RU2626384C1 - Комплекс формирования сигнально-помеховой обстановки - Google Patents

Комплекс формирования сигнально-помеховой обстановки Download PDF

Info

Publication number
RU2626384C1
RU2626384C1 RU2016127154A RU2016127154A RU2626384C1 RU 2626384 C1 RU2626384 C1 RU 2626384C1 RU 2016127154 A RU2016127154 A RU 2016127154A RU 2016127154 A RU2016127154 A RU 2016127154A RU 2626384 C1 RU2626384 C1 RU 2626384C1
Authority
RU
Russia
Prior art keywords
output
input
uav
ground
radio
Prior art date
Application number
RU2016127154A
Other languages
English (en)
Inventor
Сергей Викторович Беденко
Сергей Васильевич БУЦЕВ
Андрей Викторович Занозин
Александр Николаевич Руденок
Иван Александрович Руденок
Original Assignee
Акционерное общество "Научно-производственный центр Тверских военных пенсионеров" (АО "НПЦ ТВП")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственный центр Тверских военных пенсионеров" (АО "НПЦ ТВП") filed Critical Акционерное общество "Научно-производственный центр Тверских военных пенсионеров" (АО "НПЦ ТВП")
Priority to RU2016127154A priority Critical patent/RU2626384C1/ru
Application granted granted Critical
Publication of RU2626384C1 publication Critical patent/RU2626384C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/38Jamming means, e.g. producing false echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures

Landscapes

  • Noise Elimination (AREA)

Abstract

Изобретение относится к радиотехнике и может быть использовано для формирования сигнально-помеховой обстановки при обосновании параметров радиоэлектронных средств (РЭС). Технический результат - повышение качества и оперативности обоснования параметров РЭС при оценке их электромагнитной совместимости и помехозащищенности - достигается за счет аппаратно-программного управления процессом формирования требуемой (заданной) сигнально-помеховой обстановки мобильным источником сигналов (помех) из различных точек пространства с привязкой к координатам и времени функционирования РЭС и источника сигналов (помех) и ведения объективного документирования параметров сигналов, помех и координатного положения источника сигналов (помех). Указанный результат достигается тем, что комплекс формирования сигнально-помеховой обстановки содержит приемную антенну, последовательно соединенную с приемно-возбудительным блоком, которые расположены в наземной части устройства, а также последовательно соединенные радиопередающий блок и передающую антенну, связанную по радиоканалу с приемной антенной, содержит также беспилотный летательный аппарат (БЛА), представляющий собой бортовую часть устройства, на котором размещены последовательно соединенные радиопередающий блок и передающая антенна, а также на БЛА размещена микроЭВМ, первый выход которой является входом радиопередающего блока, второй выход микроЭВМ является входом бортового устройства управления микроЭВМ, выход которого является ее входом, на БЛА также размещены бортовой полетный контроллер и бортовое устройство управления БЛА, взаимосвязанные между собой, при этом наземная часть устройства содержит наземную ЭВМ управления, первый выход которой является вторым входом приемно-возбудительного блока, связанного выходом с ее первым входом, второй выход наземной ЭВМ управления является входом расположенного в наземной части устройства управления микроЭВМ, связанного по радиоканалу с бортовым устройством управления микроЭВМ, третий выход наземной ЭВМ управления является входом расположенного в наземной части устройства управления БЛА, связанного по радиоканалу с бортовым устройством управления БЛА, а выходом - с третьим входом наземной ЭВМ управления. 1 ил.

Description

Изобретение относится к радиотехнике и может быть использовано для формирования сигнально-помеховой обстановки в интересах, например, обоснования параметров радиоэлектронных средств (РЭС) для оценки их электромагнитной совместимости и помехозащищенности.
В настоящее время промышленностью выпускается большая номенклатура РЭС различного назначения. На разных этапах их жизненного цикла возникают задачи, связанные с оценкой качества функционирования данных РЭС и обоснования требований к ним по электромагнитной совместимости, помехозащищенности, а также требований, обеспечивающих их защиту от электромагнитных излучений (помех) естественного и искусственного происхождения. При этом качественное решение данных задач является актуальным, так как процедура их решения представляет достаточно трудоемкий и технически сложный процесс.
Достигнутый уровень развития выпускаемого имитационно-измерительного оборудования и способов (математических, программных, технических и др.) формирования различных видов и параметров сигналов и помех на основе его использования позволяет решать указанные выше задачи на совершенно иных программном, техническом и технологическом уровнях. Это может быть достигнуто на основе разработки комплекса по созданию сигнально-помеховой обстановки, позволяющего обеспечить: формирование сигнально-помеховой обстановки требуемой (заданной) структуры и сложности из различных точек пространства с привязкой к координатам и времени функционирования устройств (исследуемых РЭС и РЭС, формирующих требуемую (заданную) сигнально-помеховую обстановку); формирование длительных тактических сигнально-помеховых сценариев, а также возможность оперативного и аппаратно-программного управления формируемой сигнально-помеховой обстановкой и ведения ее оперативного объективного документирования. Предлагаемый комплекс сможет решать широкий спектр испытательных и исследовательских задач в составе систем и комплексов РЭС различного назначения на всех этапах жизненного цикла РЭС в интересах оценки их электромагнитной совместимости, помехозащищенности и информационных возможностей.
Однако существующая имитационная, измерительная техника и специальное программное обеспечение для создания сигнально-помеховой обстановки не обеспечивают комплексное решение данных вопросов.
Известно устройство для формирования помех - станция ответных помех /1. В.И. Борисов, В.М. Зинчук, А.Е. Лимарев, А.В. Немчинов, А.А. Чаплыгин. Пространственные и вероятностно-временные характеристики эффективности станций ответных помех при подавлении систем радиосвязи. М.: «РадиоСофт», 2008, стр. 320/, содержащее последовательно соединенные приемную антенну, приемно-возбудительный блок и радиопередающий блок с передающей антенной, а также блок формирования помех и блок управления, входы которых соединены со вторым и третьим выходами приемно-возбудительного блока соответственно, кроме того, второй и третий входы приемно-возбудительного блока соединены с первым выходом блока управления и выходом блока формирования помех соответственно.
Недостатком данного устройства является отсутствие возможности создания требуемой сигнально-помеховой обстановки мобильным источником сигналов из различных точек пространства с привязкой к координатам и времени функционирования приемных и передающих устройств.
Наиболее близким по технической сущности к заявленному изобретению является принятое за прототип устройство формирования радиопомех /2. Устройство формирования радиопомех. - Патент на изобретение RU №2484590, H04K 3/00, 10.06.2013 г./. Устройство содержит: последовательно соединенные приемную антенну, приемно-возбудительный блок и радиопередающий блок с передающей антенной, а также блок формирования помех и блок управления, входы которых соединены со вторым и третьим выходами приемно-возбудительного блока соответственно, кроме того, второй и третий входы приемно-возбудительного блока соединены с первым выходом блока управления и выходом блока формирования помех соответственно, а также последовательно соединенные блок разрешения, ретранслирующий адрес принятого входного сигнала со сверточным кодированием на второй выход и формирующий сигнал запуска блока тактовой синхронизации на третьем выходе, а на первом выходе - сигнал запуска блока радиоподавления сверточных каналов связи и сигнал разрешения для приемно-возбудительного блока, блок тактовой синхронизации, генератор псевдослучайной последовательности и блок радиоподавления сверточных каналов связи, при этом блок разрешения входом соединен со вторым выходом блока управления, а первым выходом соединен с пятым входом приемно-возбудительного блока и первым входом блока радиоподавления сверточных каналов связи, выход и третий вход которого соединены с четвертым входом приемно-возбудительного блока и со вторым выходом блока тактовой синхронизации соответственно, при этом приемно-возбудительный блок демодулирует сигнал, поступающий на его первый вход, и передает соответствующий сигнал через третий выход, дешифрирует код, поступающий на второй вход, и передает через второй выход, осуществляет перенос сигнала, поступающего на третий вход, в область рабочих частот подавляемого источника радиоизлучений и передает соответствующий сигнал через первый выход, при наличии сигнала разрешения на пятом входе осуществляет перенос ложной информационной последовательности, поступающей на четвертый вход, в область рабочих частот подавляемой линии радиосвязи со сверточным кодированием и передает соответствующий сигнал через первый выход, а блок управления формирует на первом выходе код, содержащий параметры вида и структуры преднамеренной помехи при обнаружении обычных линий радиосвязи, на втором выходе - ретранслированный входной сигнал при обнаружении линий радиосвязи со сверточным кодированием. Данное устройство позволяет расширить функциональные возможности по формированию радиопомех в части подавления линий (каналов) радиосвязи.
Недостатками данного устройства формирования радиопомех являются отсутствие возможности формирования требуемой (заданной) сигнально-помеховой обстановки мобильным источником сигналов (помех) из различных точек пространства с привязкой к координатам и времени функционирования устройств (приемника и источника сигналов (помех)); формирования длительных тактических сигнально-помеховых сценариев; оперативного и/или программного управления формируемой сигнально-помеховой обстановкой и ведения объективного документирования параметров сигналов, помех, а также координатного положения источника сигналов (помех).
Задачей изобретения является аппаратно-программное управление формированием требуемой (заданной) сигнально-помеховой обстановки (сценариев) для РЭС мобильным источником сигналов (помех) из различных точек пространства с привязкой к координатам и времени функционирования РЭС и источника сигналов (помех) и ведение объективного документирования параметров сигналов, помех и координатного положения источника сигналов (помех).
Техническим результатом, обеспечивающим решение указанной задачи, является повышение качества и оперативности обоснования параметров РЭС для оценки их электромагнитной совместимости и помехозащищенности.
Указанная задача и достижение заявленного технического результата достигаются за счет того, что в известное устройство, содержащее приемную антенну, последовательно соединенную с приемно-возбудительным блоком, которые расположены в наземной части устройства, а также содержащее последовательно соединенные радиопередающий блок и передающую антенну, связанную по радиоканалу с приемной антенной, согласно изобретению дополнительно введены беспилотный летательный аппарат (БЛА), представляющий собой бортовую часть устройства, на котором размещены последовательно соединенные радиопередающий блок и передающая антенна, а также на БЛА размещена микроЭВМ, первый выход которой является входом радиопередающего блока, второй выход микроЭВМ является входом бортового устройства управления микроЭВМ, выход которого является ее входом, на БЛА также размещены бортовой полетный контроллер и бортовое устройство управления БЛА, взаимосвязанные между собой, при этом наземная часть устройства содержит наземную ЭВМ управления, первый выход которой является вторым входом приемно-возбудительного блока, связанного выходом с ее первым входом, второй выход наземной ЭВМ управления является входом расположенного в наземной части устройства управления микроЭВМ, связанного по радиоканалу с бортовым устройством управления микроЭВМ, третий выход наземной ЭВМ управления является входом расположенного в наземной части устройства управления БЛА, связанного по радиоканалу с бортовым устройством управления БЛА, а выходом - с третьим входом наземной ЭВМ управления.
Предложено устройство, содержащее существенные признаки прототипа: приемную антенну, последовательно соединенную с приемно-возбудительным блоком, которые расположены в наземной части устройства, а также последовательно соединенные радиопередающий блок и передающую антенну, связанную по радиоканалу с приемной антенной.
Сопоставительный анализ с прототипом показывает, что предложенное устройство обладает другими существенными, отличительными от прототипа признаками:
наличием новых элементов - введены беспилотный летательный аппарат (БЛА) с бортовым оборудованием, представляющим бортовую часть устройства, включающим последовательно соединенные радиопередающий блок и передающую антенну, а также на БЛА размещена микроЭВМ, первый выход которой является входом радиопередающего блока, второй выход микроЭВМ является входом бортового устройства управления микроЭВМ, выход которого является ее входом, на БЛА также размещены бортовой полетный контроллер и бортовое устройство управления БЛА, взаимосвязанные между собой, при этом наземная часть устройства содержит наземную ЭВМ управления, первый выход которой является вторым входом приемно-возбудительного блока, связанного выходом с ее первым входом, второй выход наземной ЭВМ управления является входом расположенного в наземной части устройства управления микроЭВМ, связанного по радиоканалу с бортовым устройством управления микроЭВМ, третий выход наземной ЭВМ управления является входом расположенного в наземной части устройства управления БЛА, связанного по радиоканалу с бортовым устройством управления БЛА, а выходом - с третьим входом наземной ЭВМ управления.
Ниже изобретение и сущность предлагаемого устройства описаны более детально.
На фиг. 1 представлена схема предлагаемого комплекса формирования сигнально-помеховой обстановки. Данный комплекс содержит: передающую антенну - 1, радиопередающий блок - 2, микроЭВМ - 3, бортовое устройство управления микроЭВМ - 4, наземное устройство управления микроЭВМ - 5, бортовой полетный контроллер - 6, бортовое устройство управления БЛА - 7, наземное устройство управления БЛА - 8, приемную антенну - 9, приемно-возбудительный блок - 10, наземную ЭВМ управления - 11, беспилотный летательный аппарат - 12.
При этом на БЛА - 12 размещено бортовое оборудование: микроЭВМ - 3, первый выход которой является входом радиопередающего блока – 2, последовательно соединенного с передающей антенной - 1, а второй выход микроЭВМ - 3 является входом бортового устройства управления микроЭВМ - 4, выход которого является ее входом, а также бортовой полетный контроллер - 6, связанный своим выходом с входом бортового устройства управления БЛА - 7, выход которого является его входом.
Кроме того, наземная часть комплекса содержит последовательно соединенные приемную антенну - 9 и приемно-возбудительный блок - 10, выход которого является первым входом наземной ЭВМ управления - 11, связанной своим первым выходом с его вторым входом, а вторым выходом - с входом наземного устройства управления микроЭВМ - 5, связанного по радиоканалу с бортовым устройством управления микроЭВМ - 4, а выходом - со вторым входом наземной ЭВМ управления - 11, третий выход которой является входом наземного устройства управления БЛА - 8, связанного по радиоканалу с бортовым устройством управления БЛА - 7, а выходом - с третьим входом наземной ЭВМ управления - 11.
При этом передающая антенна - 1 связана с приемной антенной - 9 по радиоканалу.
Для реализации предлагаемого технического решения может быть использовано стандартное оборудование. Так, например, в качестве передающей антенны - 1 может быть использована логопериодическая антенна типа AARONIA 9803/5 /3. Руководство по эксплуатации AARONIA 9803/5. Германия, 2016 г./; радиопередающего блока - 2 может быть использован векторный генератор сигналов типа SGT 100А /4. Руководство пользователя SGT 100А. Германия: каталог фирмы Rohde&Schwarz, 2015 г./; микроЭВМ - 3 может быть использован микрокомпьютер типа Intel Stick /5. Каталог процессоров фирмы Intel. США, 2016 г./; бортового устройства управления микроЭВМ - 4 может быть использован радиомодем типа Radio Telemetry /6. Руководство по эксплуатации радиомодема. США: каталог фирмы Pixhawk, 2014 г./; наземного устройства управления микроЭВМ - 5 может быть использован радиомодем типа Radio Telemetr /6. Руководство по эксплуатации радиомодема. США: каталог фирмы Pixhawk, 2014 г./; бортового полетного контроллера - 6 может быть использован бортовой полетный контроллер типа Pixhawk /7. Свободная энциклопедия мультикоптеров. США: каталог фирмы Pixhawk, 2016 г./; бортового устройства управления БЛА - 7 может быть использован радиомодем типа Radio Telemetry /6. Руководство по эксплуатации радиомодема. США: каталог фирмы Pixhawk, 2014 г./; наземного устройства управления БЛА - 8 может быть использован радиомодем типа Radio Telemetry /6. Руководство по эксплуатации радиомодема. США: каталог фирмы Pixhawk, 2014 г./; приемной антенны - 9 может быть использована антенна типа П6-23А /8. Руководство по эксплуатации измерительной антенны П6-23А. Беларусь, 1995 г./; приемно-возбудительного блока - 10 может быть использован анализатор спектра типа Agilent Е4407В /9. Контрольно-измерительные решения Agilent. США: каталог фирмы Agilent, 2008 г./; наземной ЭВМ управления - 11 может быть использована наземная ЭВМ управления типа персонального компьютера на основе процессора Intel /5. Каталог процессоров фирмы Intel. США, 2016 г./; беспилотного летательного аппарата - 12 может быть использован беспилотный летательный аппарат типа Rottor Dragon /10. Руководство по эксплуатации Rottor Dragon. Россия, 2016 г./.
Предлагаемое устройство работает следующим образом.
Перед началом функционирования предлагаемого комплекса формирования сигнально-помеховой обстановки требуемый (заданный) состав сигналов и помех с привязкой ко времени записывается в память радиопередающего блока - 2, а требуемые параметры сигналов управления излучением сигналов и помех с привязкой ко времени записываются в память микроЭВМ - 3. Кроме этого, требуемая траектория полета БЛА - 12 с привязкой ко времени записывается в память бортового полетного контроллера БЛА - 6. Также выполняется синхронизация времени начала функционирования испытываемого РЭС и микроЭВМ - 3.
Для начала функционирования предлагаемого комплекса формирования сигнально-помеховой обстановки на наземной ЭВМ управления - 11 запускается управляющая программа. БЛА - 12 с привязкой ко времени выполняет полет по запрограммированным в его полетном контроллере - 6 точкам. Полетная информация, в том числе координаты и состояние оборудования БЛА, с полетного контроллера – 6, связанного своим выходом с входом, а входом - с выходом бортового устройства управления БЛА – 7, по его радиоканалу передается на наземное устройство управления БЛА - 8, связанное выходом с третьим входом наземной ЭВМ управления – 11, для контроля и оперативного управления полетом БЛА оператором. МикроЭВМ - 3 через свой выход формирует сигналы управления, подаваемые на вход радиопередающего блока - 2, который формирует требуемую (заданную) сигнально-помеховую обстановку, синхронизированную по времени с началом функционирования испытываемого РЭС и микроЭВМ - 3. Данная сигнально-помеховая обстановка с выхода радиопередающего блока - 2 поступает на вход передающей антенны - 1, которая излучает сигналы и помехи в направлении испытываемого РЭС. Информация о созданной сигнально-помеховой обстановке через бортовое устройство управления микроЭВМ - 4, связанное своим выходом с входом микроЭВМ - 3, второй выход которой является его входом, передается по радиоканалу на наземное устройство управления микроЭВМ - 5, которое своим выходом связано со вторым входом наземной ЭВМ управления - 11, для контроля и оперативного управления формируемой сигнально-помеховой обстановкой оператором. Приемная антенна - 9 располагается в непосредственной близости от фазового центра испытуемого РЭС, принимает сигналы и помехи, излучаемые передающей антенной - 1, и передает их на первый вход приемно-возбудительного блока - 10, представляющий собой анализатор спектра, который по интерфейсу связи через свой выход передает их на первый вход наземной ЭВМ управления - 11 для оперативного контроля и документирования. Оператор управления, наблюдая на мониторе наземной ЭВМ управления - 11 результаты объективного контроля проведением испытаний: сформированную радиопередающим блоком - 2 и переданную через передающую антенну - 1 по радиоканалу на приемную антенну - 9 и приемно-возбудительный блок - 10 сигнально-помеховую обстановку, координаты положения БЛА - 12 и режимы функционирования приемно-возбудительного блока - 10, при необходимости, с использованием управляющей программы оперативно вносит изменения в план испытаний через наземную ЭВМ управления - 11, связанную через первый выход со вторым входом приемно-возбудительного блока - 10, через второй выход - с входом наземного устройства управления микроЭВМ - 5 и через третий выход - с входом наземного устройства управления БЛА - 8, которые по радиоканалам управления связаны с бортовым устройством управления микроЭВМ - 4 и бортовым устройством управления БЛА - 7 соответственно.
Таким образом, применение предлагаемого комплекса позволит сформировать требуемую (заданную) сигнально-помеховую обстановку для РЭС мобильным источником сигналов (помех) из различных точек пространства с привязкой к координатам и времени функционирования РЭС и источника сигналов (помех), оперативно и аппаратно-программно управлять формируемой сигнально-помеховой обстановкой, а также провести оперативное объективное документирование параметров сигналов, помех и координатного положения источника сигналов (помех). Это позволит повысить качество и оперативность обоснования параметров РЭС для оценки их электромагнитной совместимости и помехозащищенности.
Отличительные признаки заявляемого комплекса формирования сигнально-помеховой обстановки обеспечивают появление новых свойств, не достигаемых в прототипе и аналогах. Проведенный сопоставительный анализ известных технических решений (аналогов) и уровня техники в исследуемой и смежных предметных областях позволил установить: аналоги с совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие заявленного изобретения условию "новизна".
Результаты поиска известных решений в области радиолокации, радиотехники и антенных измерений с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявляемого комплекса, показали, что они не следуют явным образом из уровня техники. Также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения действий на достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности "изобретательский уровень".
Изобретение является "промышленно приемлемым", поскольку совокупность характеризующих его признаков обеспечивает возможность его осуществления, работоспособность и воспроизводимость для формирования требуемой (заданной) сигнально-помеховой обстановки в интересах оценки качества функционирования РЭС, так как для реализации заявленного комплекса может быть использовано стандартное промышленное оборудование, и предлагаемое изобретение может быть внедрено в существующих системах и комплексах для оценки помехозащищенности, электромагнитной совместимости и информационных возможностей РЭС, а также использоваться в различных областях радиолокации, радиотехники и измерений.

Claims (1)

  1. Комплекс формирования сигнально-помеховой обстановки, содержащий приемную антенну, последовательно соединенную с приемно-возбудительным блоком, представляющим собой анализатор спектра, которые расположены в наземной части комплекса, а также содержащий последовательно соединенные радиопередающий блок и передающую антенну, связанную по радиоканалу с приемной антенной, отличающийся тем, что последовательно соединенные радиопередающий блок и передающая антенна размещены на беспилотном летательном аппарате (БЛА), представляющем собой бортовую часть комплекса, на БЛА также размещена микроЭВМ, первый выход которой является входом радиопередающего блока, второй выход микроЭВМ является входом бортового устройства управления микроЭВМ, выход которого является ее входом, на БЛА также размещены бортовой полетный контроллер и бортовое устройство управления БЛА, взаимосвязанные между собой, при этом наземная часть комплекса содержит наземную ЭВМ управления, первый выход которой является вторым входом приемно-возбудительного блока, связанного выходом с ее первым входом, второй выход наземной ЭВМ управления является входом расположенного в наземной части комплекса устройства управления микроЭВМ, связанного по радиоканалу с бортовым устройством управления микроЭВМ, третий выход наземной ЭВМ управления является входом расположенного в наземной части комплекса устройства управления БЛА, связанного по радиоканалу с бортовым устройством управления БЛА, а выходом - с третьим входом наземной ЭВМ управления, причем заданный состав сигналов и помех с привязкой ко времени записывается в память радиопередающего блока, в котором по сигналам управления микроЭВМ формируется заданная сигнально-помеховая обстановка, затем сигналы и помехи излучаются в направлении испытуемого радиоэлектронного средства (РЭС), принимаются приемной антенной, располагаемой в непосредственной близости от фазового центра испытуемого РЭС, и передаются в приемно-возбудительный блок, который по интерфейсу связи передает их в наземную ЭВМ управления для получения объективного контроля проведения испытаний с учетом координат положения БЛА и последующим возможным управлением сигнально-помеховой обстановкой и положением БЛА.
RU2016127154A 2016-07-05 2016-07-05 Комплекс формирования сигнально-помеховой обстановки RU2626384C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016127154A RU2626384C1 (ru) 2016-07-05 2016-07-05 Комплекс формирования сигнально-помеховой обстановки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016127154A RU2626384C1 (ru) 2016-07-05 2016-07-05 Комплекс формирования сигнально-помеховой обстановки

Publications (1)

Publication Number Publication Date
RU2626384C1 true RU2626384C1 (ru) 2017-07-26

Family

ID=59495763

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016127154A RU2626384C1 (ru) 2016-07-05 2016-07-05 Комплекс формирования сигнально-помеховой обстановки

Country Status (1)

Country Link
RU (1) RU2626384C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703998C1 (ru) * 2019-03-26 2019-10-23 Акционерное общество "Научно-производственный центр Тверских военных пенсионеров" (АО "НПЦ ТВП") Сигнально-помеховый комплекс

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875843A (ja) * 1994-09-09 1996-03-22 Mitsubishi Heavy Ind Ltd 妨害電波指向装置
US7482947B2 (en) * 2006-06-20 2009-01-27 Sun Microsystems, Inc. Camouflaging business-activity information in a telemetry signal through randomization
WO2010123597A1 (en) * 2009-01-22 2010-10-28 Raytheon Company Radio frequency particles
RU2451402C1 (ru) * 2011-04-15 2012-05-20 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Устройство формирования помех
RU2484590C2 (ru) * 2011-08-04 2013-06-10 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г.Воронеж) Министерства обороны Российской Федерации Устройство формирования радиопомех
US8922419B2 (en) * 2012-12-10 2014-12-30 Raytheon Company Jam assignment manager

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875843A (ja) * 1994-09-09 1996-03-22 Mitsubishi Heavy Ind Ltd 妨害電波指向装置
US7482947B2 (en) * 2006-06-20 2009-01-27 Sun Microsystems, Inc. Camouflaging business-activity information in a telemetry signal through randomization
WO2010123597A1 (en) * 2009-01-22 2010-10-28 Raytheon Company Radio frequency particles
RU2451402C1 (ru) * 2011-04-15 2012-05-20 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Устройство формирования помех
RU2484590C2 (ru) * 2011-08-04 2013-06-10 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г.Воронеж) Министерства обороны Российской Федерации Устройство формирования радиопомех
US8922419B2 (en) * 2012-12-10 2014-12-30 Raytheon Company Jam assignment manager

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703998C1 (ru) * 2019-03-26 2019-10-23 Акционерное общество "Научно-производственный центр Тверских военных пенсионеров" (АО "НПЦ ТВП") Сигнально-помеховый комплекс

Similar Documents

Publication Publication Date Title
WO2016142967A1 (ja) 探索レスキューシステム
CN104459650B (zh) 一种毫米波测云雷达实时标校系统及方法
US11323352B2 (en) Test system and test method
CN102981168A (zh) 一种卫星导航用户设备测试系统测试精度的实时评估方法
RU2390946C2 (ru) Широкополосная станция радиотехнической разведки с высокой чувствительностью
US20160157115A1 (en) Pocket-size pim inspector
RU2626384C1 (ru) Комплекс формирования сигнально-помеховой обстановки
RU106393U1 (ru) Мобильный автоматизированный комплекс имитации радиоэлектронной обстановки и контроля параметров станции радиопомех и комплексов радиотехнической разведки
Sokolov et al. Video Channel Suppression Method of Unmanned Aerial Vehicles
Torrero et al. RF immunity testing of an Unmanned Aerial Vehicle platform under strong EM field conditions
CN105933081A (zh) 一种无人机数据链测试装置
CN104698443A (zh) 射频复杂干扰仿真试验模拟装置及系统
WO2019023832A1 (zh) 干扰无人机的控制方法、设备以及干扰系统
CN109814076B (zh) 用于测试检测器的性能的测试系统和方法
Di Castro et al. A multidimensional RSSI based framework for autonomous relay robots in harsh environments
EP3153880B1 (en) Target detection device
CN108667506B (zh) 一种卫星电推进系统对通信信号调制影响测试系统及方法
RU2703998C1 (ru) Сигнально-помеховый комплекс
US20200037182A1 (en) Measuring device and measuring method for low-attenuation measuring environments
KR100958374B1 (ko) 가상 레이더 동작 수행이 가능한 비행시뮬레터 장치
RU90216U1 (ru) Лабораторный стенд по исследованию помехозащищенности бортового оборудования воздушной радионавигации от непреднамеренных радиопомех
RU2563925C1 (ru) Контрольно-проверочная аппаратура космического аппарата
RU2632219C1 (ru) Способ активной радиомаскировки радиоэлектронных средств станциями активных помех и устройство для его реализации
WO2020133280A1 (zh) 一种基于移动平台的天线测试方法、装置及信息处理设备
RU127903U1 (ru) Комплекс формирования пространственного навигационного поля

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190706