RU2631071C2 - Способ получения аморфных пленок халькогенидных стеклообразных полупроводников с эффектом фазовой памяти - Google Patents

Способ получения аморфных пленок халькогенидных стеклообразных полупроводников с эффектом фазовой памяти Download PDF

Info

Publication number
RU2631071C2
RU2631071C2 RU2016107474A RU2016107474A RU2631071C2 RU 2631071 C2 RU2631071 C2 RU 2631071C2 RU 2016107474 A RU2016107474 A RU 2016107474A RU 2016107474 A RU2016107474 A RU 2016107474A RU 2631071 C2 RU2631071 C2 RU 2631071C2
Authority
RU
Russia
Prior art keywords
layer
chalcogenide material
vacuum
thermal evaporation
films
Prior art date
Application number
RU2016107474A
Other languages
English (en)
Other versions
RU2016107474A (ru
Inventor
Сергей Петрович Тимошенков
Алексей Анатольевич Шерченков
Наталья Егоровна Коробова
Петр Иванович Лазаренко
Алексей Вальтерович Бабич
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ)
Priority to RU2016107474A priority Critical patent/RU2631071C2/ru
Publication of RU2016107474A publication Critical patent/RU2016107474A/ru
Application granted granted Critical
Publication of RU2631071C2 publication Critical patent/RU2631071C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Semiconductor Memories (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

Изобретение относится к способу получения тонких пленок, в частности к получению аморфных пленок халькогенидных стеклообразных полупроводников с эффектом фазовой памяти, и может быть использовано в качестве рабочего слоя в приборах записи информации. Осуществляют нанесение слоя халькогенидного материала системы тройных теллуридов германия и сурьмы Ge-Sb-Те методом вакуумно-термического испарения взрывного типа. В качестве халькогенидного материала используют смесь стехиометрических составов GeSb2Te4 и Ge2Sb2Te5 при соотношении 1:1, механически активированную перед нанесением слоя указанного халькогенидного материала. Перед нанесением слоя указанного халькогенидного материала в предварительно откаченную до давления 3,5⋅10-6 Па вакуумную камеру помещают обезжиренную, подвергнутую термическому окислению со сформированным подслоем оксида кремния кремниевую подложку, затем на поверхность подслоя оксида кремния методом вакуумно-термического испарения наносят нижний алюминиевый слой. Нанесение слоя указанного халькогенидного материала методом вакуумно-термического испарения взрывного типа проводят при давлении в рабочем объеме 10-6 Па, температуре подложки 30°С, температуре испарителя 600°С и скорости испарения шихты 1-2 нм/с. Обеспечивается разработка экономичного способа получения аморфных пленок халькогенидных стеклообразных полупроводников системы Ge-Sb-Te, обладающих повышенной стабильностью характеристик, информационным быстродействием и невысокой потребляемой мощностью. 1 пр.

Description

Изобретение относится к способу получения тонких пленок, в частности к получению аморфных пленок халькогенидных стеклообразных полупроводников, и может быть использовано в качестве рабочих слоев в приборах записи информации.
Целенаправленно изменять электрофизические и температурные характеристики полупроводниковых пленок возможно за счет легирования и модификации структуры легирующими примесями (азота, кислорода, алюминия, кремния, титана, кобальта, серебра, висмута, цинка, индия). Наиболее распространенным способом получения аморфных тонких пленок материалов системы тройных теллуридов германия и сурьмы Ge-Sb-Te, легированных примесями алюминия, является высокочастотное магнетронное распыление [патент Китай CN 101109056 В]. Данный способ позволяет с высокой воспроизводимостью получать тонкие пленки Alx(Ge2Sb2Te5)100-x (0<х<5), используя метод совместного напыления из двух мишений - стекла и металла. Недостатком этого способа получения халькогенидных стеклообразных полупроводниковых пленок является низкая скорость получения пленок и необходимость дополнительного отжига пленочных структур в диапазоне от комнатной температуры до 400°С при скорости нагрева (40-50)°С/мин.
Известен способ получения аморфных пленок халькогенидных стеклообразных полупроводников [патент США 8500963 В2], в котором методом магнетронного ВЧ напыления в аргоновой плазме ведется осаждение пленок Ge2Sb2Te5 (GST225), стабильность характеристик которых достигается в результате напыления подслоя из проводящего и кристаллографически совместимого материала, например алюминия. Недостатком этого способа можно считать низкую скорость напыления, жесткий контроль за температурным режимом получением пленок Ge2Sb2Te5 (GST225) необходимой структуры (аморфной или кристаллической). Из-за длительного напыления и разогрева подложки чаще формируются пленки кристаллической структуры. Таким образом, магнетронное распыление является значительно менее оперативным и более дорогостоящим процессом по сравнению с вакуумно-термическим испарением. Дороговизна процесса в первую очередь связана с энергоемкостью процесса, а также необходимостью изготовления мишени (формирование матриц для прессования, синтезирование большого количества дорогостоящего материала и т.д.) под каждый исследуемый состав.
Наиболее близким по технической сущности к заявляемому способу является способ получения аморфных пленок халькогенидных стеклообразных полупроводников на примере модельного состава теллурида германия и сурьмы Ge2Sb2Te5 (GST225), включающий метод вакуумно-термического испарения форсированного («взрывного») типа [M. Hemanadhan, Ch. Bapanayya, S.C. Agarwal "Simple flash evaporator for making thin films of compounds", J. Vac. Sci. Technol. А28., 625 (2010)]. Для сохранения стехиометрического состава полученных Ge2Sb2Te5 пленок было предложено использовать температуру испарителя ~1000°С. В пределах каждого слоя наблюдается неоднородный состав (вследствие фракционирования сплава), однако уже в процессе нанесения взаимной диффузией атомов составляющих компонентов выравнивается концентрация каждого из них по толщине пленки. Показано, что использование «взрывного» типа вакуумно-термического испарения позволило устранить проблемы в отклонении состава осаждаемой пленки Ge2Sb2Te5 от состава испаряемого материала и синтезированные пленки обладали электропроводностью на порядок ниже по сравнению с пленками, полученными обычным способом вакуумно-термического испарения при прочих равных условиях. Недостатками известного способа получения аморфных пленок халькогенидных стеклообразных полупроводников является энергоемкость процесса, а именно использование высоких температур испарителя (~1000°С), которое может приводить к увеличению температуры подложки и может оказывать влияние на степень фазовой и структурной неравномерности. Этот факт способен оказать влияние на электрофизические свойства пленок Ge2Sb2Te5 (низкое информационное быстродействие, высокая потребляемая мощность из-за изменения кинетики фазового перехода).
В связи с вышесказанным, с целью минимизации времени подготовки образцов и экономических затрат при проведении исследований и оптимизации характеристик за счет вариации состава на стадии разработки и оптимизации технологии устройств фазовой памяти был использован метод вакуумно-термического испарения форсированного («взрывного») типа. Задачей предлагаемого изобретения является разработка экономичного способа получения аморфных пленок халькогенидных стеклообразных полупроводников системы Ge-Sb-Te, обладающих повышенной стабильностью характеристик, информационным быстродействием и невысокой потребляемой мощностью.
Это достигается способом получения халькогенидных стеклообразных полупроводниковых пленок с эффектом фазовой памяти, включающим вакуумно-термическое испарение «взрывного» типа материалов системы тройных теллуридов германия и сурьмы Ge-Sb-Te, как перспективных материалов для ячеек фазовой памяти произвольного доступа, и их осаждение на диэлектрический слой в условиях вакуума (давление в камере не выше 10-6 Па), но в отличие от известного в качестве халькогенидного полупроводникового материала используют тройной состав компонентов, лежащих на линии квазибинарного разреза Sb2Te3 – GeTe, и представляющий собой смесь стехиометрических составов GeSb2Te4 и Ge2Sb2Te5, модифицированный подслоем алюминия, выполняющего роль нижнего электрода. Осаждаемый материал перед напылением проходит предварительную механическую активацию. Для получения состава пленок, соответствующего составу исходного сплава, применяют метод микродозирования (взрывное испарение). Сущность этого метода состоит в том, что из дозатора на ленточный разогретый испаритель дискретно сбрасываются небольшие порции порошка испаряемого сплава с размерами частиц 10-20 мкм. Испарение микродоз происходит практически мгновенно и полностью, в результате чего на подложке последовательно осаждаются очень тонкие слои. Достоинством его является также отсутствие загрязнений пленки материалом испарителя (малое время контакта микродозы сплава с испарителем). Полученные пленки были аморфными, с высокой величиной информационного быстродействия и сниженной величиной потребляемой мощности. Эти характеристики являются структурно-чувствительными параметрами.
По совокупности значимых свойств - времени фазового перехода, стабильности свойств, температурам кристаллизации и плавления, которые определяют необходимую мощность, величину тока программирования и вероятность спонтанной кристаллизации, количеству возможных циклов записи/стирания - наибольший интерес представляет соединение системы Ge - Sb - Те [Raoux S., Welnic W., Ielmini D. "Phase Change Materials and Their Application to Nonvolatile Memories"// Chem. Rev. - 2010, Vol. 110, p. 240-267]. Перспективным для управления электрофизическими и температурными свойствами материалов системы тройных теллуридов германия и сурьмы Ge - Sb - Те является использование кристаллографически подобного элемента (алюминия) с одним из основных компонентов, что должно обеспечить стабильность структуры ХСП и снизить напряжения в формируемой пленке.
Существенным фактом в предлагаемом способе является использование предварительной «механической обработкой» материала в магнитной мешалке, слабое магнитное поле которой способствует общему упорядочению структуры и образованию кластеров в аморфной матрице. В результате, число относительно больших кластеров возрастает, а вслед за этим увеличивается вероятность успешной нуклеации и роста кристаллических «зародышей» при подаче управляющего импульса [«РСМ-память на основе фазового перехода» в журнале Компоненты и технологии, №9, 2012].
Заявляемый способ получения аморфных пленок халькогенидных стеклообразных полупроводников заключается в следующем. Обезжиренные образцы кремния с подслоем оксида помещают в вакуумную камеру, рабочий объем которой предварительно откачивают до давления Ρ ~3,5⋅10-6 Па. Шихта 2-3 г из смеси стехиометрических составов GeSb2Te4 и Ge2Sb2Te5 (1:1) механически активируется в магнитной мешалке типа в течение 5 минут. На поверхность оксида кремния методом вакуумно-термического испарения наносится нижний алюминиевый электрод, затем наносится слой кристаллографически совместимого материала смеси стехиометрических составов GeSb2Te4 и Ge2Sb2Te5 методом вакуумно-термического испарения взрывного типа при следующих параметрах технологического процесса: давление в рабочем объеме Ρ ~10-6 Па, температура подложки 30°С, испарителя 600°С, скорость испарения шихты 1-2 нм/с. Режимы напыления подбирались опытным путем таким образом, чтобы обеспечить максимально возможную однородность пленки и требуемую толщину. Воспроизводимость состава контролировалась по соотношению [ХСП/[КС РЗЭ]. Аморфность структуры пленок контролируют методами электронной и рентгеновской дифракции. Толщину халькогенидных стеклообразных полупроводниковых пленок измеряют при помощи интерференционного микроскопа МИИ-4 и она составляет от 0,1 до 0,3 мкм. Для определения химического состава полученных пленок применялся метод обратного резерфордовского рассеяния дейтронов (Ed=1,0 и Εα=2,7 МэВ при угле рассеяния 135°). Было установлено, что составы пленок близки к составам материала шихты. Измерение ΒΑΧ структур на постоянном напряжении проводилось при помощи двухэлектродной схемы на основе блока управления напряжением NI USB- 6008 и пико-амперметра KEITHLEY 6486. Напряжение на структуре изменялось от 0 до 10 В с шагом 0,1 В и скоростью 0,1 В/с до 10 В с шагом 0,1 В и скоростью 0,1 В/с. Исследование поведения тонких пленок ХСП смеси стехиометрических составов GST124 и GST225 при подаче прямоугольных импульсов напряжения проводилось на исследовательском комплексе, в состав которого входят генератор импульсов Г5-61 и цифровой запоминающий осциллограф LeCroy WaveRunner 44Xi с полосой пропускания 400 МГц. Падение напряжения на тонкой пленке GST225 наблюдалось через 130 нс с момента подачи импульса. Данное падение напряжения связано с переходом от высокоомного состояния (0,03 МОм) в низкоомное (0,2 кОм). Время перехода составляет 8 не, время нахождения в низкоомном состоянии ~400 нс. Повторное измерение показало, что тонкая пленка сохраняет низкоомное состояние, что подтверждает сохранение информации после снятия напряжения со структуры. Таким образом время записи логической «1» составляет 150 нс, что значительно меньше, чем время записи информации в флэш-памяти (~ 10000 нс).
Пример
Для получения аморфных пленок халькогенидных стеклообразных полупроводников смеси стехиометрических составов GeSb2Te4 и Ge2Sb2Te5, модифицированных диффузным алюминием, используют шихту из смеси стехиометрических составов GeSb2Te4 и Ge2Sb2Te5 (1:1), механически активированную перед напылением. Пленки осаждают на кремниевой подложке КЭФ-4,5 с ориентацией (111), которая подвергалась химической обработке ΚΑΡΟ (H2SO4/H2O)+ПАР (NH4OH/H2O2/H2O) с последующим термическим окислением поверхности при температуре 1000°С. Толщина оксидного слоя подложки составляла 0,65 мкм. На поверхность сформированных структур через маску формировался нижний алюминиевый электрод, нанесенный методом вакуумно-термического испарения толщиной 0,7 мкм и площадью 10-2 см2, затем наносился слой кристаллографически совместимого материала смеси стехиометрических составов GeSb2Te4 и Ge2Sb2Te5 методом вакуумно-термического испарения взрывного типа при следующих параметрах технологического процесса: давление в рабочем объеме Ρ ~3,5⋅10-6 Па, температура подложки 30°С, испарителя 600°С, скорость испарения шихты 2 нм/с. При этом получают аморфную пленку халькогенидных стеклообразных полупроводников смеси GeSb2Te4 и Ge2Sb2Te5 толщиной 300 нм, модифицированную диффузным алюминием. Введение небольшого количества алюминия в материал GST(124+225) оказывает существенное влияние на температуру фазового перехода тонких пленок из аморфного состояния в кристаллическое. Температура начала кристаллизации нелегированного состава GST(124+225) составляла 133°С. Информационное быстро-действие оценивалось по времени переключения из высокоомного состояния в низкоомное и составляло 200 нс. Температура кристаллизации пленок составляла 129°С, пороговое значение напряжения составляло 3,8 В.
Данным способом получения аморфных пленок халькогенидных стеклообразных полупроводников смеси стехиометрических составов GeSb2Te4 и Ge2Sb2Te5, модифицированных диффузным алюминием, путем изменения условий испарения и конденсации атомов на подложку, а также легированием состава пленок достигнут желаемый результат - получены халькогенидные стеклообразные полупроводниковые пленки с эффектом фазовой памяти с минимальными значениями порогового переключения и температуры плавления, что обеспечивает низкое энергопотребление при проведении операций записи/перезаписи информации. Повышенное информационное быстродействие достигается за счет стабильности и воспроизводимости электрофизических свойств пленок.

Claims (1)

  1. Способ получения аморфной пленки из халькогенидных стеклообразных полупроводников с эффектом фазовой памяти, включающий нанесение слоя халькогенидного материала системы тройных теллуридов германия и сурьмы Ge-Sb-Те методом вакуумно-термического испарения взрывного типа, отличающийся тем, что в качестве халькогенидного материала используют смесь стехиометрических составов GeSb2Te4 и Ge2Sb2Te5 при соотношении 1:1, механически активированную перед нанесением слоя указанного халькогенидного материала, при этом перед нанесением слоя указанного халькогенидного материала в предварительно откаченную до давления 3,5⋅10-6 Па вакуумную камеру помещают обезжиренную, подвергнутую термическому окислению со сформированным подслоем оксида кремния кремниевую подложку, затем на поверхность подслоя оксида кремния методом вакуумно-термического испарения наносят нижний алюминиевый слой, а нанесение слоя указанного халькогенидного материала методом вакуумно-термического испарения взрывного типа проводят при давлении в рабочем объеме 10-6 Па, температуре подложки 30°С, температуре испарителя 600°С и скорости испарения шихты 1-2 нм/с.
RU2016107474A 2016-03-02 2016-03-02 Способ получения аморфных пленок халькогенидных стеклообразных полупроводников с эффектом фазовой памяти RU2631071C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016107474A RU2631071C2 (ru) 2016-03-02 2016-03-02 Способ получения аморфных пленок халькогенидных стеклообразных полупроводников с эффектом фазовой памяти

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016107474A RU2631071C2 (ru) 2016-03-02 2016-03-02 Способ получения аморфных пленок халькогенидных стеклообразных полупроводников с эффектом фазовой памяти

Publications (2)

Publication Number Publication Date
RU2016107474A RU2016107474A (ru) 2017-09-07
RU2631071C2 true RU2631071C2 (ru) 2017-09-18

Family

ID=59798712

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016107474A RU2631071C2 (ru) 2016-03-02 2016-03-02 Способ получения аморфных пленок халькогенидных стеклообразных полупроводников с эффектом фазовой памяти

Country Status (1)

Country Link
RU (1) RU2631071C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA033412B1 (ru) * 2017-11-03 2019-10-31 Federal State Autonomous Educational Institution Of Higher Education National Research Univ Moscow I Способ получения аморфных пленок халькогенидных стеклообразных полупроводников

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176329A1 (en) * 2004-01-05 2009-07-09 Young-Tae Kim Phase-change memory device and method of manufacturing the same
RU2392688C1 (ru) * 2009-05-20 2010-06-20 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Рязанский государственный радиотехнический университет Способ создания омических контактов в тонкопленочных устройствах на аморфных нелегированных полупроводниках
US8500963B2 (en) * 2006-10-26 2013-08-06 Applied Materials, Inc. Sputtering of thermally resistive materials including metal chalcogenides
RU2489707C1 (ru) * 2012-02-06 2013-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный педагогический университет имени А.И. Герцена" ПОВЫШЕНИЕ ТОЧНОСТИ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВЕННОГО СОСТАВА ТРОЙНЫХ СТЕКЛООБРАЗНЫХ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ И ПЛЕНОК ПЕРЕМЕННОГО СОСТАВА Ax(ByC1-y)1-x

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176329A1 (en) * 2004-01-05 2009-07-09 Young-Tae Kim Phase-change memory device and method of manufacturing the same
US8500963B2 (en) * 2006-10-26 2013-08-06 Applied Materials, Inc. Sputtering of thermally resistive materials including metal chalcogenides
RU2392688C1 (ru) * 2009-05-20 2010-06-20 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Рязанский государственный радиотехнический университет Способ создания омических контактов в тонкопленочных устройствах на аморфных нелегированных полупроводниках
RU2489707C1 (ru) * 2012-02-06 2013-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный педагогический университет имени А.И. Герцена" ПОВЫШЕНИЕ ТОЧНОСТИ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВЕННОГО СОСТАВА ТРОЙНЫХ СТЕКЛООБРАЗНЫХ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ И ПЛЕНОК ПЕРЕМЕННОГО СОСТАВА Ax(ByC1-y)1-x

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hemanadhan M. et al Simple flash evaporator for making thin films of compounds, J. Vac. Sci. Technol., A28, 2010, с.625-626. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA033412B1 (ru) * 2017-11-03 2019-10-31 Federal State Autonomous Educational Institution Of Higher Education National Research Univ Moscow I Способ получения аморфных пленок халькогенидных стеклообразных полупроводников

Also Published As

Publication number Publication date
RU2016107474A (ru) 2017-09-07

Similar Documents

Publication Publication Date Title
US7964436B2 (en) Co-sputter deposition of metal-doped chalcogenides
CN108075039B (zh) 一种纳米复合ZnO-ZnSb相变存储薄膜材料及其制备方法
US10497870B2 (en) Materials and components in phase change memory devices
Subramanyam et al. Optimization of sputtered AZO thin films for device application
CN109728162B (zh) 相变薄膜、相变存储单元及其制备方法及相变存储器
US20180301627A1 (en) Materials and components in phase change memory devices
Zhao et al. Role and optimization of thermal rapid annealing in Ta/TaOx/Ru based resistive switching memory
RU2631071C2 (ru) Способ получения аморфных пленок халькогенидных стеклообразных полупроводников с эффектом фазовой памяти
CN109935688B (zh) 相变薄膜结构、相变存储单元及其制备方法及相变存储器
CN113594360A (zh) 一种基于无机分子晶体的忆阻器件、制备方法及其应用
WO2024001426A1 (zh) 一种相变薄膜、薄膜制备方法及相变存储器
CN110176536B (zh) 一种二氧化钒-Sb薄膜材料及其制备方法
Kever et al. Preparation and characterisation of amorphous Cu: 7, 7, 8, 8-tetracyanoquinodimethane thin films with low surface roughness via thermal co-deposition
RU2609764C1 (ru) Способ получения аморфных пленок халькогенидных стеклообразных полупроводников с эффектом фазовой памяти
CN113072915B (zh) 基于氧掺杂的Sb2Te3相变材料、相变存储器及制备方法
CN110137349B (zh) 一种二氧化钒-富Sb相变薄膜材料及其制备方法
Park et al. Phase transition characteristics and nonvolatile memory device performance of ZnxSb100-x alloys
CN111876731B (zh) 一种Ca掺杂碲化锑超稳相变存储薄膜材料及其制备方法
Peršin et al. Some electrical and optical properties of InSe thin films
KR100798696B1 (ko) 은이 포화된 Ge-Te 박막으로 이루어진 고체 전해질을갖는 PMCM 소자 및 그의 제조 방법
KR102058702B1 (ko) 펄스화된 레이저를 이용한 NbOx 선택소자의 제조 방법 및 이를 통해 제조된 선택소자
RU2459012C2 (ru) Способ изготовления тонких пленок на основе моносульфида самария
Chen et al. Gradual RESET modulation by intentionally oxidized titanium oxide for multilayer-hBN RRAM
Zhang et al. Mechanism of oxidation on Si2Sb2Te5 phase change material and its application
Kim et al. Phase Change Heterostructure Memory with Oxygen‐Doped Sb2Te3 Layers for Improved Durability and Reliability through Nano crystalline Island Formation

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20171227

Effective date: 20171227