течение 24 ч до достижения постоянной массы образца.
Полученные образцы подвергали элементному анализу методом рентгеноспектрального микрозондового анализа на рентгеноспектральной приставке X-MAX-20 фирмы OXFORD растрового электронного микроскопа JSM-7800F фирмы JEOL.
Для этого образцы наносили на токопроводящий углеродный скотч, прикрепленный к латунной подложке, продували азотом (N2) для удаления ненадежно зафиксированных на скотче частиц, помещали в камеру растрового электронного микроскопа и вакуумировали до остаточного давления 9,6⋅10–5 Па.
Количественный анализ выполняли в программном обеспечении «Energy» путем расчета интенсивности пиков, полученных вычислением наилучшего совпадения эталонных пиков по методу наименьших квадратов с подавлением фона. Численные значения содержания элементов рассчитывали путем усреднения данных, полученных анализом пяти независимых проб.
Заявленное техническое решение на примере эксперимента иллюстрируется чертежами, где на фигуре 1 представлены результаты рентгеноспектрального анализа образца бромированного СВМПЭ (после реакции в течение 72 ч): а) спектр образца; б) микрофотография образца; в) массовое соотношение атомов С и Br на поверхности СВМПЭ; на фигуре 2 - график изменения содержания брома в процессе бромирования.
По данным элементного анализа видно (см. фиг. 1), что на поверхности порошка СВМПЭ зарегистрировано наличие элементов углерода и брома в массовых соотношениях 57,55 и 42,45 %, соответственно.
Анализ результатов оценки зависимости количественного содержания брома на поверхности частиц порошка СВМПЭ от времени процесса бромирования (см. фиг. 2) показывает, что наиболее динамический рост концентрации брома на поверхности частиц СВМПЭ наблюдается в интервале времени экспозиции 18-72 ч, что может быть обусловлено физико-химическими особенностями протекания гетерогенных процессов, лежащих в диффузионно и кинетически контролируемых областях.
Вывод: при использовании способа по заявленному техническому решению достигается наиболее эффективное бромирование порошка СВМПЭ, причем без необходимости его растворения в органических жидкостях. Достигается поверхностное модифицирование СВМПЭ, обеспечивающего усиление межфазного взаимодействия «неполярный полимер - полярный наполнитель» в органо-неорганических полимерных композиционных материалах, которые характеризуются повышенными физико-механическими свойствами и могут быть использованы в качестве конструкционных и функциональных материалов широкого спектра применения.

Claims (1)

  1. Способ бромирования поверхности порошка СВМПЭ, включающий реакцию бромирования под воздействием ультрафиолетового излучения, нейтрализацию и очистку модифицированного СВМПЭ от свободного брома, отличающийся тем, что реакцию бромирования проводят в среде низкокипящего органического растворителя, инертного к СВМПЭ и брому, при температуре не более 120°С, причем СВМПЭ используют в виде порошка, а продолжительность реакции бромирования назначают в зависимости от требуемого содержания привитого брома на поверхности СВМПЭ в пределах 18-72 часов.
RU2016147407A 2016-12-03 2016-12-03 Способ бромирования поверхности порошка СВМПЭ RU2633523C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016147407A RU2633523C1 (ru) 2016-12-03 2016-12-03 Способ бромирования поверхности порошка СВМПЭ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016147407A RU2633523C1 (ru) 2016-12-03 2016-12-03 Способ бромирования поверхности порошка СВМПЭ

Publications (1)

Publication Number Publication Date
RU2633523C1 true RU2633523C1 (ru) 2017-10-13

Family

ID=60129432

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016147407A RU2633523C1 (ru) 2016-12-03 2016-12-03 Способ бромирования поверхности порошка СВМПЭ

Country Status (1)

Country Link
RU (1) RU2633523C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2183556A (en) * 1936-09-11 1939-12-19 Ici Ltd Halogenated solid ethylene polymer
US2503252A (en) * 1947-06-27 1950-04-11 Du Pont Halogenation of polymers
RU2217440C2 (ru) * 2000-11-17 2003-11-27 Хусаинова Резеда Мазгаровна Способ получения галогенированных полимеров

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2183556A (en) * 1936-09-11 1939-12-19 Ici Ltd Halogenated solid ethylene polymer
US2503252A (en) * 1947-06-27 1950-04-11 Du Pont Halogenation of polymers
RU2217440C2 (ru) * 2000-11-17 2003-11-27 Хусаинова Резеда Мазгаровна Способ получения галогенированных полимеров

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LINDA VAISMAN и др., "Transcrystallinity in brominated UHMWPE fiber reinforced HDPE composited: morphology and dielectric properties", Polymer, т.44, n.4, 2003, с.2501-2512. *

Similar Documents

Publication Publication Date Title
Arslan et al. The emerging applications of click chemistry reactions in the modification of industrial polymers
ES2381034T3 (es) Método para tratar partículas de fluoropolímero y los productos del mismo
RU2279449C2 (ru) Способ обработки частиц фторполимеров и их продуктов
WO1984000312A1 (en) Fluorination by inorganic fluorides in glow discharge
CN1332988C (zh) 氟橡胶模塑产品及其生产方法
Rusen et al. Hydrophilic modification of polyvinyl chloride with polyacrylic acid using ATRP
RU2633523C1 (ru) Способ бромирования поверхности порошка СВМПЭ
JP4905980B2 (ja) 抗菌性フィルム
Zhang et al. Surface modification of poly (tetrafluoroethylene) films by low energy Ar+ ion-beam activation and UV-induced graft copolymerization
Sonnier et al. Modification of polymer blends by E-beam and gamma irradiation
Chaudhari et al. Ethylene vinyl acetate based radiation grafted hydrophilic matrices: process parameter standardization, grafting kinetics and characterization
US20120189772A1 (en) Process for preparing a polyolefin pipe having inherent resistance to thermooxidative degradation
Zhai et al. Radiation-induced grafting of perfluorinated vinyl ether into fluorinated polymer films
Tang et al. Preparation of thermo-sensitive poly (N-isopropylacrylamide) film using KHz alternating current Dielectric barrier discharge
US4405760A (en) Chlorination and crosslinking of selected polymers with Cl2 O or HOCl
Rao Radiation processing of polymers
Meyer et al. Surface modification of polystyrene by photoinitiated introduction of cyano groups
Nasef et al. Radiation induced emulsion grafting of glycidyl methacrylate onto high density polyethylene: a kinetic study
JP2707597B2 (ja) 含フッ素ポリオレフィンの製造方法
Song et al. Morphological Study of Poly (vinylbenzyl chloride)-Grafted Poly (ethylene-co-tetrafluoroethylene)[ETFE-g-PVBC] Films Using Small-Angle Neutron Scattering Analysis
Das et al. Halogenation of polymers by dichlorodifluoromethane
Guliyev et al. Radical copolymerization of p-(2, 2-dichlorocyclopropyl) styrene with glycidyl methacrylate and properties of the polymer obtained
Chawla et al. Functionalization of industrial polypropylene films via the swift‐heavy‐ion‐induced grafting of glycidyl methacrylate
Dessouki et al. Synthesis of permselective membranes by radiation‐induced grafting of N‐vinylpyrrolidone onto poly (tetrafluoroethylene–hexafluoropropylene–vinylidene fluoride)(TFB) films
JP2008001773A (ja) ポリオレフィン成形体の表面修飾

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201204