RU2630447C1 - Способ определения размеров наночастиц, добавленных в исходный коллоидный раствор - Google Patents
Способ определения размеров наночастиц, добавленных в исходный коллоидный раствор Download PDFInfo
- Publication number
- RU2630447C1 RU2630447C1 RU2016144835A RU2016144835A RU2630447C1 RU 2630447 C1 RU2630447 C1 RU 2630447C1 RU 2016144835 A RU2016144835 A RU 2016144835A RU 2016144835 A RU2016144835 A RU 2016144835A RU 2630447 C1 RU2630447 C1 RU 2630447C1
- Authority
- RU
- Russia
- Prior art keywords
- nanoparticles
- solution
- added
- initial
- size distribution
- Prior art date
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000009826 distribution Methods 0.000 claims abstract description 33
- 230000005855 radiation Effects 0.000 claims abstract description 28
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 38
- 238000002834 transmittance Methods 0.000 claims description 3
- 239000012527 feed solution Substances 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 238000000790 scattering method Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000002296 dynamic light scattering Methods 0.000 description 22
- 239000002245 particle Substances 0.000 description 19
- 210000002381 plasma Anatomy 0.000 description 10
- 238000005311 autocorrelation function Methods 0.000 description 7
- 230000010287 polarization Effects 0.000 description 7
- 239000002502 liposome Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000001370 static light scattering Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- FWQHNLCNFPYBCA-UHFFFAOYSA-N fluoran Chemical compound C12=CC=CC=C2OC2=CC=CC=C2C11OC(=O)C2=CC=CC=C21 FWQHNLCNFPYBCA-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y35/00—Methods or apparatus for measurement or analysis of nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Изобретение относится к области исследования и анализа материалов. Способ определения размеров наночастиц, добавленных в исходный коллоидный раствор, включает облучение раствора с добавленными наночастицами лазерным излучением. Измерение текущей интенсивности рассеянного излучения в течение заданного периода времени и расчет распределения по размерам наночастиц в указанном растворе Iобр(d) методом динамического рассеяния. При этом предварительно аналогичным образом получают распределение по размерам наночастиц в исходном растворе Iф(d), измеряют среднюю скорость счета фотонов в течение указанного периода времени для исходного раствора Рф и раствора с добавленными наночастицами Робр и измеряют коэффициенты пропускания на длине волны лазерного излучения для исходного раствора Тф и раствора с добавленными наночастицами Тобр. Распределение по размерам добавленных наночастиц рассчитывают как . Технический результат заключается в упрощении определения размеров наночастиц, добавленных в исходный коллоидный раствор. 3 ил.
Description
Изобретение относится к области исследования и анализа материалов, а именно к способам измерения параметров наночастиц, взвешенных в жидкости, оптическими методами, и может быть использовано для определения размеров и распределений по размерам наночастиц, добавляемых в исходный коллоидный раствор, в котором уже присутствуют наночастицы, отличные от добавляемых.
Предлагаемый способ может быть использован в биомедицинских технологиях, в случаях, когда в биосистему, содержащую естественные компоненты нанометрового диапазона (например, белковые молекулы в плазме крови), вводят биосовместимые нанообъекты с лекарственными препаратами. Возникает задача отслеживания поведения добавляемых наночастиц в многокомпонентной дисперсии, а именно - изменения размеров вводимых частиц, например, из-за образования оболочек или агрегации частиц.
Для получения информации о размере и распределении по размерам наночастиц используются такие оптические методы, как статическое рассеяние, лазерная дифракция и динамическое рассеяние света (метод фотонно-корреляционной спектроскопии). Лазерная дифракция и статическое рассеяние света основаны на измерении зависимости интенсивности рассеянного излучения от угла рассеяния и вычислении из полученной зависимости размеров и распределений по размерам рассеивающих частиц, для расчетов применяются теория Фраунгофера (лазерная дифракции) и теория Ми (статическое рассеяние света).
Метод динамического рассеяния света (ДРС) основан на измерении флуктуаций интенсивности лазерного излучения, рассеянного частицами. Для зарегистрированных зависимостей интенсивности рассеянного излучения от времени определяют автокорреляционные функции (АКФ). Вычисление по измеренной АКФ размеров анализируемых частиц осуществляют с помощью математических алгоритмов, простейшим из которых является метод кумулянтов, рекомендуемый стандартами (ISO 22412-2008. Particle size analysis - Dynamic light scattering (DLS), 2011). Этот метод заключается в разложении АКФ в ряд и использовании коэффициентов этого ряда (кумулянтов) для определения среднего гидродинамического диаметра. Для восстановления распределений по размерам используют алгоритмы обратного преобразования Лапласа, например, CONTIN или NNLS (ASTM Е2490-09. Standard Guide for Measurement of Particle Size Distribution of Nanomaterials in Suspension by Photon Correlation Spectroscopy (PCS), 2015). Вычисляемая таким образом, функция распределения показывает относительный вклад частиц с определенным диаметром в интенсивность рассеянного излучения и называется распределением по размерам. В современных приборах расчет распределения по размерам производится автоматически.
Скорость счета фотонов (число импульсов в секунду) является показателем реальной интенсивности рассеянного света и в современных приборах ДРС используется как дополнительная оптическая характеристика, вспомогательный параметр при подборе оптического фильтра, и в расчетах не участвует. Использование в вычислениях скорости счета фотонов известно, однако, для решения другой задачи - для определения относительной концентрации наночастиц в одном из образцов по отношению к другому методом ДРС (В.В. Высоцкий, О.Я. Урюпина, А.В. Гусельникова, В.И. Ролдугин. О возможности определения концентрации частиц методом динамического светорассеяния, Коллоидный журнал, 2009, том 71, №6, с. 728-733).
Из уровня техники известен способ определения размеров наночастиц, включающий облучение раствора с наночастицами лазерным излучением, измерение для него текущей интенсивности рассеянного излучения в течение заданного периода времени и расчет распределения по размерам наночастиц в указанном растворе Iобр(d) методом динамического рассеяния (см. патент US 2016169878, кл. G01N 33/543, опубл. 16.06.2016). Основным недостатком этого способа является то, что при вычислении размеров наночастиц, добавленных в исходный коллоидный раствор, требуется, чтобы рассеяние на вводимых частицах не менее чем на порядок, превышало рассеяние от наночастиц, изначально находившихся в растворе. Приходится либо разбавлять исходную коллоидную систему, либо увеличивать концентрацию добавляемых частиц, что в некоторых случаях крайне нежелательно, например в плазме крови и других биологических средах.
Для оптически анизотропных частиц используют метод деполяризованного ДРС (ДДРС), который предусматривает измерение АКФ интенсивности при двух положениях поляризационного анализатора в системе сбора рассеянного излучения: одно из них обеспечивает поляризацию VV, совпадающую с поляризацией падающего излучения, другое - поляризацию VH, перпендикулярную ей (с помощью поворота поляризационного анализатора на угол 90°). Измеряют АКФ интенсивности рассеянного света при двух положениях поляризационного анализатора: VV и VH. По измеренным АКФ вычисляют коэффициенты трансляционной и ротационной диффузии, по коэффициентам диффузии - размеры исследуемых частиц.
Наиболее близким к заявляемому является способ определения размеров наночастиц, добавленных в исходный коллоидный раствор, включающий облучение раствора с добавленными наночастицами лазерным излучением, измерение для него текущей интенсивности рассеянного излучения в течение заданного периода времени и расчет распределения по размерам наночастиц в указанном растворе Iобр(d) методом динамического рассеяния (S. Balog et al. Characterizing nanoparticles in complex biological media and physiological fluids with depolarized dynamic light scattering // Nanoscale, 2015, V. 7, PP. 5991-5997). Этот способ позволяет определять размеры анизотропных золотых наночастиц, добавляемых в жидкую среду, содержащую различные рассеивающие нанообъекты, методом деполяризованного ДРС. Подход основан на том, что нанообъекты в исходном растворе оптически изотропны, а добавляемые наночастицы - оптически анизотропны, при этом вклад в деполяризованную компоненту рассеянного излучения вносят только анизотропные частицы. Основным недостатком такого способа является невозможность его применения в случае, если добавляемые частицы оптически изотропны (например, липосомы). Кроме того, этот способ требует наличия дорогого прибора деполяризованного ДРС, который имеется далеко не во всякой исследовательской лаборатории.
Задачей изобретения является устранение указанных недостатков и разработка способа, который может быть реализован с помощью стандартного оборудования. Технической результат заключается в упрощении определения размеров наночастиц, добавленных в исходный коллоидный раствор. Поставленная задача решается, а технический результат достигается тем, что в способе определения размеров наночастиц, добавленных в исходный коллоидный раствор, включающем облучение раствора с добавленными наночастицами лазерным излучением, измерение для него текущей интенсивности рассеянного излучения в течение заданного периода времени и расчет распределения по размерам наночастиц в указанном растворе Iобр(d) методом динамического рассеяния, предварительно аналогичным образом получают распределение по размерам наночастиц в исходном растворе Iф(d), измеряют среднюю скорость счета фотонов в течение указанного периода времени для исходного раствора Рф и раствора с добавленными наночастицами Робр, измеряют коэффициенты пропускания на длине волны лазерного излучения для исходного раствора Тф и раствора с добавленными наночастицами Тобр, после чего рассчитывают распределение по размерам добавленных наночастиц как
На фиг. 1 представлено распределение по размерам наночастиц в исходном растворе (плазме крови) Iф(d), в относительных единицах;
на фиг. 2 - в растворе с добавленными наночастицами (липосомы в плазме крови) Iобр(d), в относительных единицах;
на фиг. 3 - распределение Iр(d) для липосом, в единицах скорости счета фотонов.
В современных приборах ДРС интенсивность рассеянного излучения измеряется в относительных единицах, разных для каждого образца. Суть предлагаемого способа заключается в переходе от относительных единиц к единицам скорости счета фотонов, которые будут одинаковы для всех образцов, измеренных на одном приборе ДРС. Таким образом, предлагаемый способ не будет зависеть от поляризационных свойств исследуемых частиц и не потребует переоборудования стандартного прибора ДРС.
Предлагаемый способ подразумевает реализацию следующей последовательности действий.
1) В кювету с прозрачными стенками, предназначенную для измерений размеров наночастиц методом ДРС, помещают исходный коллоидный раствор (фон), содержащий наночастицы не известного заранее размера.
2) Кювету устанавливают в измерительный отсек анализатора размеров частиц, реализующего метод ДРС (например, прибора АРН-2, Malvern Zetasizer). Исходный раствора облучают лазерным излучением и в течение 2-3 минут измеряют текущую интенсивность рассеянного излучения, на основе которой прибор автоматически рассчитывает распределение по размерам фоновых наночастиц в указанном исходном растворе Iф(d). Существующие анализаторы размеров частиц выдают результат измерения в относительных единицах, которые различны для разных образцов. Параллельно измеряют среднюю скорость счета фотонов в течение указанного периода времени для исходного раствора Рф.
3) С помощью спектрофотометра измеряют коэффициент пропускания исходного коллоидного раствора Тф на длине волны лазерного излучения.
4) Затем в исходный коллоидный раствор добавляют исследуемые наночастицы также не известного заранее размера.
5) Полученный образец раствора вновь облучают лазерным излучением и в течение 2-3 минут измеряют текущую интенсивность рассеянного излучения, на основе которой прибор автоматически рассчитывает распределение по размерам в растворе с добавленными наночастицами Iобр(d), выраженное в относительных единицах. Параллельно измеряют среднюю скорость счета фотонов в течение указанного периода времени Робр.
6) С помощью спектрофотометра измеряют коэффициент пропускания полученного образца раствора с добавленными наночастицами Тобр на длине волны лазерного излучения.
7) В обоих полученных распределениях Iф(d) и Iобр(d) осуществляют переход от относительной шкалы интенсивности к шкале, выраженной в единицах скорости счета фотонов (имп/с), скорректированной с учетом эффекта внутреннего фильтра (поглощения падающего и рассеянного излучения при прохождении внутри кюветы).
8) Приведенное распределение для исходного раствора вычитают из аналогично приведенного распределения для раствора с добавленными наночастицами и получают искомое распределение по размерам добавленных наночастиц Ip(d).
Упомянутый переход от относительной шкалы интенсивности к шкале, выраженной в единицах скорости счета фотонов (имп/с), осуществляют путем использования интегрального значения распределения в относительных единицах и средней скорости счета фотонов, которую измеряет анализатор размеров частиц. Интегральное значение распределения рассчитывают следующим образом.
Пусть I(d) - относительная интенсивность рассеянного излучения. Если весь диапазон распределения по размерам разделить на N интервалов (k - номер интервала, а Ik(d) - относительная интенсивность рассеянного излучения на k-том интервале), то
где - интенсивность в единицах скорости счета на k-м интервале (имп/с), F - коэффициент пропорциональности. При этом
где Р - средняя скорость счета (имп/с). Тогда
Определив таким образом коэффициент F, можно от интенсивностей в относительных единицах перейти к интенсивностям, выраженным в единицах скорости счета.
Однако для корректного перехода необходимо дополнительно учесть коэффициенты пропускания Тобр и Тф, т.к. в некоторых анализаторах размеров частиц оптическая схема построена таким образом, что рассеивающий объем находится в центре поперечного сечения кюветы и имеет место эффект внутреннего фильтра. Корректировка, учитывающая эффект внутреннего фильтра, основана на том, что для указанных оптических схем искомая средняя скорость счета фотонов Р* зависит от пропускания кюветы Т и полученной средней скорости счета фотонов Р как
Исходя из предложенного алгоритма, Iобр(d) и Iф(d), разбивают на интервалы и получают соответствующие интегральные значения. После чего искомое распределение по размерам добавленных наночастиц рассчитывают по формуле
Пример.
Для проверки предложенного способа были исследованы изменения размеров липосом при их попадании в плазму крови человека. В настоящее время липосомы рассматриваются как перспективные носители для адресной доставки лекарств, поэтому их поведение в плазме, особенно неразбавленной, представляет значительный интерес. Всего были исследованы образцы плазмы от 5 доноров, предоставленные РНИМУ им. Н.И. Пирогова.
Вначале измерили распределения Iф(d) для исходных образцов плазмы, далее в плазму ввели концентрированную суспензию липосом (80 мкл на 1 мл плазмы) и измерили распределение Iобр(d) для полученного таким образом раствора. Измерения проводили на ДРС анализаторе АРН-2 при угле рассеяния 90°, коэффициенты пропускания измерили на спектрофотометре СФФ-2 «ФЛУОРАН» (оба прибора разработаны ФГУП «ВНИИОФИ»). Затем произвели обработку полученных данных согласно предлагаемому способу. Результаты измерений и их обработки приведены на фиг. 1-3. Полученное распределение по размерам добавленных наночастиц соответствует теоретическим расчетам.
Таким образом, предлагаемый способ позволяет быстро и просто определять размеры наночастиц, добавленных в исходный коллоидный раствор, используя при этом стандартное лабораторное оборудование.
Claims (3)
- Способ определения размеров наночастиц, добавленных в исходный коллоидный раствор, включающий облучение раствора с добавленными наночастицами лазерным излучением, измерение для него текущей интенсивности рассеянного излучения в течение заданного периода времени и расчет распределения по размерам наночастиц в указанном растворе Iобр(d) методом динамического рассеяния, отличающийся тем, что предварительно аналогичным образом получают распределение по размерам наночастиц в исходном растворе Iф(d), измеряют среднюю скорость счета фотонов в течение указанного периода времени для исходного раствора Рф и раствора с добавленными наночастицами Робр, измеряют коэффициенты пропускания на длине волны лазерного излучения для исходного раствора Тф и раствора с добавленными наночастицами Тобр, после чего рассчитывают распределение по размерам добавленных наночастиц как
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016144835A RU2630447C1 (ru) | 2016-11-16 | 2016-11-16 | Способ определения размеров наночастиц, добавленных в исходный коллоидный раствор |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016144835A RU2630447C1 (ru) | 2016-11-16 | 2016-11-16 | Способ определения размеров наночастиц, добавленных в исходный коллоидный раствор |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2630447C1 true RU2630447C1 (ru) | 2017-09-07 |
Family
ID=59797580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016144835A RU2630447C1 (ru) | 2016-11-16 | 2016-11-16 | Способ определения размеров наночастиц, добавленных в исходный коллоидный раствор |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2630447C1 (ru) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7187441B1 (en) * | 1996-11-08 | 2007-03-06 | The Texas A&M University System | Particle analysis system and method |
RU2395796C1 (ru) * | 2009-05-20 | 2010-07-27 | Федеральное государственное унитарное предприятие "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОПТИКО-ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ" (ФГУП "ВНИИОФИ") | Способ оценки размеров наночастиц в жидких средах при анализе их элементного состава |
-
2016
- 2016-11-16 RU RU2016144835A patent/RU2630447C1/ru active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7187441B1 (en) * | 1996-11-08 | 2007-03-06 | The Texas A&M University System | Particle analysis system and method |
RU2395796C1 (ru) * | 2009-05-20 | 2010-07-27 | Федеральное государственное унитарное предприятие "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОПТИКО-ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ" (ФГУП "ВНИИОФИ") | Способ оценки размеров наночастиц в жидких средах при анализе их элементного состава |
Non-Patent Citations (2)
Title |
---|
Hoo, Christopher M., и др. "A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions.", Journal of Nanoparticle Research, Т. 10, N1, стр. 89-96, 2008г. * |
Levin A. D. и др. " Development of optical-spectral techniques for the characterization of nanoparticles", Nanotechnologies in Russia, Т. 8. N 5-6, стр. 373-378, 2013 г. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Falke et al. | Dynamic light scattering (DLS) principles, perspectives, applications to biological samples | |
Khlebtsov et al. | On the measurement of gold nanoparticle sizes by the dynamic light scattering method | |
Karmakar | Particle size distribution and zeta potential based on dynamic light scattering: Techniques to characterize stability and surface charge distribution of charged colloids | |
Pecora | Dynamic light scattering measurement of nanometer particles in liquids | |
Friebel et al. | Determination of optical properties of human blood<? xpp qa?> in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions | |
Gollwitzer et al. | A comparison of techniques for size measurement of nanoparticles in cell culture medium | |
Safari et al. | Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters | |
JPH10111250A (ja) | 血漿分析装置 | |
Nikitin et al. | Laser ektacytometry and evaluation of statistical characteristics of inhomogeneous ensembles of red blood cells | |
Maltsev et al. | Optics of white blood cells: optical models, simulations, and experiments | |
Yastrebova et al. | Spectral approach to recognize spherical particles among non-spherical ones by angle-resolved light scattering | |
Friebel et al. | Influence of shear rate on the optical properties of human blood in the spectral range 250 to 1100 nm | |
Narvekar et al. | pH dependent aggregation and conformation changes of rituximab using SAXS and its comparison with the standard regulatory approach of biophysical characterization | |
RU2630447C1 (ru) | Способ определения размеров наночастиц, добавленных в исходный коллоидный раствор | |
RU2677703C1 (ru) | Способ измерения концентрации аналита в плазме крови | |
DE102017121587A1 (de) | Verfahren zum simultanen Bestimmen von Proben-Eigenschaften und Partikelmess-Vorrichtung | |
Delfino et al. | Scattering-based optical techniques for olive oil characterization and quality control | |
Lomakin et al. | Quasielastic light scattering study of amyloid β-protein fibrillogenesis | |
RU2395796C1 (ru) | Способ оценки размеров наночастиц в жидких средах при анализе их элементного состава | |
Levin et al. | Estimation of the dimensions of nanoparticles in multicomponent colloidal sysems by dynamic light scattering | |
RU2586938C1 (ru) | Способ определения оптических свойств наночастиц | |
Nossal | 7. Laser Light Scattering | |
Lomakin et al. | Quasielastic light scattering study of amyloid β-protein fibril formation | |
RU2585113C2 (ru) | Способ измерения параметров распределения эритроцитов по деформируемости | |
Goulden | Spectroturbidimetry of emulsions |