RU2624791C1 - Двухкомпонентный приемник градиента давления и способ измерения градиента давления с его использованием - Google Patents

Двухкомпонентный приемник градиента давления и способ измерения градиента давления с его использованием Download PDF

Info

Publication number
RU2624791C1
RU2624791C1 RU2016138938A RU2016138938A RU2624791C1 RU 2624791 C1 RU2624791 C1 RU 2624791C1 RU 2016138938 A RU2016138938 A RU 2016138938A RU 2016138938 A RU2016138938 A RU 2016138938A RU 2624791 C1 RU2624791 C1 RU 2624791C1
Authority
RU
Russia
Prior art keywords
pressure gradient
receiver
measuring
accelerometer
axis
Prior art date
Application number
RU2016138938A
Other languages
English (en)
Inventor
Владимир Ильич Коренбаум
Сергей Владимирович Горовой
Александр Анатольевич Тагильцев
Анатолий Евгеньевич Костив
Original Assignee
Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН)
Priority to RU2016138938A priority Critical patent/RU2624791C1/ru
Application granted granted Critical
Publication of RU2624791C1 publication Critical patent/RU2624791C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3808Seismic data acquisition, e.g. survey design

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к области гидроакустики, конкретно к векторно-скалярным приемникам, и может быть использовано в составе мобильной антенной системы (гибкой протяженной буксируемой антенны, донной станции, радиогидроакустического буя) при проведении гидроакустических исследований, в частности для измерения гидроакустических шумов в морях и океанах. Приемник включает два ортогонально ориентированных круглых чувствительных элемента, снабженных патрубками переменного сечения, установленных ортогонально друг за другом на оси цилиндрического корпуса из звукоотражающего материала. Соосно чувствительным элементам на продольной оси корпуса установлены два ортогонально ориентированных акселерометра. Чувствительные элементы и соответствующие им акселерометры через усилители соединены с вычитающим устройством для измерения градиента давления. При измерении градиента давления предварительно осуществляют настройку коэффициентов усиления. Технический результат - повышение помехоустойчивости и достоверности измерения градиента давления. 2 н. и 2 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области гидроакустики, конкретно к векторно-скалярным приемникам, и может быть использовано в составе мобильной антенной системы (гибкой протяженной буксируемой антенны, донной станции, радиогидроакустического буя) при проведении гидроакустических исследований, в частности для измерения гидроакустических шумов в морях и океанах.
Известно, что векторно-скалярные приемники, состоящие из приемников звукового давления и приемников градиента давления (ПГД) в точечных и линейных гидроакустических антеннах, позволяют обеспечить пространственную избирательность и повышение помехоустойчивости к внешним (дальнеполевым) помехам в низкочастотной области (Гордиенко В.А. Векторно-фазовые методы в акустике. - М.: ФИЗМАТЛИТ, 2007. С. 23.).
Однако общеизвестным недостатком ПГД является повышенная чувствительность к таким ближнеполевым помехам, как вибрации и турбулентные пульсации давления, характерные при использовании ПГД в составе гидроакустических антенн мобильных устройств (радиогидроакустические буи, гибкие буксируемые антенны и т.д.) (Коренбаум В.И. Защита акустических устройств от ближних полей помех: дис. докт. техн. наук: 01.04.06 - Владивосток, 1999. - 356 с.). Это связано с тем, что датчики колебательной скорости сильно подвержены как гидродинамическим, так и вибрационным воздействиям потока жидкости.
Высокий уровень гидродинамических помех и связанных с ними вибраций антенн в низкочастотной области заставляет применять специальные методы обработки получаемых данных для повышения помехозащищенности и, соответственно, улучшения качества получаемой гидроакустической информации, например интенсиметрическую обработку откликов каналов звукового давления и градиента давления, приводящую к подавлению помех обтекания (Korenbaum V.I., Tagiltsev А.А., J. Acoust. Soc. Am., v. 131, 5, 3755-3762, 2012). Однако этот метод предусматривает мультипликативную обработку сигналов в каналах ПГД и звукового давления, что считается неоптимальным по отношению к дальнеполевым помехам (D'Spain G.L., Luby J.C., Wilson G.R., Gramann R.A. Vector sensors and vector sensor line arrays: Comments on optimal array gain and detection // J. Acoust. Soc. Am. 2006. V. 120. P. 171-185.). Таким образом, рассмотренное техническое решение, хотя и служит подавлению вибрационных помех, но не обеспечивает достаточной эффективности помехозащищенности.
Известен акустический приемник градиента давления (а.с. СССР №1521244), в котором внешняя и внутренняя пары оппозитно расположенных круглых изгибных чувствительных элементов (пьезопреобразователей) включены встречно с возможностью вычитаний помехи, создаваемой вибрацией корпуса в направлении осей круглых чувствительных элементов. При этом для улучшения подавления вибрационной помехи предложено расчетное моделирование влияния присоединенной массы воды внешней пары преобразователей на внутренней паре преобразователей. Однако вследствие технологического разброса характеристик круглых пьезокерамических пластинчатых преобразователей, их склейки и крепления по контуру это решение недостаточно точно, что приводит к неполному подавлению вибрационной помехи.
Наиболее близким к заявляемому является двухкомпонентный приемник градиента давления (ПГД) (п. РФ №2568411), в котором уровень воздействия помех обтекания на чувствительные элементы обеспечивается обтекаемостью корпуса ПГД в осевой плоскости, а также удалением чувствительных элементов от поверхности корпуса.
Данный приемник, выбранный в качестве наиболее близкого аналога, состоит из двух ортогонально установленных на оси цилиндрического корпуса из звукоотражающего материала круглых чувствительных элементов, снабженных патрубками, выполненными в теле корпуса в виде полых каналов, сечение которых плавно меняется от круглого у чувствительно элемента к прямоугольному на поверхности корпуса без уменьшения поперечной площади сечения. Оси соответствующих каналов чувствительных элементов направлены навстречу друг другу так, чтобы выходы каналов на поверхность корпуса лежали в ортогональных плоскостях относительно оси корпуса и точки на оси корпуса, лежащей посредине между центрами обоих чувствительных элементов.
При помещении приемника в среду измерения звуковое давление на выходах каналов на поверхность цилиндрического корпуса трансформируется в каналах и поступает на круглые чувствительные элементы, которые измеряют разность давлений между противоположными сторонами. Таким образом, происходит измерение градиента давления в двух ортогональных направлениях.
Однако этот приемник подвержен воздействию вибрационных помех, вызванных колебаниями корпуса, которые приводят при измерении в реальных условиях к искажению величин градиента давления звуковой волны - полезного сигнала.
Полезный сигнал, воспринимаемый данным приемником, представляет собой градиент давления, действующего на оппозитные стороны каждого чувствительного элемента по каждому из каналов. Основной собственной (ближнеполевой) помехой, воспринимаемой устройством, является вибрация корпуса приемника (ПГД), в отношении которой чувствительные элементы функционируют как акселерометры, имеющие максимум чувствительности вдоль своей оси.
Отсюда возникает техническая проблема, требующая решения, которая заключается в снижении воздействия вибраций корпуса приемника на достоверность измерений градиента давления.
Технический результат - повышение помехоустойчивости и достоверности измерения градиента давления в условиях воздействия вибраций корпуса ПГД.
Для достижения этого технического результата необходимо вычесть отклик, создаваемый вибрацией корпуса на чувствительных элементах, из отклика, создаваемого на них градиентом давления. Для этого в известную по прототипу конструкцию ПГД введены новые элементы, а именно заявляемое устройство дополнительно снабжено двумя акселерометрами, ориентированными соосно с соответствующим чувствительным элементам, причем выход первого акселерометра подключен через усилитель с регулируемым коэффициентом усиления к входу первого вычитающего устройства, ко второму входу которого подключен через усилитель с постоянным коэффициентом усиления выход первого чувствительного элемента, а выход второго акселерометра подключен через усилитель с регулируемым коэффициентом усиления к входу второго вычитающего устройства, ко второму входу которого подключен через усилитель с постоянным коэффициентом усиления выход второго чувствительного элемента.
Включение акселерометров, ориентированных соосно с соответствующими чувствительными элементами, а также электрическая схема включения чувствительного элемента и акселерометра по каждому из ортогональных каналов ПГД позволяют осуществить компенсационное вычитание откликов чувствительного элемента и акселерометра, то есть в конечном счете повысить помехоустойчивость и достоверность измерения градиента давления
На Фиг. 1 приведен фронтальный разрез ПГД (а) и вид сверху в разрезе (б), где 1 - корпус, 2 - первый чувствительный элемент, ориентированный вертикально, 3 - второй чувствительный элемент, ориентированный горизонтально, 4 - первый акселерометр, ориентированный вертикально, 5 - второй акселерометр, ориентированный горизонтально, 6 - канал в корпусе, ориентированный вертикально, 7 - канал в корпусе, ориентированный горизонтально.
На Фиг. 2 приведена схема подключения одного из чувствительных элементов (для второго схема аналогична), где 2 - чувствительный элемент, 4 - акселерометр, 8 - усилитель с постоянным коэффициентом усиления, 9 - усилитель с регулируемым коэффициентом усиления, 10 - вычитающее устройство.
При измерении градиента давления звуковое давление на выходах каналов 6, 7 на поверхность цилиндрического корпуса приемника трансформируется в каналах и поступает на чувствительные элементы 2, 3, которые измеряют разность давлений между противоположными сторонами. Таким образом, происходит измерение градиента давления в двух ортогональных направлениях. Однако одновременно датчики 2, 3 измеряют и вибрационную помеху, действующую на корпус ПГД. Эта вибрационная помеха измеряется также акселерометрами 4 и с помощью схемы Фиг. 2 вычитается из общего уровня сигнала и вибрационной помехи регистрируемыми датчиками 2, 3.
Однако электрический отклик акселерометра и соответствующего ему чувствительного элемента на вибрацию корпуса ПГД необязательно равны. В то же время при измерении градиента давления для эффективного подавления вибрационной помехи это равенство необходимо обеспечить. Сделать это не так просто, поскольку точное значение вибрационной чувствительности чувствительного элемента зависит от технологического разброса характеристик его составляющих, из которых он изготовлен, параметров их склейки и крепления по контуру. Кроме того, на значение вибрационной чувствительности элемента влияет присоединенная масса окружающей среды (воды), что необходимо учитывать. Известно расчетное моделирование влияния присоединенной массы воды на внутреннем преобразователе (акселерометре) (а.с. СССР №15821244). Однако оно недостаточно точно, что приводит к неполному подавлению вибрационной помехи.
Для того чтобы повысить достоверность измерения градиента давления в условиях воздействия вибраций, нами предложен способ измерения градиента давления с использованием заявляемого приемника, при котором приемник предварительно настраивают на максимум подавления вибрационной помехи. Для этого его помещают под поверхность воды, крепят на виброболт перевернутого над поверхностью воды вибрационного стола за торцы с обеспечением заполнения водой внутренних каналов и возбуждают продольные колебания корпуса приемника последовательно в направлениях максимальной чувствительности первого чувствительного элемента, первого акселерометра и второго чувствительного элемента, второго акселерометра, при этом коэффициенты усиления усилителей с регулируемым коэффициентом усиления устанавливают так, чтобы обеспечить минимальный уровень отклика на вибрационную помеху с выхода вычитающего устройства, соответствующего канала ПГД, т.е. обеспечивают максимум подавления вибрационной помехи по каждому из ортогональных каналов ПГД. Затем настроенный приемник помещается в среду измерения и при измерениях градиента давления плоской звуковой волны в водной среде производится вычитание вибрационной помехи из суммы полезного сигнала и помехи, регистрируемой устройством.
В процессе настройки чувствительные элементы оказываются погруженными в воду, что приводит к естественному нагружению их присоединенной массой воды при колебаниях корпуса ПГД, аналогично условиям реальной эксплуатации. Поскольку акселерометры, герметично размещенные внутри тяжелого корпуса, при погружении в воду своих характеристик не меняют, то достигаемое при вышеописанной настройке максимальное подавление вибрационной помехи обеспечивает максимальное подавление вибрационной помехи в реальных условиях измерения градиента давления при стандартных условиях обеспечения неподвижности корпуса ПГД под воздействием звуковой волны (полезного сигнала), что, как известно (Скребнев Г.К. Комбинированные гидроакустические приемники. СПБ. Изд-во «Элмор», 1997. 200 с.), для ПГД силового типа является обязательным и может быть обеспечено либо при жестком креплении корпуса ПГД к носителю, либо при виброизолирующем креплении корпуса ПГД к носителю на частотах существенно выше собственной частоты виброизоляционного крепления ПГД.
Величина подавления вибрационной помехи при реализации предлагаемого способа измерения с использованием заявленного устройства достигает в широкой полосе частот величин 20 дБ (10 раз).
Для усиления этого эффекта на наружную поверхность корпуса может быть надета тонкая оболочка из звукопрозрачного материала. Возможно также заполнение каналов внутри корпуса звукопрозрачным компаундом, например, из полиуретана или ПВХ.
В качестве чувствительных элементов могут быть использованы изгибные пластинчатые биморфные пьезопреобразователи, как в прототипе, или любые другие датчики разности давления или колебательной скорости, например доплеровские или электрокинетические (а.с. СССР №932575).
В качестве акселерометров могут быть применены, например, малогабаритные акселерометры РСВ 333В52 (Piezotronics), каждый из которых имеет чувствительность по ускорению 100 мВ/мс-2, при массе всего лишь 7,5 г и размерах в виде кубика со стороной около 12 мм.
Усилители реализуются на стандартных операционных усилителях.
В качестве примера осуществления изобретения рассмотрим следующее устройство. Корпус 1 диаметром 52 мм выполнен из нержавеющего металла. Чувствительный элемент (2, 3) представляет собой биморфный пластинчатый датчик (бронзовая подложка склеена с тонким пьезокерамическим диском), установленный между двумя кольцевыми обоймами из эбонита с возможностью совершения изгибных колебаний. С обеих сторон датчик залит звукопрозрачным компаундом заподлицо с эбонитовыми обоймами. В результате чувствительный элемент (2, 3) представляет собой цилиндрическую таблетку диаметром 46 мм и высотой 8 мм. Полые каналы (6, 7) корпуса имеют сечение, которое плавно меняется от круглого диаметром 34 мм, у чувствительного элемента, к прямоугольному 50×20 мм, у поверхности корпуса, без уменьшения поперечной площади сечения. Оси каналов изогнуты во встречном направлении, так что выходы каналов на поверхность цилиндра лежат в ортогональных плоскостях симметрично относительно оси цилиндра и точки на его оси, лежащей посредине между центрами обоих круглых чувствительных элементов. Цилиндрический корпус выполнен из четырех одинаковых полуцилиндрических частей, каждая из которых может быть изготовлена литьем или трехмерным принтингом. Цилиндрическая таблетка круглого чувствительного элемента фиксируется при клеевом оппозитном соединении двух четвертушек корпуса. Две получившиеся цилиндрические половинки корпуса разворачиваются относительно друг друга вдоль продольной оси корпуса на 90° и скрепляются по торцу (склейкой или механическим соединением). Акселерометры устанавливают герметично внутри корпуса на его продольной оси с внешней стороны чувствительных элементов и ориентируют соосно с ними. Усилители и вычитающие устройства целесообразнее размещать в отдельном герметичном контейнере, на небольшом удалении от ПГД.
В условиях измерения градиента давления заявляемый приемник предварительно настраивают, помещая под поверхность воды на перевернутом вибрационном столе и возбуждая продольные колебания корпуса приемника последовательно в направлениях максимальной чувствительности первого чувствительного элемента, первого акселерометра и второго чувствительного элемента, второго акселерометра, при этом коэффициенты усиления усилителей с регулируемым коэффициентом усиления устанавливают так, чтобы обеспечить минимальный уровень отклика на вибрационную помеху с выхода вычитающего устройства, соответствующего канала ПГД, т.е. максимум подавления вибрационной помехи по каждому из ортогональных каналов ПГД.
Таким образом, за счет предлагаемого двухкомпонентного приемника и способа измерения градиента давления с его использованием достигается увеличение помехозащищенности приемника и увеличивается достоверность измерения градиента давления с его использованием в широкой полосе частот.

Claims (4)

1. Двухкомпонентный приемник градиента давления, состоящий из двух ортогонально установленных на оси цилиндрического корпуса из звукоотражающего материала круглых чувствительных элементов, снабженных патрубками, выполненными в теле корпуса в виде полых каналов, сечение которых плавно меняется от круглого у чувствительно элемента к прямоугольному на поверхности корпуса без уменьшения поперечной площади сечения, при этом оси соответствующих каналов чувствительных элементов направлены навстречу друг другу так, чтобы выходы каналов на поверхность корпуса лежали в ортогональных плоскостях относительно оси корпуса и точки на оси корпуса, лежащей посредине между центрами обоих чувствительных элементов, отличающийся тем, что на продольной оси внутри корпуса соосно чувствительным элементам герметично установлены два ортогонально ориентированных акселерометра, причем выход первого акселерометра подключен через усилитель с регулируемым коэффициентом усиления к входу первого вычитающего устройства, ко второму входу которого подключен через усилитель с постоянным коэффициентом усиления выход первого чувствительного элемента, а выход второго акселерометра подключен через усилитель с регулируемым коэффициентом усиления к входу второго вычитающего устройства, ко второму входу которого подключен через усилитель с постоянным коэффициентом усиления выход второго чувствительного элемента.
2. Двухкомпонентный приемник градиента давления по п. 1, отличающийся тем, что наружная поверхность корпуса снабжена оболочкой из звукопрозрачного материала.
3. Двухкомпонентный приемник градиента давления по п. 1, отличающийся тем, что каналы корпуса заполнены звукопрозрачным компаундом.
4. Способ измерения градиента давления приемником по п. 1, при котором приемник помещают в среду измерения и при измерениях градиента давления из суммы зарегистрированного круглыми чувствительными элементами полезного сигнала и вибрационной помехи производят вычитание вибрационной помехи, зарегистрированной акселерометрами приемника, при этом предварительно настраивают коэффициенты усиления усилителей приемника, помещая приемник под поверхность среды измерения на перевернутый вибрационный стол и возбуждая продольные колебания корпуса приемника последовательно в направлениях максимальной чувствительности первого чувствительного элемента, первого акселерометра и второго чувствительного элемента, второго акселерометра таким образом, чтобы обеспечить минимальный уровень отклика на вибрационную помеху с выхода вычитающего устройства, соответствующего канала приемника.
RU2016138938A 2016-10-03 2016-10-03 Двухкомпонентный приемник градиента давления и способ измерения градиента давления с его использованием RU2624791C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016138938A RU2624791C1 (ru) 2016-10-03 2016-10-03 Двухкомпонентный приемник градиента давления и способ измерения градиента давления с его использованием

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016138938A RU2624791C1 (ru) 2016-10-03 2016-10-03 Двухкомпонентный приемник градиента давления и способ измерения градиента давления с его использованием

Publications (1)

Publication Number Publication Date
RU2624791C1 true RU2624791C1 (ru) 2017-07-06

Family

ID=59312826

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016138938A RU2624791C1 (ru) 2016-10-03 2016-10-03 Двухкомпонентный приемник градиента давления и способ измерения градиента давления с его использованием

Country Status (1)

Country Link
RU (1) RU2624791C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2677097C1 (ru) * 2018-04-05 2019-01-15 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Трехкомпонентный векторно-скалярный приемник
RU2679931C1 (ru) * 2018-04-05 2019-02-14 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Комбинированный векторно-скалярный приемник
RU216445U1 (ru) * 2022-11-28 2023-02-06 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Чувствительный элемент приемников градиента акустического давления

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134097A (en) * 1977-06-13 1979-01-09 Shell Oil Company Combination geophone-hydrophone
USRE43666E1 (en) * 1998-06-05 2012-09-18 Concept Systems Limited Sensor apparatus and method
US20120269033A1 (en) * 2010-06-21 2012-10-25 Sercel, Inc. Dual axis geophones for pressure/velocity sensing streamers forming a triple component streamer
RU2501043C1 (ru) * 2012-07-17 2013-12-10 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Комбинированный гидроакустический приемник для гибкой протяженной буксируемой антенны
RU2568411C1 (ru) * 2014-09-16 2015-11-20 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Двухкомпонентный приемник градиента давления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134097A (en) * 1977-06-13 1979-01-09 Shell Oil Company Combination geophone-hydrophone
USRE43666E1 (en) * 1998-06-05 2012-09-18 Concept Systems Limited Sensor apparatus and method
US20120269033A1 (en) * 2010-06-21 2012-10-25 Sercel, Inc. Dual axis geophones for pressure/velocity sensing streamers forming a triple component streamer
RU2501043C1 (ru) * 2012-07-17 2013-12-10 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Комбинированный гидроакустический приемник для гибкой протяженной буксируемой антенны
RU2568411C1 (ru) * 2014-09-16 2015-11-20 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Двухкомпонентный приемник градиента давления

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2677097C1 (ru) * 2018-04-05 2019-01-15 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Трехкомпонентный векторно-скалярный приемник
RU2679931C1 (ru) * 2018-04-05 2019-02-14 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Комбинированный векторно-скалярный приемник
RU216445U1 (ru) * 2022-11-28 2023-02-06 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Чувствительный элемент приемников градиента акустического давления
RU219977U1 (ru) * 2023-04-28 2023-08-17 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук Автономный гидроакустический регистратор
RU2811513C1 (ru) * 2023-05-03 2024-01-12 Михаил Юрьевич Глущенко Пеленгатор низкочастотных шумовых сигналов для мобильных систем обнаружения малошумных подводных объектов

Similar Documents

Publication Publication Date Title
Bobber Underwater electroacoustic measurements
RU2546997C2 (ru) Сейсмическая система с режекцией волны-спутника и движения
US5392258A (en) Underwater acoustic intensity probe
US9709688B2 (en) Deghosting using measurement data from seismic sensors
Kim et al. Development of an accelerometer-based underwater acoustic intensity sensor
KR20070062974A (ko) 진동센서
US10310121B2 (en) Seismic sensor devices, systems, and methods including noise filtering
Jacobsen et al. A note on the concept of acoustic center
US5126980A (en) Self-orienting vertically sensitive accelerometer
RU2624791C1 (ru) Двухкомпонентный приемник градиента давления и способ измерения градиента давления с его использованием
CN112683386A (zh) 一种积分型压电振速矢量水听器
RU2501043C1 (ru) Комбинированный гидроакустический приемник для гибкой протяженной буксируемой антенны
US5046056A (en) Self-orienting vertically sensitive accelerometer
US9688371B1 (en) Vehicle based vector sensor
RU2677097C1 (ru) Трехкомпонентный векторно-скалярный приемник
RU2568411C1 (ru) Двухкомпонентный приемник градиента давления
US20230176158A1 (en) Micro-electromechanical Systems (MEMS) Directional Acoustic Sensors for Underwater Operation
Kumar et al. Comparative study of PP and PU based acoustic vector sensors for underwater application
RU2708184C1 (ru) Комбинированный векторный приемник
EP2486431A2 (en) Method and apparatus for measuring a hydrophone parameter
Ivancic et al. MEMS directional underwater acoustic sensor operating in near neutral buoyancy configuration
US3803546A (en) Broad band hydrophone
US20080310256A1 (en) Adaptive High Frequency Laser Sonar System
Korenbaum et al. Development of vector sensors for flexible towed array
Jansen et al. Vector sensors and acoustic calibration procedures