RU2625580C1 - Огнеупорная бетонная смесь для футеровки подин тепловых агрегатов - Google Patents

Огнеупорная бетонная смесь для футеровки подин тепловых агрегатов Download PDF

Info

Publication number
RU2625580C1
RU2625580C1 RU2016120822A RU2016120822A RU2625580C1 RU 2625580 C1 RU2625580 C1 RU 2625580C1 RU 2016120822 A RU2016120822 A RU 2016120822A RU 2016120822 A RU2016120822 A RU 2016120822A RU 2625580 C1 RU2625580 C1 RU 2625580C1
Authority
RU
Russia
Prior art keywords
corundum
fraction
content
fractions
alumina
Prior art date
Application number
RU2016120822A
Other languages
English (en)
Inventor
Сергей Андреевич Рычков
Олег Геральдович Клестов
Андрей Анатольевич Речкалов
Евгений Николаевич Демин
Валерий Александрович Хохлов
Original Assignee
Общество с ограниченной ответственностью "СпецОгнеупорКомплект"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "СпецОгнеупорКомплект" filed Critical Общество с ограниченной ответственностью "СпецОгнеупорКомплект"
Priority to RU2016120822A priority Critical patent/RU2625580C1/ru
Application granted granted Critical
Publication of RU2625580C1 publication Critical patent/RU2625580C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • C04B2235/3243Chromates or chromites, e.g. aluminum chromate, lanthanum strontium chromite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/105Refractories from grain sized mixtures containing chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay

Landscapes

  • Ceramic Products (AREA)

Abstract

Изобретение относится к огнеупорному производству и может быть использовано для футеровки подин нагревательных печей, предназначенных для термообработки габаритных стальных заготовок. Огнеупорная бетонная смесь содержит высокоглиноземистый кальцийалюминатный цемент, содержащий не менее 70% Al2O3, корунд с содержанием оксида алюминия 98,4% фракции 2-7 мм и фракции менее 0,05 мм, а также синтетическую плавленую алюмохромистую шпинель с содержанием Cr2O3 - 15-25 и Al2O3 - 75-85 фракции 0,5-1,5 мм при следующем соотношении компонентов, масс.%: корунд фракции 2-7 мм 40, корунд фракции менее 0,05 мм 20, высокоглиноземистый кальцийалюминатный цемент 10, синтетическая плавленая алюмохромистая шпинель 30. Изобретение направлено на повышение прочности изделий и повышение стойкости к железной окалине.

Description

Изобретение относится к металлургии и может быть использовано при изготовлении огнеупорных бетонных изделий нормальных размеров и простых фасонов, предназначенных для применения в футеровке подин тепловых агрегатов в качестве опорных элементов, подвергающихся действию значительных стационарных механических нагрузок и истирающих усилий в зонах с температурой до 1350°С.
Применяемые в настоящее время огнеупорные бетоны имеют недостаточную термическую стойкость или химическую стойкость к железной окалине. Например, корундовые бетоны марок СКБ-97, BARCAST 95 WK, BARCAST 96 W, СБК-90 являются стойкими к железной окалине, но не обладают термостойкостью, а алюмосиликатные бетоны марок СКМБ 50, СКБТ 1,6, СШВЦ 40 имеют достаточно высокую термостойкость, однако не обладают стойкостью к железной окалине. При этом стоит учесть, что шлакоустойчивость характеризует химическое взаимодействие огнеупора со смесью жидких оксидов или оксидных соединений, а окалиноустойчивость - химическое взаимодействие огнеупора с тонкодисперсным оксидом железа в твердой или газовой фазе.
Как известно, оптимальным высокоогнеупорным заполнителем, стойким к взаимодействию с железной окалиной, является химически инертный оксид Al2O3 (корунд). В отсутствие жидкой фазы при температурах эксплуатации, материалы, содержащие в своей основе корунд, не взаимодействуют с железной окалиной вплоть до температур плавления одного из компонентов. Однако также известно, что огнеупорные изделия на основе корунда обладают недостаточной термостойкостью. Для увеличения термостойкости в корундовые заполнители вводят оксиды магния (MgO) или кремния (SiO2).
Наиболее близким к заявляемой является огнеупорная бетонная смесь для футеровки тепловых агрегатов (RU 2140407, опубл. 27.10.1999). Смесь содержит огнеупорный заполнитель на основе оксида алюминия и связующее, представляющее собой комплекс тонкодисперсных материалов, в качестве которого смесь содержит Al2O3 или смесь Al2O3 и SiO2, высокоглиноземистый кальцийалюминатный цемент, содержащий не менее 70% Al2O3, оксид магния или алюмомагнезиальную шпинель и дефлокулянт при следующем соотношении компонентов, масс. %:
Огнеупорный заполнитель фракции 7-3 мм 25-45
Огнеупорный заполнитель фракции 3-1 мм 15-35
Огнеупорный заполнитель фракции 1-10 мм 20-45
Al2O3 или смесь Al2O3 и SiO2 фракции 6-0,1 мкм 2-25
Высокоглиноземистый кальцийалюминатный цемент фракции <40 мкм 2-8
MgO или алюмомагнезиальная шпинель фракции <20 мкм 5-15
Дефлокулянт 0,1-1,5
Данная огнеупорная смесь содержит значительное количество оксида магния в чистом виде или в виде алюмомагниевой шпинели - от 5 до 15 масс. %. При химическом взаимодействии бетонного изделия, выполненного из данной магнийсодержащей смеси, с агрессивной средой в виде тонкодисперсного оксида железа (железной окалины) будет происходить образование соединений Mg и Fe2O3, которые по объему на 20-30% больше, чем первоначальные оксиды. Это приведет к резкому снижению механической прочности огнеупорного бетонного изделия.
Задача настоящего изобретения заключается в разработке огнеупорной смеси, позволяющей получить из нее бетонные изделия для футеровки подин тепловых агрегатов, обладающие повышенной прочностью и стойкостью к окалине.
Предложена огнеупорная бетонная смесь для футеровки подин тепловых агрегатов, содержащая высокоглиноземистый кальцийалюминатный цемент, содержащий не менее 70% Al2O3, а в качестве высокоогнеупорного заполнителя на основе оксида алюминия - корунд, при этом в качестве высокоогнеупорного заполнителя смесь содержит корунд с содержанием оксида алюминия 98,4% фракции 2-7 мм и фракции менее 0,05 мм, а также синтетическую плавленую алюмохромистую шпинель с содержанием Cr2O3 - 15-25 и Al2O3 - 75-85 фракции 0,5-1,5 мм при следующем соотношении компонентов, масс.:
корунд фракции 2-7 мм с содержанием Al2O3 98,4% 40
корунд фракции менее 0,05 мм с содержанием Al2O3 98,4% 20
высокоглиноземистый кальцийалюминатный цемент 10
синтетическая плавленая алюмохромистая шпинель 30
Сущность изобретения заключается в том, что в качестве высокоогнеупорного заполнителя смесь содержит корунд с содержанием Al2O3 98,4%, причем 40 масс. % - корунд фракции 2-7 мм, и 20 масс. % - корунд фракции менее 0,05 мм. Такое количество корунда различных фракций подобрано для исключения образования жидкой фазы при температурах эксплуатации и в присутствии Fe2O3 (железной окалины). Синтетическая плавленая алюмохромистая шпинель с содержанием Cr2O3 - 15-25 и Al2O3 - 75-85, фракции 0,5-1,5 мм, являясь высокоогнеупорным, но инертным заполнителем, не только препятствует образованию жидкой фазы, но и создает термостойкую структуру. Содержание Cr2O3 в алюмохромистой шпинели менее 15 масс. % не обеспечивает необходимой термостойкой структуры, а превышение этого содержания свыше 25 масс. % увеличивает вероятность образования соединений с шестивалентным хромом, которые являются канцерогеноопасными. Размер зерен шпинели и ее количество в составе смеси позволяет максимально повысить термическую стойкость без снижения механической прочности.
Количество высокоглиноземистого кальцийалюминатного цемента, содержащего не менее 70% Al2O3, подобрано исходя из условий, исключающих резкое образование жидкой фазы в совместном присутствии любого количества железной окалины и основных оксидов шихты.
Новый технический результат, достигаемый заявленным изобретением, заключается в повышении прочности и стойкости к железной окалине изделий, применяемых для футеровки подин нагревательных печей, предназначенных для термообработки габаритных стальных заготовок.
Для реализации заявленного способа в качестве компонентов для приготовления смеси использовали корунд фракции 2-7 мм с содержанием Al2O3 98,4% и корунд фракции менее 0,05 мм с содержанием Al2O3 98,4% производства Богдановичского ОАО «Огнеупоры» или Первоуральского завода ОАО «Динур». В качестве высокоглиноземистого кальцийалюминатного цемента, содержащего не менее 70% Al2O3, использовали цемент марки Secar-70. Можно использовать его аналоги марки GORKAL 70 и UAC 70S. В качестве алюмохромистой шпинели использовали синтетическую плавленую шпинель, полученную в результате совместной плавки в электродуговых печах оксидов хрома и алюминия способом «на блок», в следующем соотношении, масс. %: Cr2O3 - 15-25 и Al2O3 - 75-85.
Для приготовления термостойкого бетона, химически стойкого к железной окалине, использовали, масс. %: корунд фракции 2-7 мм с содержанием Al2O3 98,4% (40), корунд фракции менее 0,05 мм с содержанием Al2O3 98,4% (20), высокоглиноземистый кальцийалюминатный цемент марки Secar-70 (10), вышеуказанную синтетическую плавленую алюмохромистую шпинель фракции 0,5-1,5 мм (30). Все компоненты в указанном соотношении перемешивали в смесителе с последующим добавлением воды в количестве 8 масс. %. Время смешения после введения воды составляло 5 минут. Приготовленную массу заливали в металлические формы в виде бруса с размерами 150×150×500 мм. Изделия сушили при температуре 20°С в течение 24 часов и затем термообрабатывали при температуре до 1100°С со скоростью подъема температуры 50 град/час и с выдержкой при максимальной температуре 1100°С 4 часа.
Для определения термостойкости из этой шихты изготавливали образцы стандартного размера по ГОСТ 20190-90 Приложение 5, а для определения химической стойкости к железной окалине - тигли размером 100×100×100 мм с толщиной стенки 25 мм. Изделия показали термическую стойкость в режиме 1250°С - вода более 35 теплосмен, а химическая стойкость - в 1,5 раза выше стойкости к окалине стандартных жаростойких бетонов. После распиливания тигля максимальная толщина пропитки по всему периметру составила 0,2 мм.
После извлечения из формы изделие помещали в сушило и сушили, повышая температуру с +20 до +600°С в течение 45 часов с выдержкой в течение 8 часов при температуре 200°С и 450°С. После этого изделие набирает необходимую прочность (предел прочности на сжатие по результатам лабораторных измерений - до 55…60 Н/мм2) и может быть установлено в тепловой агрегат. Окончательный обжиг изделие проходит при штатной работе агрегата при температуре до +1250°С. При этой температуре предел прочности на сжатие достигает 80…85 Н/мм2. Поскольку окончательный обжиг изделие проходит установленным в свое штатное положение в тепловом агрегате, достигается дополнительная экономия ресурсов и времени при его изготовлении.
Из заявленной смеси были изготовлены подовые блоки проходной толкательной печи на АО «Омутнинский металлургический завод», опорные элементы пода кольцевой печи на ПАО «Северский трубный завод» и др.

Claims (2)

  1. Огнеупорная бетонная смесь для футеровки подин тепловых агрегатов, содержащая высокоглиноземистый кальцийалюминатный цемент, содержащий не менее 70% Al2O3, а в качестве высокоогнеупорного заполнителя на основе оксида алюминия - корунд, отличающаяся тем, что в качестве высокоогнеупорного заполнителя смесь содержит корунд с содержанием оксида алюминия 98,4% фракции 2-7 мм и фракции менее 0,05 мм, а также синтетическую плавленую алюмохромистую шпинель с содержанием Cr2O3 - 15-25 и Al2O3 - 75-85 фракции 0,5-1,5 мм при следующем соотношении компонентов, масс.%:
  2. корунд фракции 2-7 мм с содержанием Al2O3 98,4% 40 корунд фракции менее 0, 05 мм с содержанием Al2O3 98,4% 20 высокоглиноземистый кальцийалюминатный цемент 10 синтетическая плавленая алюмохромистая шпинель 30
RU2016120822A 2016-05-26 2016-05-26 Огнеупорная бетонная смесь для футеровки подин тепловых агрегатов RU2625580C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016120822A RU2625580C1 (ru) 2016-05-26 2016-05-26 Огнеупорная бетонная смесь для футеровки подин тепловых агрегатов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016120822A RU2625580C1 (ru) 2016-05-26 2016-05-26 Огнеупорная бетонная смесь для футеровки подин тепловых агрегатов

Publications (1)

Publication Number Publication Date
RU2625580C1 true RU2625580C1 (ru) 2017-07-17

Family

ID=59495311

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016120822A RU2625580C1 (ru) 2016-05-26 2016-05-26 Огнеупорная бетонная смесь для футеровки подин тепловых агрегатов

Country Status (1)

Country Link
RU (1) RU2625580C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0425827A2 (en) * 1989-10-31 1991-05-08 North American Refractories Company Spinel bondable ceramic composition
RU2140407C1 (ru) * 1999-01-18 1999-10-27 АООТ "Санкт-Петербургский институт огнеупоров" Огнеупорная бетонная смесь
UA48283C2 (ru) * 1999-07-06 2002-08-15 Відкрите Акціонерне Товариство "Український Науково-Дослідний Інститут Вогнетривів Імені А.С.Бережного " Огнеупорная бетонная масса
RU2320617C2 (ru) * 2006-02-10 2008-03-27 Открытое акционерное общество "Боровичский комбинат огнеупоров" Огнеупорная бетонная смесь
CN103274710A (zh) * 2013-06-17 2013-09-04 武汉钢铁(集团)公司 RH真空炉插入管用Al2O3-MgO-Cr2O3质浇注料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0425827A2 (en) * 1989-10-31 1991-05-08 North American Refractories Company Spinel bondable ceramic composition
RU2140407C1 (ru) * 1999-01-18 1999-10-27 АООТ "Санкт-Петербургский институт огнеупоров" Огнеупорная бетонная смесь
UA48283C2 (ru) * 1999-07-06 2002-08-15 Відкрите Акціонерне Товариство "Український Науково-Дослідний Інститут Вогнетривів Імені А.С.Бережного " Огнеупорная бетонная масса
RU2320617C2 (ru) * 2006-02-10 2008-03-27 Открытое акционерное общество "Боровичский комбинат огнеупоров" Огнеупорная бетонная смесь
CN103274710A (zh) * 2013-06-17 2013-09-04 武汉钢铁(集团)公司 RH真空炉插入管用Al2O3-MgO-Cr2O3质浇注料

Similar Documents

Publication Publication Date Title
WO2020083408A1 (zh) 一种钛复合抗侵蚀耐磨耐火浇注料的制备方法
CN104591752A (zh) 一种用于rh精炼炉浸渍管和环流管的烧成镁尖晶石砖及其制备方法
JP7341771B2 (ja) キャスタブル耐火物
US6730159B1 (en) Clinker hydraulic binder, use and method for making same
US9683782B2 (en) Methods for producing silicon carbide whisker-reinforced refractory composition
RU2625580C1 (ru) Огнеупорная бетонная смесь для футеровки подин тепловых агрегатов
RU2550626C1 (ru) Огнеупорная бетонная композиция
JP2016150854A (ja) 高炉樋用不定形耐火物
JP4328053B2 (ja) マグネシア−スピネル質れんが
JP2022105725A (ja) キャスタブル耐火物及びその製造方法
JP7072848B2 (ja) ジルコニアを主成分とする耐火コンクリート成型物
JP7247172B2 (ja) 耐火性バッチ、当該バッチから不定形耐火セラミック製品を製造するための方法、当該方法によって得られる不定形耐火セラミック製品
Pereira et al. Brazilian refractory grade bauxite: a new alternative to refractories makers and users
US3125454A (en) Insulating compositions
JP2020100853A (ja) 高炉樋カバー用不定形耐火物
JP6098834B2 (ja) 溶融アルミニウム合金用不定形耐火物
JP2016169113A (ja) 耐爆裂性キャスタブル
JP2010195617A (ja) マグクロれんが
RU2693717C1 (ru) Способ изготовления футеровки тигля вакуумной индукционной печи
RU2579092C1 (ru) Огнеупорная бетонная смесь
SU726055A1 (ru) В жущее
JP2020132459A (ja) マグネシア・スピネル質耐火れんが
JP2872670B2 (ja) 溶融金属容器ライニング用不定形耐火物
JP2016069219A (ja) アルミナ−マグネシア質流し込み材
SU1521728A1 (ru) Композици дл изготовлени футеровки

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180527