RU2629660C1 - Устройство для калибровки дихрографов кругового дихроизма - Google Patents

Устройство для калибровки дихрографов кругового дихроизма Download PDF

Info

Publication number
RU2629660C1
RU2629660C1 RU2016146700A RU2016146700A RU2629660C1 RU 2629660 C1 RU2629660 C1 RU 2629660C1 RU 2016146700 A RU2016146700 A RU 2016146700A RU 2016146700 A RU2016146700 A RU 2016146700A RU 2629660 C1 RU2629660 C1 RU 2629660C1
Authority
RU
Russia
Prior art keywords
light
plate
angle
circular dichroism
polarization
Prior art date
Application number
RU2016146700A
Other languages
English (en)
Inventor
Владимир Николаевич Заблуда
Оксана Станиславовна Иванова
Ирина Самсоновна Эдельман
Original Assignee
Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН) filed Critical Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН)
Priority to RU2016146700A priority Critical patent/RU2629660C1/ru
Application granted granted Critical
Publication of RU2629660C1 publication Critical patent/RU2629660C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/447Polarisation spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation

Landscapes

  • Polarising Elements (AREA)

Abstract

Изобретение относится к оптическим устройствам, имитирующим вещество, обладающее круговым дихроизмом. Устройство для калибровки дихрографов кругового дихроизма, содержащее линейный поляризатор, представляющий собой изотропную прозрачную пластину диэлектрика с фиксированным углом наклона относительно направления распространения света и возможностью вращения относительно направления распространения света, и фазовую пластину, обеспечивающую разность хода между обыкновенным и необыкновенным лучами (2m+1)⋅λ/4. Техническим результатом изобретения является устройство, позволяющее имитировать вещество, обладающее круговым дихроизмом в широком диапазоне значений с линейной зависимостью величины сигнала кругового дихроизма в рабочей области значений. 4 ил.

Description

Изобретение относится к оптическим устройствам, имитирующим вещество, обладающее круговым дихроизмом (КД), с линейной зависимостью величины выдаваемого КД в рабочей области значений, служащее для калибровки дихрографов кругового дихроизма.
Круговой дихроизм (циркулярный дихроизм) - один из эффектов оптической анизотропии, проявляющийся в различии коэффициентов поглощения света, поляризованного по правому и левому кругу. Спектры КД удобны для использования на практике, поскольку, как правило, содержат узкие, хорошо разрешимые полосы, индивидуальные для каждого вещества. В настоящее время метод измерения КД используется очень широко в различных областях науки, особенно химии, медицине, биофизике, так как является чувствительным методом исследования строения молекул. Важным аспектом измерения КД является точность калибровки величины сигнала, поскольку величина эффекта обычно не превосходит нескольких долей процента от значения коэффициента поглощения в неполяризованном свете. Установление зависимости между показаниями приборов и величинами эффектов, вызвавшими эти показания насущная необходимость экспериментаторов, измеряющих КД.
В настоящее время калибровка дихрографов кругового дихроизма, как правило, производится с применением оптически активного вещества - эталона, величина КД которого известна на определенной длине волны. Например, в заявке [РФ №2013123106, МПК G01N 21/00, опубл. 27.11.2014 г.] предлагается использовать полимерный оптически активный материал, представляющий собой гель, в котором распределены и иммобилизованы частицы двухцепочечных молекул нуклеиновых кислот, обладающие характерным для них аномальным круговым дихроизмом с заданной по величине характеристикой сигнала при облучении циркулярно-поляризованным излучением на дискретной длине волны в УФ-диапазоне спектра и сохраняющие эту характеристику при хранении в течение нескольких месяцев после его изготовления.
Использование эталонных веществ имеет ряд существенных недостатков. В первую очередь, это нестабильность заданной величины сигнала во времени и при воздействии различных факторов (температуры, давления, влажности и т.д.). Во-вторых, каждое эталонное вещество характеризуется ограниченным количеством пиков КД и не существует веществ с достаточным количеством пиков в широком спектральном интервале, что ведет к необходимости иметь в наличии набор эталонных веществ с характерными особенностями на разных длинах волн. Кроме того, необходимо, чтобы величина эффекта эталонного вещества была близка к величине эффекта измеряемого вещества, как правило, это диапазон величин 10-6-10-1. Принимая во внимание и нестабильность растворов химических веществ, становятся ясными сложности, с которыми сталкиваются исследователи и практические работники при калибровке приборов КД и поисках эталонных веществ.
В работе [Костюк Г.К. Устройство для калибровки дихрогрофа в широкой области спектра / Г.К. Костюк, Е.К. Галанов, М.В. Лейкин // Оптико-механическая промышленность. - 1976. - №5. - С. 28-31] описано устройство, задающее любое значение дихроизма в широком диапазоне длин волн и не требующее конкретного химического соединения. Устройство представляет собой комбинацию четвертьволновой пластинки и линейного поляризатора. Существенным недостатком упомянутого устройства является почти 100% линейная поляризация пучка на выходе из устройства (при задании малых величин КД свет становится эллиптически поляризованным с большим отношением осей), что вносит искажения в результаты измерений, поскольку в общей схеме спектрометров по измерению КД находятся элементы, чувствительные к линейной поляризации, что ограничивает возможности практического применения данного устройства.
Описанные выше сложности использования эталонных веществ делают необходимым создание новых типов оптических устройств, предназначенных для калибровки дихрографов КД и установления необходимого соответствия эффект - сигнал, в которых возможно задавать точно стабильную по времени необходимую величину КД в любой части спектра без использования реальных оптически активных веществ.
Наиболее близким по техническому решению к предлагаемому устройству является оптическое устройство для калибровки дихрографов кругового дихроизма по патенту [РФ №2590344, МПК G01N 21/19, G01M 11/02, опубл. 10.07.2016], имитирующее вещество, обладающее круговым дихроизмом, с возможностью регулирования величины задаваемого эффекта в широком диапазоне значений на выбранной длине волны. Данное устройство содержит линейный поляризатор и фазовую пластину, толщиной d=((2m+1)λ/4)/(no-nе) (nо, nе - показатели преломления обыкновенной и необыкновенной волны, m - порядок пластины, λ - длина волны), при этом изотропная прозрачная пластина диэлектрика имеет возможность поворота относительно оси, перпендикулярной направлению распространения света и составляющей угол 45° с главными направлениями фазовой пластины. Описываемое устройство позволяет имитировать вещество, обладающее КД в широком диапазоне значений величины без использования реальных оптически активных веществ, и с полным отсутствием линейной поляризации света на выходе из устройства. Величина получаемого сигнала КД на выходе из устройства описывается формулой
Figure 00000001
где α - угол падения световой волны, изменяемый вращением однородной пластины диэлектрика; n - показатель преломления. График зависимости рабочей области величин КД от угла наклона изотропной стеклянной пластины α из плавленого кварца, показатель преломления равен n=1.46, на длине волны λ=550 нм приведен на фиг. 1.
Недостатком прототипа является квадратичная зависимость получаемого сигнала КД от угла поворота изотропной пластины, что не всегда удобно с практической точки зрения (делает процесс калибровки затратным по времени и труду, требует построения градуировочных графиков и не линейных шкал с большим количеством точек). С целью устранения этого недостатка предлагается новое устройство.
Техническим результатом изобретения является создание устройства, позволяющего имитировать вещество, обладающее КД в широком диапазоне значений с линейной зависимостью величины сигнала КД в рабочей области значений.
Технический результат достигается тем, что в устройстве для калибровки дихрографов кругового дихроизма, содержащее линейный поляризатор, фазовую пластину, обеспечивающую разность хода между обыкновенным и необыкновенным лучами (2m+1)-λ/4), новым является то, что в качестве поляризатора используется изотропная прозрачная пластина диэлектрика с фиксированным углом наклона относительно направления распространения света и возможностью вращения относительно направления распространения света.
Отличия заявляемого устройства от прототипа заключаются в том, что в заявляемом изобретении используется сочетание фазовой пластины, обеспечивающей разность хода, равную ((2m+1)λ/4), и в качестве линейного поляризатора изотропной прозрачной пластины диэлектрика с фиксированным углом наклона относительно направления распространения света с возможностью вращения в этой наклонной плоскости.
Перечисленные выше признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».
При изучении других известных технических решений в данной области техники, признаки, отличающие заявляемое изобретение от прототипа, не выявлены и потому они обеспечивают заявляемому техническому решению соответствие критерию «изобретательский уровень».
На фиг. 1 приведена рабочая область углов наклона изотропной стеклянной пластины и величин КД прототипа. На фиг. 2 приведена схема устройства для задания кругового дихроизма, имеющего линейную зависимость величины КД от угла вращения изотропной пластины диэлектрика. На фиг. 3 представлен ход лучей при наклонном падении света из воздуха на изотропную прозрачную пластину диэлектрика. На фиг. 4 представлены изменения поляризации световой волны при прохождении четверть волновой пластиной линейно поляризованного света под произвольным углом и под углом 45° к главным осям пластины.
Устройство (фиг. 2) содержит наклонную изотропную прозрачную пластину диэлектрика (1) и фазовую пластину (2), вырезанную из одноосного кристалла параллельно его оптической оси, для которой выполняется условие (no-ne)d=(2m+1)λ/4, где m - любое целое число либо ноль, nо и nе - показатели преломления лучей, электрические колебания которых происходят вдоль оптической оси кристалла (обыкновенный луч) и перпендикулярно к оси (необыкновенный луч), d - толщина пластины. Оптические оси лежат в плоскости пластины. Прохождение фазовой пластины вносит разность фаз для двух линейных поляризаций. Фазовая пластина (2) расположена перпендикулярно к направлению распространения света, с нулевым азимутом. Изотропная прозрачная пластина диэлектрика расположена под фиксированным углом (угол α) относительно направления распространения света и имеет возможность вращения в этой наклонной плоскости (угол ϕ). Фиксированный угол наклона α изотропной пластины обеспечивает определенную частичную линейную поляризацию проходящего через нее луча. После прохождения светом изотропной прозрачной пластины частично линейно поляризованный свет попадает на фазовую пластину, при этом если угол поворота изотропной пластины ϕ=0°, то угол между плоскостью линейной поляризации света и главными направлениями фазовой пластины составляет 0° и 90°. Соответственно, линейно поляризованная компонента света пройдет через фазовую пластину без изменения и на выходе из фазовой пластины получится точно такой же частично линейно поляризованный свет. Если же угол ϕ будет отличен от нуля, то линейно поляризованная компонента света, попадающего на фазовую пластину, будет иметь проекцию на две оптические оси кристалла фазовой пластины (обыкновенный и необыкновенный луч), что обеспечит на выходе из нее дополнительную разность фаз линейных поляризаций и соответственно эллиптичность рассматриваемой компоненты. Таким образом, частичная линейная поляризация света, полученная прохождением света через изотропную пластину диэлектрика, будет преобразована в частичную круговую поляризацию на выходе из устройства. Полученный таким образом сигнал тождественен прохождению света через оптически активное вещество с КД.
Устройство работает следующим образом.
В естественном (неполяризованном) свете все направления колебаний электрического поля равновероятны, и его можно представить как сумму двух линейно поляризованных волн равной интенсивности, в которых колебания происходят, соответственно, параллельно (р-поляризация) и перпендикулярно плоскости падения (s-поляризация) света. Плоскость падения - это плоскость, содержащая пучок и нормаль к поверхности. При нормальном падении монохроматического света на пластину стекла или другого диэлектрика свет остается неполяризованным. При наклонном падении света на изотропную прозрачную пластину диэлектрика (фиг. 3) происходит изменение поляризации отраженного и преломленного лучей: в отраженном луче уменьшается интенсивность р-волны (преимущественные колебания перпендикулярны плоскости падения), а в проходящем s-волны (преимущественные колебания параллельны плоскости падения), что приводит к частичной линейной поляризации проходящей и отраженной волн.
Степень линейной поляризации ΔK проходящего луча зависит от угла падения света на изотропную пластину и ее показателя преломления, и определяется с помощью формул Френеля [Лансберг Г.С. Оптика / Г.С. Лансберг. - Москва: Из-во Наука, 1976. - 928 с.]
Figure 00000002
Figure 00000003
Figure 00000004
где rs - коэффициент отражения s-волны; rр - коэффициент отражения р-волны; α - угол падения световой волны, в данном случае - это угол наклона изотропной стеклянной пластины; n - показатель преломления; ΔK - степень поляризации проходящего луча.
При угле падения Брюстера, или так называемом угле полной поляризации:
Figure 00000005
, коэффициент rр будет равен нулю и, соответственно, степень поляризации преломленного и отраженного лучей будет максимальна. Это условие выполняется при (α+β)=π/2.
Поскольку свет, проходя через наклонную изотропную прозрачную пластину, пересекает две грани, то степень линейной поляризации света, прошедшего через нее, следует рассчитывать по формуле
Figure 00000006
После прохождения света через наклонную изотропную прозрачную пластину частично линейно поляризованный свет попадает на фазовую пластину. Если на фазовую четверть волновую пластинку падает линейно поляризованный вдоль оси у свет (ϕ=0°), то на выходе из пластинки он также останется линейно поляризованным вдоль оси y. Аналогично для света линейно поляризованного вдоль оси x (при ϕ=90°). При угле ϕ≠0 фазовая пластина расщепляет поляризованный пучок света на две компоненты, электрические колебания которых происходят вдоль оптической оси кристалла (обыкновенный луч) и перпендикулярно к оси (необыкновенный луч), и создает разность хода между этими лучами, определяемую для четверть волновой пластины формулой (no-ne)d=(2m+1)λ/4, где m - любое целое число либо ноль, no и nе - показатели преломления обыкновенного и необыкновенного лучей.
При прохождении частично линейно поляризованного луча через такую фазовую пластину неполяризованная компонента луча не изменяется, а линейно поляризованная компонента преобразуется в эллиптическую. Причем, изменяя угол ϕ от нуля до ϕ=45°, имеется возможность задавать величину эллиптичности (или КД) от нуля (при ϕ=0°) до некоторого максимума (при ϕ=45°), который зависит от показателя преломления и угла наклона пластины диэлектрика (при α=αБ будет максимум). На фиг. 4 представлены изменения поляризации световой волны при прохождении четверть волновой пластиной линейно поляризованного света под произвольным углом и под углом 45° к главным осям пластины.
В результате получится сигнал, тождественный сигналу после прохождения света через оптически активное вещество с КД, при этом зависимость величины КД от угла вращения изотропной пластины диэлектрика в рабочей области значений будет иметь линейный характер. Изменение угла вращения изотропной пластины при ее фиксированном наклоне позволяет на выходе из устройства задавать величину КД в широком диапазоне значений на выбранной длине волны, а линейная зависимость величины КД значительно упрощает процесс калибровки.
После прохождения световой волны через предлагаемое устройство определяется значение сигнала, соответствующее заданной величине КД, и калибровка дихрографов КД осуществляется путем выявления соответствия «сигнал → величина эффекта». Линейная зависимость выдаваемого сигнала позволяет установленный таким образом коэффициент связи просто вводить как калибровочную постоянную.
Для подтверждения идентичности круговой поляризации света, создаваемой предлагаемым устройством, и круговой поляризацией, возникающей в реальной оптически активной среде, проведем описание поведения света с помощью матриц Мюллера [Шерклифф, У. Поляризованный свет / У. Шерклифф // - Москва: Изд-во Мир пер. с англ., 1965. - 264 с.].
Световому потоку любой поляризации в матричном представлении Мюллера можно сопоставить единственный столбец-вектор Стокса:
Figure 00000007
,
четыре параметра которого соответствуют усредненной по времени интенсивности. Первый параметр I называется интенсивностью. Параметры М, С и S называются, соответственно, параметрами преимущественной горизонтальной поляризации, преимущественной поляризации под углом 45° и преимущественной правоциркулярной поляризации. Отрицательная величина параметра соответствует преимущественной ортогональной форме поляризации.
Выражения, описывающие любое оптическое устройство (поляризатор, фазовую пластинку и т.д.), является матрицей Мюллера размерностью 4×4. Конкретные матрицы характеризуют не только само устройство, но и его ориентацию (азимут). Для получения вектора Стокса, характеризующего световой поток, прошедший совокупность устройств, необходимо перемножить соответствующие матрицы по обычным правилам матричной алгебры с соблюдением следующих условий: вектор, представляющий падающий свет, записывается справа, а матрицы, соответствующие различным устройствам, располагаются последовательно справа налево.
Запишем матрицы Мюллера, описывающие прохождение естественного света через вещество с КД и прохождение света через предлагаемое устройство, состоящее из наклонной изотропной прозрачной пластины диэлектрика с произвольным азимутом и фазовой четвертью волновой пластины с нулевым азимутом.
Случай 1. Естественный свет проходит через вещество с КД
Figure 00000008
где S=K++K-, Δ=K+-K-,
Figure 00000009
, K+, K- - коэффициенты пропускания +, и - круговых волн.
I - Вектор Стокса падающего неполяризованного света единичной интенсивности
II - Вещество с круговым дихроизмом (понятие азимута не имеет смысла)
III - Результат прохождения света через вещество с КД
Случай 2. Естественный свет проходит через наклонную изотропную пластинку с произвольным азимутом вращения (матрицы VI, V, IV) и далее через фазовую четверть волновую пластину с нулевым азимутом
Figure 00000010
где а=K++K-, b=K+-K-,
Figure 00000011
, K+, K- - коэффициенты пропускания +, и - круговых волн, n=cos2ϕ, m=sin2ϕ, ϕ - угол вращения однородной пластины диэлектрика.
IV - Матрица прямого поворота с произвольным азимутом
V - Наклонная изотропная пластина с азимутом 0° относительно горизонта (устройство с линейным дихроизмом)
VI - Матрица обратного поворота с произвольным азимутом
VII - Фазовая пластинка, создающая разность хода между обыкновенным и необыкновенным лучами в четверть длины волны (азимут = 0°)
VIII - Результат прохождения света через описываемое устройство.
Ниже приведено последовательное перемножение матриц, описывающих предлагаемое устройство.
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Сравнив результаты, полученные после прохождения света через вещество с КД и после прохождения света через предлагаемое устройство, можно утверждать, что элементы, отвечающие за интенсивность и круговую поляризацию волны, в обоих случаях идентичны. Сопоставление элементов матрицы, отвечающих за круговую поляризацию, показывает что Δ=mb, а так как m=sin2ϕ, а b=K+-K-, то элемент Δ зависит от синуса угла вращения пластины диэлектрика.
Figure 00000016
А так как по определению круговой дихроизм - это
Figure 00000017
, то и зависимость величины КД, выдаваемой предлагаемым устройством, будет описываться формулой синуса. Как известно, при малых углах sinα≈α. Соответственно, вблизи малых значений углов поворота, а это и есть рабочая область получаемых значений КД, получаем линейную зависимость значений КД от угла поворота изотропной пластины диэлектрика.
В качестве наклонной изотропной прозрачной пластины берем пластину из плавленого кварца, у которой для длины волны λ=550 нм показатель преломления равен n=1.46. При нормальном падении на пластину светового луча степень поляризации проходящего света равна нулю, а при увеличении угла наклона будет расти и при угле наклона, равном углу Брюстера (для плавленого кварца αБ=55.6°), степень линейной поляризации проходящего луча, рассчитанная по формуле (2), достигнет максимума и будет равна ≈7%, а после прохождения двух граней пластины (формула (5)) ≈13%. Зафиксируем угол наклона изотропной пластины диэлектрика на углу Брюстера α=55.6°.
Тогда после прохождения волной фазовой пластины, меняя угол вращения пластины (ϕ), имеем возможность задавать величину "псевдодихроизма" в пределах от 0 до 0.13.
Для длины волны λ=550 нм минимальная толщина фазовой пластины, выполненной из кристаллического кварца, будет равна 15.3 мкм (так как nо=1.545 nе=1.554 и (nо-ne)d=((2m+1)λ/4).
Определим рабочую область углов вращения ϕ, при которых сигнал на выходе будет иметь линейную зависимость, воспользовавшись формулой (6). Реальные рабочие значения КД большинства веществ находятся в диапазоне Δ≤10-3. Учитывая, что значение угла зафиксировано на углу Брюстера, значение будет b=0.13. Соответственно
0.13*sin2ϕ≤10-3
Figure 00000018
sin2ϕ≤0.0077
2ϕ≤arcsin0.0077
2ϕ≤0.007708
ϕ≤0.0038538 рад. (0.22°).
В таком диапазоне углов, значение синуса равно самому углу sinα≈α, (sin 0.0038538=0.00385581), что и означает линейную зависимость величины КД, удобную для проведения калибровки.

Claims (1)

  1. Устройство для калибровки дихрографов кругового дихроизма, содержащее линейный поляризатор, фазовую пластину, обеспечивающую разность хода между обыкновенным и необыкновенным лучами (2m+1)·λ/4, отличающееся тем, что в качестве поляризатора используется изотропная прозрачная пластина диэлектрика с фиксированным углом наклона относительно направления распространения света и возможностью вращения относительно направления распространения света.
RU2016146700A 2016-11-28 2016-11-28 Устройство для калибровки дихрографов кругового дихроизма RU2629660C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016146700A RU2629660C1 (ru) 2016-11-28 2016-11-28 Устройство для калибровки дихрографов кругового дихроизма

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016146700A RU2629660C1 (ru) 2016-11-28 2016-11-28 Устройство для калибровки дихрографов кругового дихроизма

Publications (1)

Publication Number Publication Date
RU2629660C1 true RU2629660C1 (ru) 2017-08-30

Family

ID=59797590

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016146700A RU2629660C1 (ru) 2016-11-28 2016-11-28 Устройство для калибровки дихрографов кругового дихроизма

Country Status (1)

Country Link
RU (1) RU2629660C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2819107C1 (ru) * 2023-10-16 2024-05-14 Федеральное Государственное Автономное Образовательное Учреждение Высшего Образования "Самарский Национальный Исследовательский Университет Имени Академика С.П. Королева" (Самарский Университет) Моноблочный преобразователь светового пучка с круговой поляризацией в пучок с азимутальной поляризацией

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135983C1 (ru) * 1993-11-26 1999-08-27 Рокос унд Ко., Лтд. Способ измерения пропускания, кругового дихроизма, оптического вращения оптически активных веществ и дихрограф для его осуществления
RU2569752C2 (ru) * 2013-06-24 2015-11-27 Общество С Ограниченной Ответственностью "Лаборатория Оптико-Электронных Приборов" Многофункциональная аналитическая система для определения характеристик оптического сигнала кругового дихроизма биологически активного материала
RU2590344C1 (ru) * 2015-04-30 2016-07-10 Федеральное государственное бюджетное учреждение науки институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук Устройство для калибровки дихрографов кругового дихроизма
CN106092906A (zh) * 2016-08-15 2016-11-09 福州大学 一种基于线偏振光入射的圆二色谱和折射率测量系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135983C1 (ru) * 1993-11-26 1999-08-27 Рокос унд Ко., Лтд. Способ измерения пропускания, кругового дихроизма, оптического вращения оптически активных веществ и дихрограф для его осуществления
RU2569752C2 (ru) * 2013-06-24 2015-11-27 Общество С Ограниченной Ответственностью "Лаборатория Оптико-Электронных Приборов" Многофункциональная аналитическая система для определения характеристик оптического сигнала кругового дихроизма биологически активного материала
RU2590344C1 (ru) * 2015-04-30 2016-07-10 Федеральное государственное бюджетное учреждение науки институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук Устройство для калибровки дихрографов кругового дихроизма
CN106092906A (zh) * 2016-08-15 2016-11-09 福州大学 一种基于线偏振光入射的圆二色谱和折射率测量系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Веллюз Л. B др., "Оптический круговой дихроизм: принципы, измерения, применение." Мир, 1967. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2819107C1 (ru) * 2023-10-16 2024-05-14 Федеральное Государственное Автономное Образовательное Учреждение Высшего Образования "Самарский Национальный Исследовательский Университет Имени Академика С.П. Королева" (Самарский Университет) Моноблочный преобразователь светового пучка с круговой поляризацией в пучок с азимутальной поляризацией

Similar Documents

Publication Publication Date Title
JP5116345B2 (ja) 位相差測定方法及び装置
Snik et al. Spectral modulation for full linear polarimetry
US6515744B2 (en) Small spot ellipsometer
KR100765709B1 (ko) 분광 편광 계측 방법
CN102933944B (zh) 用于偏振测量的系统和方法
Bian et al. Mueller matrix ellipsometer based on discrete-angle rotating Fresnel rhomb compensators
RU2590344C1 (ru) Устройство для калибровки дихрографов кругового дихроизма
JP2008256591A (ja) 分光器を用いた位相差測定装置
Jellison et al. Transmission two-modulator generalized ellipsometry measurements
TWI615604B (zh) 寬波段消色差複合波片的定標方法
Dignam et al. Azimuthal misalignment and surface anisotropy as sources of error in ellipsometry
WO2001022029A1 (fr) Procede et appareil de mesure de l'intervalle intercellulaire d'un panneau a cristal liquide a alignement vertical
RU2629660C1 (ru) Устройство для калибровки дихрографов кругового дихроизма
JP2000509830A (ja) フォトアレイ検出器を備える回帰較正による回転補正器型分光エリプソメータシステム
RU2682605C1 (ru) Устройство для калибровки дихрографов кругового дихроизма
JP5041508B2 (ja) 光学特性計測装置および方法
CN110631805A (zh) 一种利用aotf单色光测量宽波段波片性能的装置及方法
RU2801066C1 (ru) Устройство для калибровки дихрографов кругового дихроизма
Li et al. Model-free determination of the birefringence and dichroism in c-cut crystals from transmission ellipsometry measurements
US20080018991A1 (en) Glan-Thompson Type Broadband Polarizer Device for Use in the Deep Ultraviolet Spectral Range and Method of Its Manufacture
Xiao et al. Field-of-view characteristics of a liquid crystal variable retarder
RU2606935C1 (ru) Волоконно-оптический датчик электрического тока
Shopa et al. Application of two-dimensional intensity maps in high-accuracy polarimetry
RU2528609C2 (ru) СПОСОБ ОПРЕДЕЛЕНИЯ ОРИЕНТАЦИИ КРИСТАЛЛОГРАФИЧЕСКИХ ОСЕЙ В АНИЗОТРОПНОМ ЭЛЕКТРООПТИЧЕСКОМ КРИСТАЛЛЕ КЛАССА 3m
SU1749784A1 (ru) Способ определени оптических анизотропных параметров кристаллов