RU2624848C1 - Способ оценки склонности моторных топлив к образованию высокотемпературных отложений - Google Patents
Способ оценки склонности моторных топлив к образованию высокотемпературных отложений Download PDFInfo
- Publication number
- RU2624848C1 RU2624848C1 RU2017108425A RU2017108425A RU2624848C1 RU 2624848 C1 RU2624848 C1 RU 2624848C1 RU 2017108425 A RU2017108425 A RU 2017108425A RU 2017108425 A RU2017108425 A RU 2017108425A RU 2624848 C1 RU2624848 C1 RU 2624848C1
- Authority
- RU
- Russia
- Prior art keywords
- fuel
- deposits
- height
- heated
- fuels
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 114
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000012360 testing method Methods 0.000 claims abstract description 25
- 238000002485 combustion reaction Methods 0.000 claims abstract description 22
- 239000002283 diesel fuel Substances 0.000 claims abstract description 19
- 239000003350 kerosene Substances 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 239000003502 gasoline Substances 0.000 claims abstract description 9
- 238000001704 evaporation Methods 0.000 claims abstract description 8
- 230000008020 evaporation Effects 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 239000011149 active material Substances 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 230000009466 transformation Effects 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 230000003647 oxidation Effects 0.000 description 14
- 238000007254 oxidation reaction Methods 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000002966 varnish Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 239000003209 petroleum derivative Substances 0.000 description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/22—Fuels; Explosives
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Изобретение относится к испытанию нефтепродуктов, преимущественно к оценке склонности к отложениям дистиллятных топлив. Способ включает подачу дизельного топлива с заданной высоты в капельно-жидком состоянии при атмосферном давлении в воздух, нагретый до температуры рабочего заряда двигателя, с интервалом, равным времени свободного падения капли, в течение которого происходит нагрев, испарение, воспламенение, горение и термоокислительное превращение капли топлива, замер массы отложений на выполненной из каталитически активного материала нагреваемой наклонной пластине. Подачу испытуемого моторного топлива в капельно-жидком состоянии осуществляют из точки, удаленной от центра нагреваемой пластины на расстояние, выбираемое в зависимости от группы испытуемого топлива, при этом для бензина это расстояние принимают равным 0,6 высоты подачи дизельного топлива, а для авиационного керосина - равным 0,8 высоты подачи дизельного топлива. Достигается повышение точности и достоверности оценки склонности топлив к образованию ВТО в зоне цилиндра ДВС в зависимости от группы применяемых топлив. 1 ил., 1 табл.
Description
Изобретение относится к методам испытаний нефтепродуктов, преимущественно к оценке склонности к отложениям дистиллятных топлив, и может быть использовано в научно-исследовательских организациях, в лабораториях нефтеперерабатывающих заводов и в организациях, занимающихся разработкой и применением моторных топлив.
Топливо в процессе эксплуатации двигателя внутреннего сгорания (ДВС) образует различные высокотемпературные отложения (лаки, нагары) на форсунках, впускных и выпускных клапанах, на поверхности поршней и стенках камеры сгорания, на поршневых кольцах.
Образующиеся на стенках камеры сгорания и поршне высокотемпературные отложения (далее - ВТО) увеличивают степень сжатия, ухудшают отвод тепла, повышают тепловую напряженность, способствуют преждевременному воспламенению рабочей смеси. Отложения на поршневых кольцах приводят к их пригоранию и потере компрессии, что отрицательно влияет на работу двигателя: снижает его безотказность, долговечность, топливную экономичность.
Количество и характер отложений в двигателе зависят от состава и свойств моторного топлива, конструкции двигателя, а также условий эксплуатации.
Склонность топлив к образованию ВТО оценивают по показателям, характеризующим склонность к нагарообразованию (лабораторные методы и модельные установки) и склонность к отложениям во впускной системе и системе впрыска (модельные установки).
В области оценки склонности топлив к нагарообразованию известны:
способ, заключающийся в сжигании испытуемого топлива в тиглях и прокаливании твердого остатка до постоянной массы (1 - ГОСТ 1461-75. Нефть и нефтепродукты. Метод определения зольности);
способ, заключающийся в оценке способности топлива образовывать в условиях нагрева без доступа воздуха углеродистый остаток (кокс) (2 - ГОСТ 19932-74. Нефтепродукты. Метод определения коксуемости).
В качестве общих недостатков отметим, что эти способы не позволяют оценивать склонность топлив к отложениям на поверхности каталитически активного материала. Способы обеспечивают только косвенную оценку свойства по количеству несгоревшего остатка.
Известен также способ оценки склонности топлива к лако- и нагарообразованию при повышенной температуре с образованием твердой фазы (3 - Гуреев А.А., Серегин Е.П., Азев B.C. Квалификационные методы испытаний нефтяных топлив. - М.: Химия, 1984, с. 114), включающий окисление 70 мл топлива при температуре 150°С в течение 5 ч с продувкой воздуха (6 л/ч) в присутствии меди. Оценку результатов испытания проводят на основании сравнения с результатами испытания эталонного (товарного) топлива по массе образующегося осадка и изменении кислотности.
К недостаткам способа относятся: длительность проведения испытаний с большим избытком кислорода в присутствии меди; низкая корреляция результатов с интенсивностью образования смолисто-лаковых отложений.
Для оценки склонности моторных топлив к образованию отложений на нагретых поверхностях двигателя известны способы, характеризующие склонность к отложениям на модельных установках в зоне цилиндра двигателя:
склонность к образованию отложений на нагретых поверхностях (4 - Сафонов А.С., Ушаков А.И., Юсковец Н.Д. Автомобильные эксплуатационные материалы. - СПб.: Гидрометеоиздат, 1988, с. 92);
метод ПЗИ (3 - с. 112).
Склонность к образованию отложений на нагретых поверхностях определяется по количеству отложений и температуре начала их образования при контакте топлива с нагретой металлической поверхностью при однократном прокачивании топлива в стандартных условиях испытаний. Оценку проводят по показателям: индексу термостабильности, равному отношению количества отложений, полученных при испытании топлива и эталонной жидкости, и температуре начала отложений. В качестве эталонной жидкости используется смесь гексадекана и альфаметилнафталина в соотношении 9:1 по объему.
Метод ПЗИ характеризуется образованием нагара на специальном нагарнике, помещенном в камеру сгорания на поршне механизма изменения степени сжатия.
В качестве недостатков способов отметим, что в модельных установках процессы горения и образования отложений протекают при высоких температурах, давлении, степени турбулентности смеси, каталитическом влиянии материалов, неоднородности капельно-воздушной рабочей смеси. Значения этих факторов тесно взаимосвязаны и переменны во времени, являются случайными для локальных областей полости цилиндра. Получить независимые оценки степени влияния каждого из факторов на склонность топлива к отложениям невозможно. В этих условиях эффект влияния состава топлива на особенности протекания процессов жидкофазного окисления будет смешан с эффектами влияния указанных факторов. Подготовка и проведение испытаний на модельных установках требуют значительного количества электроэнергии и испытуемого топлива, длительного времени и больших трудозатрат. В условиях высоких температур наряду с жидкофазным окислением протекает газофазное окисление топлива, которое является доминирующим и имеет принципиально иной механизм. Продукты высокотемпературного газофазного окисления значительно отличаются по химическому составу и структуре от смолисто-лаковых отложений и представляют собой твердые углеродистые сажеподобные вещества преимущественно черного цвета. Поэтому результаты испытаний предлагаемыми способами по оцениваемым показателям трудносопоставимы.
Известен способ (5 - СССР. а.с. №1467509, G01N 33/22, 1986 г.) оценки склонности моторных топлив к лако- и нагарообразованию, включающий газофазное и жидкофазное окисление топлив в зоне цилиндра ДВС. Оценку ведут по массе отложений, образующихся на установленном наклонно нагреваемом материале, путем подачи топлива в капельно-жидком состоянии в воздух камеры сгорания при атмосферном давлении, нагретом до температуры рабочего заряда двигателя, с последующим нагревом, испарением, воспламенением и горением капли топлива. Масса топлива составляет 5-10-3 кг, время определения 20 мин, температура рабочего заряда 500°С, температура нагарообразователя 300°С, температура наддувочного воздуха 70°С, скорость подачи воздуха 25 л/мин.
В качестве недостатков этого способа следует отметить следующее:
при оценке результатов испытаний в условиях жидкофазного окисления не учитывается продолжительность контакта топлива с поверхностью нагреваемого материала в зависимости от состава топлива;
при оценке количества образующихся отложений в зависимости от температуры испытания используют однажды установленное наклонное положение нагреваемого материала независимо от состава топлива;
невысокая чувствительность метода при определении склонности к отложениям различных групп топлив: бензинов и авиационных керосинов (группы топлив определены в 6 - ГОСТ 26098-84 Нефтепродукты. Термины и определения).
Наиболее близким по технической сущности и взятым за прототип является способ (RU №2280253: G01N 33/22, 2006 г.), в соответствии с которым для оценки склонности моторного топлива к образованию отложений осуществляют подачу топлива в капельно-жидком состоянии при атмосферном давлении в воздух, нагретый до температуры рабочего заряда ДВС, с интервалом, равным времени свободного падения капли, в течение которого происходит нагрев, испарение, воспламенение, горение и термоокислительное превращение капли топлива, и последующее измерение массы отложений, образующихся на установленной под углом 15-45° к оси падения несгоревшей капли топлива нагреваемой пластине из каталитически активного материала, чем дополнительно обеспечивается оценка такого важного фактора образования отложений, как состав применяемых дизельных топлив (прототип - RU №2280253: G01N 33/22, 2006 г.).
В качестве недостатков способа-прототипа следует отметить следующее:
при оценке зависимости результатов испытаний от условий газофазного окисления недостаточно учитывается продолжительность контакта топлива с нагретым до температуры рабочего заряда ДВС воздухом;
при оценке количества образующихся отложений в зависимости от температуры рабочего заряда ДВС используют однажды установленную высоту подачи топлива независимо от группы топлива по ГОСТ 26098-84;
невысокая чувствительность метода при определении склонности к отложениям различных групп топлив по ГОСТ 26098-84: бензинов и авиационных керосинов.
Технический результат изобретения - повышение точности и достоверности оценки склонности дистиллятных топлив к образованию ВТО в зоне цилиндра ДВС в зависимости от физико-химических и эксплуатационных факторов с учетом влияния состава различных групп топлив по ГОСТ 26098-84 (бензинов и авиационных керосинов).
Указанный технический результат достигается тем, что в способе оценки склонности моторных топлив к образованию высокотемпературных отложений, включающем подачу дизельного топлива с заданной высоты в капельно-жидком состоянии при атмосферном давлении в воздух, нагретый до температуры рабочего заряда двигателя, с интервалом, равным времени свободного падения капли, в течение которого происходят нагрев, испарение, воспламенение, горение и термоокислительные превращение капли топлива, замер массы отложений на выполненной из каталитически активного материала нагреваемой наклонной пластине, подачу испытуемого топлива в капельно-жидком состоянии осуществляют из точки, удаленной от центра нагреваемой пластины на расстояние, выбираемое в зависимости от группы испытуемого топлива, при этом для бензина это расстояние принимают равным 0,6 высоты подачи дизельного топлива, а для авиационного керосина - равным 0,8 высоты подачи дизельного топлива.
На чертеже представлена блок-схема установки, реализующей заявляемый способ.
Сущность изобретения сводится к повышению точности и достоверности оценки склонности топлив к ВТО за счет обеспечения большей чувствительности к составу групп дистиллятных топлив (по ГОСТ 26098-84), что достигается изменением продолжительности газофазного окисления испытуемых топлив. Сведения о различиях в составе групп топлив широко известны из литературы, например (7 - Топлива, смазочные материалы и технические жидкости. Ассортимент и применение: Справочник / Под ред. В.М. Школьникова. - М.: Химия, 1989, с. 27-39, 60-65, 77-83 и 8 - Чертков Я.Б. Моторные топлива. - Новосибирск: Наука, 1987, с. 72, 84-88). Обобщение известных сведений показывает, что топлива различных групп содержат углеводороды, в среднем выкипающие в пределах: дизельные топлива - 140-360°С, бензины - 30-195°С, авиационные керосины - 135-315°С. Кроме того, групповой углеводородный состав товарных топлив характеризуется следующими средними показателями, % отн.: дизельные топлива: алканы и цикланы - 70-85; ароматика - 10-25; ненасыщенные - 0,5-3; бензины: алканы - 45-50; цикланы - 5-20; ароматика - 25-45; ненасыщенные - 0,5-5; авиационные керосины: алканы - 25-45%; цикланы - 40-80%; ароматика - 5-20%. Для того чтобы учесть указанные различия в составе топлив различных групп, проявляющиеся, в том числе, в процессе газофазного высокотемпературного окисления, в соответствии с заявляемым способом осуществляется изменение первоначальной фиксированной высоты подачи топлива. В результате достигаются условия получения максимального значимого (на фоне ошибки определения) количества ВТО, образующихся при превращениях топлив различных групп в цилиндре двигателя.
Способ осуществляется следующим образом.
Испытуемое топливо из емкости 1 подают с заданной высоты, обеспечиваемой блоком 2 регулирования высоты подачи топлива, блоком подачи топлива 3 в капельно-жидком состоянии в реактор 4, где топливо смешивается с воздухом, подогретым в блоке подачи воздуха 5, и отдельными свободно-падающими каплями, с интервалом, равным времени свободного падения капли, поступает в камеру 6 образования отложений.
Воздух в реакторе 4 нагревают до температуры рабочего заряда двигателя внутреннего сгорания (500°С), что обеспечивает за интервал падения капли нагрев, испарение, воспламенение, горение и термоокислительное превращение топлива. Несгоревшее топливо попадает в камеру 6 образования отложений (300°С) на установленную на дне камеры 6 наклонную нагреваемую пластину 7 из каталитически активного материала.
Высокотемпературный режим (500°С) газофазного окисления топлива в реакторе 4 и низкотемпературный режим (300°С) жидкофазного окисления топлива в камере 5 образования отложений обеспечиваются блоком 8 нагрева и контролируются блоком 9 автоматики. Необходимую высоту L (для дизельного топлива) подачи топлива блоком 3 подачи топлива задают блоком автоматики 9 в зависимости от группы испытуемого топлива.
Перед подачей испытуемого топлива (группы: дизельное топливо, бензин, авиационный керосин) в реактор 4 из емкости 1 блоком подачи топлива 3 высоту подачи топлива L задают блоком 2 регулирования высоты подачи топлива и контролируют блоком автоматики 9 в зависимости от группы испытуемого топлива: подачу бензина осуществляют из точки, удаленной от центра нагреваемой пластины 7 на расстояние, равное 0,6 высоты L подачи дизельного топлива, а подачу авиационного керосина осуществляют из точки, удаленной от центра нагреваемой пластины на расстояние, равное 0,8 высоты L подачи дизельного топлива.
На чертеже показаны два положения блока 3 подачи топлива при различной высоте подачи топлива (L1>L2), задаваемой блоком 2 регулирования высоты подачи топлива.
Склонность топлива к образованию ВТО оценивают по приращению массы отложений на наклонной пластине 7, выполненной из каталитически активного нагреваемого материала.
Заявленным способом были проведены испытания групп топлив: дизельного топлива (марка Л по ГОСТ 305-2013), бензина (марка Регуляр-92 по ГОСТ Р 51105-97), авиационного керосина (марка ТС-1 по ГОСТ 10227-2013). Указанные марки топлив выбраны исходя из их широкого применения в технике.
Результаты оценки изменения массы отложений топлив в зависимости от их группы (по ГОСТ 26098-84) и высоты подачи топлива представлены в таблице.
Результаты испытаний топлив различных групп заявленным способом, представленные в таблице, показали следующее.
Для всех групп топлив с изменением высоты подачи топлива характерно заметное изменение массы отложений.
Результаты испытаний бензина и авиационного керосина по способу-прототипу (столбец 6) при высоте подачи топлива, равной высоте, принятой для дизельного топлива (1,0), характеризуются значениями, не превышающими ошибку определения (4⋅10-7 кг для бензина), либо незначительно от нее отличающимися (11⋅10-7 кг для авиационного керосина). Такие данные не позволяют точно и достоверно оценивать склонность этих групп топлив к образованию ВТО. При увеличении относительной высоты подачи топлива до значения 1,1 (столбец 7) отложений при испытании бензина вообще не наблюдается, а авиационный керосин дает количество отложений (5⋅10-7 кг), которое находится на уровне ошибки определения. Полученные данные нельзя признать информативными.
Согласно заявленному способу максимальное приращение массы ВТО для разных групп топлив обусловлено различными значениями высоты подачи топлива: для дизельного топлива - 1,0 (столбец 6); для бензина - 0,6 (столбец 2), для авиационного керосина - 0,8 (столбец 4). Указанные значения высоты подачи топлива следует считать обеспечивающими наибольшую информативность определения ВТО.
Анализ экспериментальных данных свидетельствует о том, что увеличение либо уменьшение значений высоты подачи топлива по сравнению с оптимальными значениями приводит к выраженному снижению массы образующихся отложений. При высоте подачи топлива больше оптимальной это явление объясняется доминирующим вкладом в образование ВТО процессов испарения, высокотемпературного окисления и горения топлива, способствующих снижению массы образующихся нагаров и лаков (столбец 7 таблицы). При уменьшении высоты подачи топлива относительно наиболее информативной, количество отложений снижается в результате недостатка времени для протекания испарения и горения топлива и повышения вклада процессов низкотемпературного окисления, приводящих к образованию на поверхности нагреваемой пластины более подвижных лаковых отложений, которые стекают с пластины.
По результатам сравнения оценок склонности моторных топлив к отложениям по способу-прототипу и заявленному способу, полученных в результате изменения высоты подачи топлива, выявлена высокая чувствительность заявленного способа к образованию продуктов неполного сгорания топлив в зависимости от группы применяемых топлив.
Достоверность получаемых результатов обеспечивается подобием процесса образования ВТО по заявленному методу и в ДВС, высокой сходимостью результатов испытаний, не превышающей 5⋅10-7 кг, чувствительностью метода к изменению групп топлив и возможностью их дифференциации по склонности к ВТО.
Применение изобретения при заявленной совокупности существенных признаков, включающих изменение высоты подачи топлива и ее фиксацию на заданных уровнях в зависимости от группы испытуемого топлива блоком 2 регулирования высоты подачи топлива, позволяет повысить точность и достоверность оценки склонности применяемых топлив к образованию ВТО в зоне цилиндра ДВС.
Claims (1)
- Способ оценки склонности моторных топлив к образованию высокотемпературных отложений, включающий подачу дизельного топлива с заданной высоты в капельно-жидком состоянии при атмосферном давлении в воздух, нагретый до температуры рабочего заряда двигателя, с интервалом, равным времени свободного падения капли, в течение которого происходит нагрев, испарение, воспламенение, горение и термоокислительное превращение капли топлива, замер массы отложений на выполненной из каталитически активного материала нагреваемой наклонной пластине, отличающийся тем, что подачу испытуемого моторного топлива в капельножидком состоянии осуществляют из точки, удаленной от центра нагреваемой пластины на расстояние, выбираемое в зависимости от группы испытуемого топлива, при этом для бензина это расстояние принимают равным 0,6 высоты подачи дизельного топлива, а для авиационного керосина - равным 0,8 высоты подачи дизельного топлива.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017108425A RU2624848C1 (ru) | 2017-03-14 | 2017-03-14 | Способ оценки склонности моторных топлив к образованию высокотемпературных отложений |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017108425A RU2624848C1 (ru) | 2017-03-14 | 2017-03-14 | Способ оценки склонности моторных топлив к образованию высокотемпературных отложений |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2624848C1 true RU2624848C1 (ru) | 2017-07-07 |
Family
ID=59312920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017108425A RU2624848C1 (ru) | 2017-03-14 | 2017-03-14 | Способ оценки склонности моторных топлив к образованию высокотемпературных отложений |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2624848C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1337769A1 (ru) * | 1985-07-30 | 1987-09-15 | Войсковая Часть 74242 | Способ определени склонности масла к образованию высокотемпературных отложений |
US5487762A (en) * | 1995-02-01 | 1996-01-30 | Calgon Corporation | Method of minimizing deposits when firing tire derived fuels |
RU2280253C1 (ru) * | 2005-04-04 | 2006-07-20 | Федеральное государственное унитарное предприятие "25 Государственный научно-исследовательский институт Министерства обороны Российской Федерации (по применению топлив, масел, смазок и специальных жидкостей - ГосНИИ по химмотологии)" | Способ оценки склонности моторных топлив к лако-нагарообразованию |
RU2589284C1 (ru) * | 2015-08-07 | 2016-07-10 | Публичное акционерное общество "Газпром" | Способ оценки склонности смазочных масел к образованию высокотемпературных отложений |
RU2608455C2 (ru) * | 2015-05-21 | 2017-01-18 | Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" | Способ оценки склонности моторных топлив к образованию высокотемпературных отложений |
-
2017
- 2017-03-14 RU RU2017108425A patent/RU2624848C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1337769A1 (ru) * | 1985-07-30 | 1987-09-15 | Войсковая Часть 74242 | Способ определени склонности масла к образованию высокотемпературных отложений |
US5487762A (en) * | 1995-02-01 | 1996-01-30 | Calgon Corporation | Method of minimizing deposits when firing tire derived fuels |
RU2280253C1 (ru) * | 2005-04-04 | 2006-07-20 | Федеральное государственное унитарное предприятие "25 Государственный научно-исследовательский институт Министерства обороны Российской Федерации (по применению топлив, масел, смазок и специальных жидкостей - ГосНИИ по химмотологии)" | Способ оценки склонности моторных топлив к лако-нагарообразованию |
RU2608455C2 (ru) * | 2015-05-21 | 2017-01-18 | Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" | Способ оценки склонности моторных топлив к образованию высокотемпературных отложений |
RU2589284C1 (ru) * | 2015-08-07 | 2016-07-10 | Публичное акционерное общество "Газпром" | Способ оценки склонности смазочных масел к образованию высокотемпературных отложений |
Non-Patent Citations (1)
Title |
---|
ГОСТ 20991-75 Масла моторные. Метод оценки склонности масел к образованию отложений при высоких температурах. Введен в действие 01.07.1976. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sarathy et al. | Recent progress in gasoline surrogate fuels | |
Kuszewski | Experimental investigation of the effect of ambient gas temperature on the autoignition properties of ethanol–diesel fuel blends | |
Ryan III et al. | Diesel fuel ignition quality as determined in a constant volume combustion bomb | |
Regalbuto et al. | Experimental investigation of butanol isomer combustion in spark ignition engines | |
Seidenspinner et al. | Cetane number determination by advanced fuel ignition delay analysis in a new constant volume combustion chamber | |
Li et al. | Experimental study of the combustion and emission characteristics of ethanol, diesel-gasoline, n-heptane-iso-octane, n-heptane-ethanol and decane-ethanol in a constant volume vessel | |
McMillian et al. | Combustion and emission characteristics of Fischer-Tropsch and standard diesel fuel in a single-cylinder diesel engine | |
RU2280253C1 (ru) | Способ оценки склонности моторных топлив к лако-нагарообразованию | |
RU2624848C1 (ru) | Способ оценки склонности моторных топлив к образованию высокотемпературных отложений | |
US2878109A (en) | Liquid fuel composition | |
Zheng et al. | Role of volatility in the development of JP-8 surrogates for diesel engine application | |
RU2663154C1 (ru) | Стандартные образцы для метрологического обеспечения испытаний автомобильных бензинов при оценке их склонности к образованию отложений на деталях форсунок | |
Soloiu et al. | Performance of JP-8 unified fuel in a small bore indirect injection diesel engine for APU applications | |
Rakopoulos et al. | Characteristics of the performance and emissions of a HSDI diesel engine running with cottonseed oil or its methyl ester and their blends with diesel fuel | |
RU2608455C2 (ru) | Способ оценки склонности моторных топлив к образованию высокотемпературных отложений | |
Ukhanov et al. | Thermo-oxidative stability of diesel mixed fuel | |
Al-Hasan | Evaluation of fuel consumption and exhaust emissions during engine warm-up | |
Biernat | Criteria for the Quality Assessment of Engine Fuels in Storage and Operating Conditions | |
Bachman et al. | The Use of Combustion Deposit Analysis for Studying Lubricant-Induced ORI | |
RU90567U1 (ru) | Установка для определения склонности судовых дизельных и остаточных топлив к образованию высокотемпературных отложений | |
Duboc | The effect of fuel additives on diesel fuel delivery system and combustion performance | |
RU2775473C1 (ru) | Стандартный образец для метрологического обеспечения испытаний по измерению смазывающей способности топлив для реактивных двигателей (варианты) | |
RU2413222C1 (ru) | Автоматизированная система для определения склонности судовых дизельных и остаточных топлив к образованию высокотемпературных отложений | |
RU2784043C1 (ru) | Способ оценки склонности дизельных топлив к нагарообразованию | |
Ahmed | Multitude Characterization and Prediction of DOE Advanced Biofuels Properties |