RU2626392C1 - Туннельный нелегированный многозатворный полевой нанотранзистор с контактами шоттки - Google Patents

Туннельный нелегированный многозатворный полевой нанотранзистор с контактами шоттки Download PDF

Info

Publication number
RU2626392C1
RU2626392C1 RU2016123988A RU2016123988A RU2626392C1 RU 2626392 C1 RU2626392 C1 RU 2626392C1 RU 2016123988 A RU2016123988 A RU 2016123988A RU 2016123988 A RU2016123988 A RU 2016123988A RU 2626392 C1 RU2626392 C1 RU 2626392C1
Authority
RU
Russia
Prior art keywords
gate
nanotransistor
electrodes
drain
semiconductor substrate
Prior art date
Application number
RU2016123988A
Other languages
English (en)
Inventor
Владимир Владимирович Вьюрков
Владимир Федорович Лукичев
Константин Васильевич Руденко
Дмитрий Александрович Свинцов
Юрий Федорович Семин
Original Assignee
Федеральное государственное бюджетное учреждение науки Физико-технологический институт Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Физико-технологический институт Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Физико-технологический институт Российской академии наук
Priority to RU2016123988A priority Critical patent/RU2626392C1/ru
Application granted granted Critical
Publication of RU2626392C1 publication Critical patent/RU2626392C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

Использование: в полупроводниковой технологии для изготовления нанотранзисторов и СБИС. Технический результат: электрическое легирование с помощью дополнительных управляющих электродов затворов, позволяющее создавать более резкие p-n-переходы, чем в туннельных транзисторах с физическим легированием; увеличение крутизны вольт-амперных характеристик туннельных транзисторов и снижение их порогового напряжения; возможность изменения типа проводимости канала для применения предлагаемых транзисторов в КМОП технологии цифровых интегральных схем, отсутствие технологических операций, связанных с легированием, расширение функциональных возможностей, увеличение крутизны подпороговой вольтамперной характеристики за счет увеличения количества управляющих электродов затворов и обеспечение работы в режиме туннельного транзистора. Сущность изобретения: предлагается конструкция туннельного нелегированного многозатворного полевого нанотранзистора с контактами Шоттки, характеризующаяся тем, что на поверхности слоя подзатворного диэлектрика располагаются последовательно два или больше управляющих электродов затворов на участке над каналом нанотранзистора между электродами стока и истока, при этом боковые поверхности управляющих электродов затворов закрыты слоями диэлектрика спейсеров, легирование слоя полупроводника не производится ни под электродами стока и истока, ни в канале нанотранзистора на участке между электродами стока и истока, а необходимые режимы работы нанотранзистора обеспечиваются использованием эффекта туннелирования и соответствующим выбором материалов электродов стока, истока и управляющих электродов затворов, а также прилагаемыми к управляющим электродам затворов напряжениями. 3 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области микро- и наноэлектроники и может быть использовано для изготовления как полевых нанотранзисторов, так и интегральных схем на их основе.
При создании транзисторов малых размеров на объемной полупроводниковой подложке сталкиваются с принципиальными ограничениями, вызванными так называемыми короткоканальными эффектами. Используя материалы с высоким, более 10, значением диэлектрической проницаемости k, уменьшая глубину переходов и толщину подзатворного диэлектрика, используя полупроводниковые подложки "кремний на изоляторе", добиваются возможности избавиться от "короткоканальных" эффектов, чтобы тем самым уменьшить размеры транзисторов и, главное, длину канала нанотранзисторов. Это позволяет повысить быстродействие интегральных схем. Кроме того, для высокого быстродействия также необходимо использовать высокопроводящие материалы затворов, например металлы или силициды металлов [1].
Продвижение в область еще меньших размеров элементов транзисторов требует отказа от легирования полупроводника в контактных областях. Реализация такой возможности обеспечивается только с использованием полевого транзистора с контактами Шоттки (SB FET) на истоке и стоке вместо омических контактов, которые обычно создаются путем сильного легирования полупроводника. Такие транзисторы были реализованы различными авторами [2]. Преимущества подобных транзисторов обусловлены отсутствием технологических операций, связанных с легированием контактов. Легирование включает процессы ионной имплантации и быстрого отжига при высокой, около 1000°С, температуре. Высокая температура вызывает нежелательную диффузию примеси и атомов металлов в структуре транзисторов.
Хотя предложенные конструкции транзисторов и решали поставленную задачу повышения степени интеграции и быстродействия, развитие технологии требует дальнейшего улучшения характеристик транзисторов, а также снижения энергопотребления и уменьшения разогрева. Этого можно добиться путем уменьшения рабочего напряжения транзисторов в цифровой логической схеме. Для уменьшения рабочего напряжения требуется увеличение наклона подпороговой вольт-амперной характеристики транзистора. Однако в транзисторах с контактами Шоттки наклон подпороговой характеристики ограничен величиной 60 мВ напряжения на затворе на декаду тока канала при комнатной температуре, как и в обычном полевом транзисторе [3].
Известны туннельные транзисторы [4], в которых в принципе может быть достигнута большая крутизна подпороговой характеристики. Работа таких транзисторов основана на смыкании и размыкании зоны проводимости и валентной зоны полупроводника, которые управляются напряжением на затворе. У этой конструкции имеется механический аналог в виде электромеханических переключателей, в которых напряжение на затворе смыкает и размыкает электрические контакты. В туннельных транзисторах обычно используется латеральная структура с областями разного типа легирования: p+-i-n+, причем затвор расположен над нелегированной i-областью. Недостатки подобных транзисторов обусловлены наличием технологических операций, связанных с легированием контактов. В частности, не удается создать резкие переходы в структурах p+-i-n+, в результате ток открытого состояния транзистора падает, что сказывается на его быстродействии. Кроме того, в процессе отжига примеси из контактов заходят в канал транзистора, уменьшая его проводимость. Другим нежелательным обстоятельством является то, что флуктуации концентрации легирующей примеси делают невозможным резкое смыкание и размыкание зоны проводимости и валентной зоны, что ограничивает достижимую крутизну вольт-амперной характеристики транзистора [5]. В связи с этим мы предлагаем добиваться повышения подпороговой крутизны транзистора за счет увеличения числа затворов и отсутствия легирования. С помощью дополнительных затворов осуществляется так называемое "электрическое легирование" подзатворных областей, при этом в процессе работы транзистора на дополнительные затворы подается постоянное напряжение. Выбор величины и знака этого напряжения позволяет получать структуры p+-i-n+ и n+-i-p+, т.е. с разным типом проводимости, что необходимо для создания КМОП (CMOS) пары, применяемой в цифровых логических схемах.
Для предлагаемой конструкции туннельного нелегированного многозатворного полевого нанотранзистора с контактами Шоттки с несколькими управляющими электродами затворов наиболее близким по конструкции является полевой транзистор с контактами Шоттки на истоке и стоке и одним управляющим электродом затвора [6]. Как отмечалось ранее, у такого транзистора наклон подпороговой вольт-амперной характеристики ограничен величиной 60 мВ напряжения на управляющем электроде затвора на декаду тока канала при комнатной температуре, как и в обычном полевом транзисторе.
Решение задачи повышения наклона подпороговой характеристики достигается тем, что предлагается конструкция туннельного нелегированного многозатворного полевого нанотранзистора с контактами Шоттки, включающая в себя полупроводниковую подложку, электроды стока и истока с контактами Шоттки, сформированные на слое полупроводника, канал полевого транзистора в слое полупроводника, расположенный между электродами стока и истока с контактами Шоттки и покрытый сверху слоем подзатворного диэлектрика, на котором расположен управляющий электрод затвора, сформированный на участке между электродами стока и истока над каналом нанотранзистора, при этом боковые поверхности управляющего электрода затвора закрыты изолирующими слоями диэлектрика спейсеров, отличается тем, что на поверхности слоя подзатворного диэлектрика на участке над каналом нанотранзистора между электродами стока и истока располагаются последовательно два или больше управляющих электродов затворов, при этом боковые поверхности управляющих электродов (затворов) закрыты слоями диэлектрика спейсеров, легирование слоя полупроводника не производится ни под электродами стока и истока, ни в канале нанотранзистора на участке между электродами стока и истока, а необходимые режимы работы нанотранзистора обеспечиваются использованием эффекта туннелирования и соответствующим выбором материалов электродов стока, истока и управляющих электродов затворов, а также прилагаемыми к управляющим электродам затворов напряжениями.
На прилагаемых чертежах показаны: изолирующая подложка 1; кремний 2; электрод истока 3; электрод стока 4; диэлектрик спейсера 5; управляющий электрод затвора 6 и подзатворный диэлектрик 7.
На фиг. 1-2 представлены конструкция выбранного в качестве прототипа туннельного полевого транзистора и конструкция предлагаемого туннельного нелегированного многозатворного полевого нанотранзистора с контактами Шоттки в варианте использования в качестве полупроводниковой подложки типа "кремний на изоляторе". Во втором случае показаны три управляющих электрода затворов, однако следует отметить, что - это только пример конструкции, а в общем случае может быть несколько, т.е. два или больше управляющих электродов затворов, как это сказано в формуле изобретения.
На фиг. 3 представлен результат расчета вольт-амперных характеристик, т.е. зависимости тока транзистора от напряжения на затворе для «классического» кремниевого транзистора с физическим легированием и одним затвором и для предлагаемого транзистора с электрическим легированием и несколькими управляющими электродами затворов.
Мы провели расчет вольт-амперных характеристик «классического» кремниевого транзистора с физическим легированием и одним затвором и предлагаемого транзистора с электрическим легированием и несколькими управляющими электродами затворов. При расчете характеристики транзистора с одним затвором мы использовали идеализированную модель резкой границы легирования на p-i-переходе. Это приближение дает завышенные значения подпороговой крутизны, т.к. не принимает во внимание флуктуацию плотности легирующей примеси. По-видимому, именно в результате этих флуктуаций экспериментально достигнутые значения подпороговой крутизны в легированных туннельных транзисторах гораздо ниже, а именно (53 мВ/дек)-1 для кремниевых транзисторов [7] и (47 мВ/дек)-1 для транзисторов на основе материалов А3В5 [8].
Следует отметить, что использование германия приводит к улучшению характеристик (крутизны и тока открытого состояния) по сравнению с кремниевыми туннельными транзисторами. Полупроводники группы А3В5, в принципе, также позволяют улучшить характеристики предлагаемых транзисторов, однако до сих пор не решена проблема подзатворных диэлектриков, т.к. существующие в настоящее время диэлектрики обладают большим количеством дефектов на границе раздела с полупроводником.
Предлагаемая конструкция туннельного нелегированного многозатворного полевого нанотранзистора с контактами Шоттки и интегральные схемы на их основе обеспечивают следующие преимущества:
- совмещение в одном транзисторе преимуществ транзисторов с контактами Шоттки (отсутствие легирования) с преимуществами туннельных транзисторов (высокая крутизна подпороговой характеристики);
- электрическое легирование, используемое вместо физического легирования, устраняет потребность в высокотемпературной операции отжига для активации примесей и повышает крутизну характеристики туннельного транзистора;
- выбор величины и знака напряжения на вспомогательных легирующих управляющих электродах затворов позволяет получать транзисторы с разным типом проводимости канала, т.е. n- и p-типа, что необходимо для создания КМОП-пары, применяемой в цифровых интегральных схемах.
Эти преимущества обеспечивают нанометровую, вплоть до нескольких нанометров, длину канала полевого нанотранзистора, решая проблемы достижения высокой степени интеграции, увеличения рабочей частоты, повышения крутизны подпороговой характеристики и увеличения тока открытого состояния при работе в режиме туннельного транзистора, уменьшения рабочего напряжения, снижения энергопотребления, а также повышения быстродействия и воспроизводимости параметров приборов. В целом наличие необходимого, произвольно выбираемого, количества управляющих электродов затворов значительно расширяет функциональные возможности нанотранзистора и повышает эффективность управления его характеристиками.
Источники информации
1. Патент США US 6602781 В1, 2003 (Metal silicide gate transistors, Qi Xiang et al.).
2. A) D.J. Pearman, G. Pailloncy, J.-P. Raskin, J.M. Larson, J.P. Snyder, E.H.C. Parker and Т.E. Whall. Static and High-Frequency Behavior and Performance of Schottky-Barrier p-MOSFET Devices, IEEE Tr. El. Dev., vol. 54, pp, 2796-2802, 2007.
B) Li Ding-Yu, Sun Lei, Zhang Sheng-Dong, Wang Yi, Liu Xiao-Yan and Han Ru-Qi. Schottky barrier MOSFET structure with silicide source/drain on buried metal. Chinese Physics, vol. 16. pp. 240-244, 2007.
C) C. Ahn and M. Shin. Ballistic Quantum Transport in Nanoscale Schottky-Barrier Tunnel Transistors. IEEE Tr. Nanotech., vol. 5, pp. 278-283, 2006.
3. D. Svintsov, V. Vyurkov, A. Burenkov, R. Oechsner, V. Lukichev and A. Orlikovsky. Tunnel FET with nanotube and graphene channels, Semiconductors, 47, 2, p. 279-284, 2013.
4. C. Aydin, A. Zaslavsky, S. Luryi, S. Cristoloveanu, D. Mariolle, D. Fraboulet and S. Deleonibus. Lateral interband tunneling transistor in silicon-on-insulator. Applied Physics Letters 84, 1780 (2004).
5. A) S. Mookerjea, D. Mohata, T. Mayer, V. Narayanan, S. Datta Temperature-Dependent I-V Characteristics of a Vertical In0,53Ga0,47As Tunnel FET // IEEE Electron Device Letters, Vol. 31, 2010, p. 564.
B) C.D. Bessire, M.T.
Figure 00000001
, H. Schmid, A. Schenk, K.B. Reuter, H. Riel Trap-Assisted Tunneling in Si-InAs Nanowire Heteroj unction Tunnel Diodes // Nano Letters, Vol. 11, 2011, p. 4195.
6. Патент США US 2007/0187758 A1 (SB-MOSFET (Schottky Barrier Metal-Oxide-Semiconductor Field Effect Transistor), with low barrier height and fabricating method thereof, Myung Sim Jun et al.).
7. Gandhi, R. et al. Vertical Si-nanowire n-type tunneling FETs with low subthreshold swing (≤50 mV/decade) at room temperature. IEEE Electron Device Lett. 32, 437-439 (2011).
8. Tomioka, K., Yoshimura, M. & Fukui, T. Steep-slope tunnel field-effect transistors using III-V nanowire / Si heterojunction. In Symposium on VLSI Technology, 47-48 (IEEE, 2012).

Claims (4)

1. Туннельный нелегированный многозатворный полевой нанотранзистор с контактами Шоттки, включающий в себя полупроводниковую подложку, электроды стока и истока с контактами Шоттки, сформированные на поверхности полупроводниковой подложки, канал полевого транзистора в полупроводниковой подложке, расположенный между электродами стока и истока с контактами Шоттки и покрытый сверху слоем подзатворного диэлектрика, на котором расположен управляющий электрод затвора, сформированный на участке между электродами стока и истока над каналом нанотранзистора, при этом боковые поверхности управляющего электрода затвора закрыты изолирующими слоями диэлектрика спейсеров, отличающийся тем, что на поверхности слоя подзатворного диэлектрика на участке над каналом нанотранзистора между электродами стока и истока располагаются последовательно два или больше управляющих электродов затворов, при этом боковые поверхности управляющих электродов затворов закрыты слоями диэлектрика спейсеров, легирование полупроводниковой подложки не производится ни под электродами стока и истока, ни в канале нанотранзистора на участке между электродами стока и истока, а необходимые режимы работы нанотранзистора обеспечиваются использованием эффекта туннелирования и соответствующим выбором материалов электродов стока, истока и управляющих электродов затворов, а также прилагаемыми к управляющим электродам затворов напряжениями.
2. Туннельный нелегированный многозатворный полевой нанотранзистор с контактами Шоттки по п. 1, отличающийся тем, что в качестве полупроводниковой подложки используется полупроводниковая подложка типа "полупроводник на изоляторе", например "кремний на изоляторе".
3. Туннельный нелегированный многозатворный полевой нанотранзистор с контактами Шоттки по п. 1, отличающийся тем, что в качестве полупроводниковой подложки используется полупроводниковая подложка в виде объемного полупроводника.
4. Туннельный нелегированный многозатворный полевой нанотранзистор с контактами Шоттки по п. 1, отличающийся тем, что в качестве подзатворного диэлектрика и диэлектрика спейсеров используется один и тот же диэлектрический материал с высоким, более 10, значением диэлектрической проницаемости k, например HfO2, ZrO2, Al2O3, InO2, LaO2, Ta2O5, ZrSiO4, HfSiO4.
RU2016123988A 2016-06-17 2016-06-17 Туннельный нелегированный многозатворный полевой нанотранзистор с контактами шоттки RU2626392C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016123988A RU2626392C1 (ru) 2016-06-17 2016-06-17 Туннельный нелегированный многозатворный полевой нанотранзистор с контактами шоттки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016123988A RU2626392C1 (ru) 2016-06-17 2016-06-17 Туннельный нелегированный многозатворный полевой нанотранзистор с контактами шоттки

Publications (1)

Publication Number Publication Date
RU2626392C1 true RU2626392C1 (ru) 2017-07-26

Family

ID=59495748

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016123988A RU2626392C1 (ru) 2016-06-17 2016-06-17 Туннельный нелегированный многозатворный полевой нанотранзистор с контактами шоттки

Country Status (1)

Country Link
RU (1) RU2626392C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674413C1 (ru) * 2017-12-29 2018-12-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Способ изготовления полупроводникового прибора
RU2717157C2 (ru) * 2018-06-07 2020-03-18 Федеральное государственное бюджетное учреждение науки Физико-технологический институт Российской академии наук Способ изготовления тунельного многозатворного полевого нанотранзистора с контактами шоттки

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060214238A1 (en) * 2005-03-28 2006-09-28 Glass Elizabeth C Multi-gate enhancement mode RF switch and bias arrangement
RU2312422C2 (ru) * 2003-12-10 2007-12-10 Государственное учреждение "Научно-производственный комплекс "Технологический центр" Московского государственного института электронной техники" Способ изготовления самосовмещенного планарного двухзатворного моп-транзистора на кни подложке
US20080017553A1 (en) * 2004-09-22 2008-01-24 Fuji Xerox Co., Ltd. Method and device for classifying fine particles
WO2010009873A1 (en) * 2008-07-23 2010-01-28 University College Cork, National University Of Ireland, Cork Tunnel nanowire transistor
US20140199817A1 (en) * 2011-10-18 2014-07-17 United Microelectronics Corp. Method for manufacturing multi-gate transistor device
US20160163739A1 (en) * 2012-10-01 2016-06-09 Globalfoundries Inc. Multi-gate field effect transistor (fet) including isolated fin body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2312422C2 (ru) * 2003-12-10 2007-12-10 Государственное учреждение "Научно-производственный комплекс "Технологический центр" Московского государственного института электронной техники" Способ изготовления самосовмещенного планарного двухзатворного моп-транзистора на кни подложке
US20080017553A1 (en) * 2004-09-22 2008-01-24 Fuji Xerox Co., Ltd. Method and device for classifying fine particles
US20060214238A1 (en) * 2005-03-28 2006-09-28 Glass Elizabeth C Multi-gate enhancement mode RF switch and bias arrangement
WO2010009873A1 (en) * 2008-07-23 2010-01-28 University College Cork, National University Of Ireland, Cork Tunnel nanowire transistor
US20140199817A1 (en) * 2011-10-18 2014-07-17 United Microelectronics Corp. Method for manufacturing multi-gate transistor device
US20160163739A1 (en) * 2012-10-01 2016-06-09 Globalfoundries Inc. Multi-gate field effect transistor (fet) including isolated fin body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674413C1 (ru) * 2017-12-29 2018-12-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Способ изготовления полупроводникового прибора
RU2717157C2 (ru) * 2018-06-07 2020-03-18 Федеральное государственное бюджетное учреждение науки Физико-технологический институт Российской академии наук Способ изготовления тунельного многозатворного полевого нанотранзистора с контактами шоттки

Similar Documents

Publication Publication Date Title
Chattopadhyay et al. Impact of a spacer dielectric and a gate overlap/underlap on the device performance of a tunnel field-effect transistor
Asthana et al. High-speed and low-power ultradeep-submicrometer III-V heterojunctionless tunnel field-effect transistor
Ghosh et al. A junctionless tunnel field effect transistor with low subthreshold slope
WO2019233481A1 (en) Metal-oxide-semiconductor field-effect transistor with cold source
WO2011101463A1 (en) A transistor device
Solankia et al. A Review paper: A Comprehensive study of Junctionless transistor
Nigam et al. A new approach for design and investigation of junction-less tunnel FET using electrically doped mechanism
Madadi et al. Investigation of 4H-SiC gate-all-around cylindrical nanowire junctionless MOSFET including negative capacitance and quantum confinements
Narula et al. Investigating short channel effects and performance parameters of double gate junctionless transistor at various technology nodes
Saravanan et al. Performance Analysis of InAs-GaAs Gate-all-around Tunnel Field Effect Transistors (GAA-TFET) for Analog/RF applications
RU2626392C1 (ru) Туннельный нелегированный многозатворный полевой нанотранзистор с контактами шоттки
Asthana High performance 20 nm GaSb/InAs junctionless tunnel field effect transistor for low power supply
Hähnel et al. Germanium vertical tunneling field-effect transistor
Chandan et al. A fair comparison of the performance of charge plasma and electrostatic tunnel FETs for low-power high-frequency applications
Tripathi et al. Design of triple material junctionless CG MOSFET
Rony et al. Short channel effects suppression in a dual-gate gate-all-around Si nanowire junctionless nMOSFET
Tachi et al. Comparison of low-temperature electrical characteristics of gate-all-around nanowire FETs, Fin FETs and fully-depleted SOI FETs
Naik et al. Si 0.5 Ge 0.5 single and hetero-gate dielectric doping-less tunnel FETs
Alias et al. Electrical characterization of n-type cylindrical gate all around nanowire junctionless transistor with SiO2 and high-k dielectrics
Sharma et al. Graded channel architecture: the solution for misaligned DG FD SOI n-MOSFETs
Juyal et al. TCAD simulation of Ge-GaAs hetrojunction dopingless tunnel field effect transistor
Sharma et al. Performance enhancement of junctionless nanowire FET with laterally graded channel doping and high-K spacers
Selvi et al. Performance Optimization in Recessed Modified Junctionless FET
RU2717157C2 (ru) Способ изготовления тунельного многозатворного полевого нанотранзистора с контактами шоттки
Ramarao et al. Dual-k HfO 2 Spacer Bulk Planar Junctionless Transistor for Sub-30 nm Low Power CMOS