RU2626525C1 - Устройство для реализации адсорбционного цикла повышения температурного потенциала источника теплоты - Google Patents
Устройство для реализации адсорбционного цикла повышения температурного потенциала источника теплоты Download PDFInfo
- Publication number
- RU2626525C1 RU2626525C1 RU2016130857A RU2016130857A RU2626525C1 RU 2626525 C1 RU2626525 C1 RU 2626525C1 RU 2016130857 A RU2016130857 A RU 2016130857A RU 2016130857 A RU2016130857 A RU 2016130857A RU 2626525 C1 RU2626525 C1 RU 2626525C1
- Authority
- RU
- Russia
- Prior art keywords
- heat
- adsorbent
- heat exchanger
- liquid refrigerant
- refrigerant
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B17/00—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
- F25B17/08—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/04—Heat pumps of the sorption type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Изобретение относится к области энергетики и направлено на энергосбережение путем рационального использования возобновляемых источников тепла и естественного перепада температуры в окружающей среде. Устройство для реализации адсорбционного цикла повышения температурного потенциала возобновляемого источника теплоты включает адсорбер, теплообменник, находящийся в контакте с гранулами адсорбента, вакуумный кран, емкость с жидким хладагентом и теплообменник, частично погруженный в жидкий хладагент. Емкость с жидким хладагентом и теплообменником является конденсатором и испарителем. В качестве адсорбента используют композитный адсорбент паров метанола, представляющий собой пористую матрицу, выбранную из ряда: силикагель, оксид алюминия, вермикулит, поры которой содержат галогенид или нитрат металлов из ряда: кальций, магний, литий, никель или кобальт в количестве не менее 17 мас.%, в качестве хладагента-адсорбтива используют спирты. Технический результат заключается в повышении температурного потенциала возобновляемого источника теплоты в замкнутом адсорбционном цикле. 3.з.п. ф-лы, 1 табл., 1 ил.
Description
Изобретение относится к области энергетики и направлено на энергосбережение путем рационального использования возобновляемых источников тепла и естественного перепада температуры в окружающей среде.
Рациональное использование теплоты возобновляемых источников энергии, таких как грунтовые воды, промышленные стоки, незамерзающие водоемы и т.д., открывает существенный потенциал для энергосбережения. Основной сложностью использования таких источников является их относительно низкий температурный потенциал, не позволяющий напрямую применять эти источник теплоты, например, для обогрева помещений, полов, воды и т.д. Таким образом, актуальной является техническая задача повышения температурного потенциала возобновляемых источников теплоты.
Известно устройство для отопления помещения, использующее в качестве источника теплоты грунтовые воды (RU 2529850, F24J 3/08, 10.10.2014). Устройство включает теплообменник, сопряженный с тепловым насосом, грунтовый теплообменник, установленный в геотермальной скважине, и трубопроводы.
Известно схожее с предыдущим устройство для обеспечения теплом жилых и производственных помещений и для использования полученного тепла для выработки небольшого объема электроэнергии для освещения помещения и работы маломощных потребителей электрического тока (RU 2456512, F24D 11/02, 20.07.2012). Оно состоит из грунтового контура, наружной трубы с заглушенным нижним концом и внутренней трубы с открытым нижним концом, по которым принудительно от насоса циркулирует теплоноситель, поступающий в бойлер для теплообмена с испарительной частью теплового насоса со вторичным теплоносителем, компрессором, теплообменником-конденсатором, и термогенераторов электрического тока. Оба устройства в качестве источника теплоты используют тепло грунтовых вод, а для повышения температурного потенциала этого источника теплоты - компрессионный тепловой насос с фреоном.
Известно, что фреон относится к веществам, оказывающим неблагоприятное влияние на окружающую среду. Известно, что к безопасным для окружающей среды хладагентам относятся вода и спирты. К устройствам, в которых применяются такие хладагенты, относятся абсорбционные и адсорбционные тепловые насосы.
В абсорбционных тепловых насосах высокотемпературный источник теплоты, так называемой высокопотенциальной теплоты, и низкотемпературный источник теплоты, так называемой низкопотенциальной теплоты, передает теплоту к тепловому насосу, который затем передает (или эжектирует) сумму подводимой теплоты от обоих источников при промежуточной температуре. Преобразование теплоты происходит при последовательном поглощении (абсорбции) паров хладагента раствором неорганической соли и их выделении (десорбции), а также испарении и конденсации паров хладагента в испарителе и конденсаторе.
Известен абсорбционный тепловой насос (RU 2164325, F25B 15/06, 20.03.2001), который содержит парогенератор, конденсатор, испаритель и абсорбер, соединенные между собой. К недостаткам этого и других типов абсорбционных тепловых насосов относится наличие движущихся частей, коррозионная активность рабочей жидкости и сложность конструкции.
Упомянутых недостатков лишены адсорбционные тепловые насосы. Принцип их действия аналогичен принципу действия абсорбционных тепловых насосов с той разницей, что поглощение паров хладагента происходит на твердом поглотителе-адсорбенте.
Ближайшим аналогом является адсорбционный тепловой насос (US 7497089, B01J 29/06, 03.03.2009), содержащий адсорбат (хладагент), испаритель, конденсатор и адсорбционно-десорбционную часть с адсорбентом. В качестве адсорбата (хладагента) используют пары воды, а в качестве адсорбента - алюмофосфат SAPO-34. Рабочий цикл адсорбционного теплового состоит в том, что адсорбент, находящийся при температуре 40-45°С, поглощает пары воды, и при этом происходит выделение теплоты. Испарение воды происходит в испарителе при температуре 5-10°С. Таким образом, происходит трансформация теплоты с низким температурным потенциалом в тепло с более высоким температурным потенциалом. Для регенерации адсорбента его нагревают до высокой температуры, наиболее предпочтительно до 60-95°С.
Недостатком является необходимость использования источника теплоты с более высоким температурным потенциалом, чем производимая насосом теплота, для приведения рабочего цикла.
Изобретение решает задачу реализации адсорбционного цикла повышения температурного потенциала возобновляемого источника теплоты с использованием естественной разницы температур в окружающей среде.
Задача решается устройством для реализации адсорбционного цикла повышения температурного потенциала возобновляемого источника теплоты, характеризующимся тем, что оно включает адсорбер, теплообменник, который находится в контакте с гранулами адсорбента, вакуумный кран, емкость с жидким хладагентом и теплообменник, погруженный в жидкий хладагент предпочтительно до середины свой высоты. Емкость с жидким хладагентом и теплообменником является конденсатором и испарителем. Через теплообменники циркулирует теплоноситель, поток которого организован через замкнутый контур, образованный соединительными элементами, клапанами, жидкостными помпами и баками-накопителями.
Сущность изобретения иллюстрируется следующим описанием, примерами и иллюстрациями.
Принципиальная схема устройства для реализации адсорбционного цикла повышения температурного потенциала возобновляемого источника теплоты приведена на чертеже.
В таблице приведена рабочая циклограмма устройства.
Предложено устройство, реализующее замкнутый адсорбционный цикл повышения температурного потенциала, использующее возобновляемый источник тепла и естественный перепад температуры в окружающей среде. Регенерацию адсорбента проводят путем его нагрева от возобновляемого источника тепла, а конденсатор при этом охлаждают до температуры окружающей среды. Температура окружающей среды составляет -50-5°С, преимущественно -25-15°С. Температура возобновляемого источника теплоты составляет 0-35°С, преимущественно 4-20°С. Повышение температурного потенциала происходит на стадии адсорбции, когда испаритель нагревают при помощи возобновляемого источника теплоты и испаряют хладагент, который затем адсорбируется на адсорбенте, в результате чего происходит выделение тепла и разогрев адсорбента.
Устройство (см. чертеж) для реализации предложенного цикла состоит из адсорбера (1), теплообменника (2), который находится в контакте с гранулами адсорбента (3), вакуумного крана (4), емкости (5) с хладагентом (6) и теплообменником (7), погруженным в хладагент. Теплообменник расположен в емкости с жидким хладагентом таким образом, чтобы его поверхность контактировала и с жидкой, и с паровой фазами хладагента. Наиболее предпочтительно, чтобы уровень хладагента достигал середины высоты теплообменника. Емкость с жидким хладагентом и теплообменником является конденсатором и испарителем.
Через теплообменники циркулирует теплоноситель, поток которого организован через замкнутый контур, образованный соединительными трубами, клапанами (8-15), жидкостными помпами (16-18) и баками-накопителями (19-21). Баки-накопители аккумулируют теплоноситель с различной температурой: окружающей среды (19), возобновляемого источника тепла (20), с повышенным температурным потенциалом (21). Особенностью конструкции устройства является то, что контур теплоносителя является единым для потоков с различной температурой, а их разделение по времени и направлению осуществляется за счет переключения клапанов (8-15) и помп (16-18) согласно циклограмме (см. таблицу).
Результатом является достижение последовательного нагрева/охлаждения емкости с хладагентом и нагрева/саморазогрева адсорбера, т.е. достигается технический результат повышения температурного потенциала возобновляемого источника теплоты в замкнутом адсорбционном цикле.
Пример 1
В устройство загружают 500 г адсорбента метанола (Пат РФ 2294796, B01J 20/02, 10.03.2007), представляющего собой пористую матрицу, выбранную из ряда: силикагель, оксид алюминия, вермикулит, поры которой содержат галогенид или нитрат металлов из ряда: кальций, магний, литий, никель или кобальт в количестве не менее 17 мас.%, в емкость для хладагента загружают 2 кг метанола, бак-накопитель 19 поддерживают при температуре окружающей среды -20°С, бак-накопитель 20 приводят в тепловой контакт с источником возобновляемого тепла (сток воды) при температуре 20°С, бак-накопитель 21 теплоизолируют. Теплообменник (7) в емкости расположен таким образом, что уровень жидкого хладагента достигает середины высоты теплообменника.
Согласно циклограмме осуществляют переключение режимов работы устройства в последовательности: «охлаждение», «регенерация», «нагрев» и «адсорбция» и т.д. Температура теплоносителя в баке накопителе 21 повышается и в течение суток достигает 34°С.
Пример 2
Аналогично примеру 1, теплообменник в емкости располагали выше уровня жидкого хладагента. На стадиях 2 и 5 циклограммы не происходило полного нагрева хладагента в емкости, а на стадиях 3 и 4 не происходило его полного охлаждения. Температура теплоносителя в баке-накопителе 21 возрастала несущественно.
Пример 3
Аналогично примеру 1, теплообменник в емкости располагали ниже уровня жидкого хладагента. На стадии 4 не происходило полной конденсации хладагента, температура теплоносителя в баке-накопителе 21 возрастала несущественно.
Пример показывает, что изобретение решает техническую задачу реализации адсорбционного цикла повышения температурного потенциала источника энергии путем использования естественного перепада температур в окружающей среде.
. Обозначения: V0 - кран вакуумный (поз. 4), v1-v8 - клапаны (поз. 8-15), М1-М3 - помпы (поз. 19-21), X - закрыт/выключен, + - открыт/включен.
Claims (4)
1. Устройство для реализации адсорбционного цикла повышения температурного потенциала возобновляемого источника теплоты, характеризующееся тем, что включает адсорбер, теплообменник, который находится в контакте с гранулами адсорбента, вакуумный кран, емкость с жидким хладагентом и теплообменник, частично погруженный в жидкий хладагент, при этом в качестве адсорбента используют композитный адсорбент паров метанола, представляющий собой пористую матрицу, выбранную из ряда: силикагель, оксид алюминия, вермикулит, поры которой содержат галогенид или нитрат металлов из ряда: кальций, магний, литий, никель или кобальт в количестве не менее 17 мас.%, в качестве хладагента-адсорбтива используют спирты.
2. Устройство по п. 1, отличающееся тем, что теплообменник погружен в жидкий хладагент предпочтительно до середины свой высоты.
3. Устройство по п. 1, отличающееся тем, что емкость с жидким хладагентом и теплообменником является конденсатором и испарителем.
4. Устройство по п. 1, отличающееся тем, что через теплообменники циркулирует теплоноситель, поток которого организован через замкнутый контур, образованный соединительными элементами, клапанами, жидкостными помпами и баками-накопителями.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016130857A RU2626525C1 (ru) | 2016-07-26 | 2016-07-26 | Устройство для реализации адсорбционного цикла повышения температурного потенциала источника теплоты |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016130857A RU2626525C1 (ru) | 2016-07-26 | 2016-07-26 | Устройство для реализации адсорбционного цикла повышения температурного потенциала источника теплоты |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2626525C1 true RU2626525C1 (ru) | 2017-07-28 |
Family
ID=59632305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016130857A RU2626525C1 (ru) | 2016-07-26 | 2016-07-26 | Устройство для реализации адсорбционного цикла повышения температурного потенциала источника теплоты |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2626525C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11684888B2 (en) | 2021-01-08 | 2023-06-27 | Saudi Arabian Oil Company | Integrated heat management systems and processes for adsorbed natural gas storage facilities |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1334007A1 (ru) * | 1985-12-10 | 1987-08-30 | Украинская сельскохозяйственная академия | Устройство дл лиофильной сушки термочувствительных материалов |
DE19726286A1 (de) * | 1996-06-21 | 1998-01-02 | Aisin Seiki | Thermisch angetriebene Sorptionskälteanlage mit Behälterpaaren |
JP2006125713A (ja) * | 2004-10-28 | 2006-05-18 | Toho Gas Co Ltd | 吸着式暖房・給湯装置 |
RU2294796C2 (ru) * | 2005-03-28 | 2007-03-10 | Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук | Сорбент паров метанола и способ получения холода с помощью адсорбционного холодильного устройства |
US7497089B2 (en) * | 2001-02-21 | 2009-03-03 | Mitsubishi Chemical Corporation | Adsorption heat pump and use of adsorbent as adsorbent for adsorption heat pump |
-
2016
- 2016-07-26 RU RU2016130857A patent/RU2626525C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1334007A1 (ru) * | 1985-12-10 | 1987-08-30 | Украинская сельскохозяйственная академия | Устройство дл лиофильной сушки термочувствительных материалов |
DE19726286A1 (de) * | 1996-06-21 | 1998-01-02 | Aisin Seiki | Thermisch angetriebene Sorptionskälteanlage mit Behälterpaaren |
US7497089B2 (en) * | 2001-02-21 | 2009-03-03 | Mitsubishi Chemical Corporation | Adsorption heat pump and use of adsorbent as adsorbent for adsorption heat pump |
JP2006125713A (ja) * | 2004-10-28 | 2006-05-18 | Toho Gas Co Ltd | 吸着式暖房・給湯装置 |
RU2294796C2 (ru) * | 2005-03-28 | 2007-03-10 | Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук | Сорбент паров метанола и способ получения холода с помощью адсорбционного холодильного устройства |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11684888B2 (en) | 2021-01-08 | 2023-06-27 | Saudi Arabian Oil Company | Integrated heat management systems and processes for adsorbed natural gas storage facilities |
US11896928B2 (en) | 2021-01-08 | 2024-02-13 | Saudi Arabian Oil Company | Integrated heat management systems and processes for adsorbed natural gas storage facilities |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Saha et al. | Solar/waste heat driven two-stage adsorption chiller: the prototype | |
Sarbu et al. | General review of solar-powered closed sorption refrigeration systems | |
Dilshad et al. | Review of carbon dioxide (CO2) based heating and cooling technologies: Past, present, and future outlook | |
Fernandes et al. | Review and future trends of solar adsorption refrigeration systems | |
Wang et al. | An energy efficient hybrid system of solar powered water heater and adsorption ice maker | |
Wang et al. | Adsorption refrigeration | |
Tchernev | Solar energy application of natural zeolites | |
US9696063B2 (en) | Cooling systems and related methods | |
RU2142101C1 (ru) | Усовершенствованное устройство и способы теплопередачи в сорбционных системах твердое тело - пар | |
JPS611933A (ja) | 電気蓄熱槽用吸着装置及びその運転方法 | |
KR101642843B1 (ko) | 삼중 하이브리드 히트펌프 냉난방 시스템 | |
Bjurström et al. | The absorption process for heating, cooling and energy storage—an historical survey | |
RU2626525C1 (ru) | Устройство для реализации адсорбционного цикла повышения температурного потенциала источника теплоты | |
Gado et al. | Parametric study of an adsorption refrigeration system using different working pairs | |
JP2010216784A (ja) | 空気調和システム | |
Kumar et al. | Studies on the feasibility of adsorption cooling technologies–A review | |
Arunkumar et al. | Design and fabrication of solar powered lithium bromide vapour absorption refrigeration system | |
Thakare et al. | Performance analysis of solar powered adsorption cooling system | |
JP2678211B2 (ja) | 蓄熱型冷温熱発生装置 | |
Ali et al. | Simulation model for silica gel-water adsorption cooling system powered by renewable energy | |
Aristov et al. | Chemical and sorption heat engines: State of the art and development prospects in the Russian Federation and the Republic of Belarus | |
CN203274098U (zh) | 一种吸附式太阳能制冷制热空调 | |
Wouagfack et al. | A review on exergy analysis of solar refrigeration technologies | |
Dhokane et al. | Design and development of intermittent solid adsorption refrigeration system running on solar energy | |
Dakkama | Experimental investigation of MOF adsorption system for ice making, freeze water desalination and cooling applications |