RU2624620C1 - Способ получения фотокатализатора на основе полупроводниковой нано-гетероструктуры CdS-WO3-TiO2 - Google Patents

Способ получения фотокатализатора на основе полупроводниковой нано-гетероструктуры CdS-WO3-TiO2 Download PDF

Info

Publication number
RU2624620C1
RU2624620C1 RU2016114653A RU2016114653A RU2624620C1 RU 2624620 C1 RU2624620 C1 RU 2624620C1 RU 2016114653 A RU2016114653 A RU 2016114653A RU 2016114653 A RU2016114653 A RU 2016114653A RU 2624620 C1 RU2624620 C1 RU 2624620C1
Authority
RU
Russia
Prior art keywords
tio
cds
tungsten
titanium dioxide
titanium
Prior art date
Application number
RU2016114653A
Other languages
English (en)
Inventor
Анна Андреевна Мурашкина
Людмила Александровна Стародубцева
Аида Витальевна Рудакова
Алексей Владимирович Емелин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)
Priority to RU2016114653A priority Critical patent/RU2624620C1/ru
Application granted granted Critical
Publication of RU2624620C1 publication Critical patent/RU2624620C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к способам получения тройных нано-гетероструктур из полупроводниковых материалов, характеризующихся различной шириной запрещенной зоны, и может быть использовано при разработке фотокатализаторов на основе нано-гетероструктурных материалов в фотоэлектрохимических и фотокаталитических устройствах для получения чистого водорода и кислорода, синтеза органических молекул. Техническим результатом заявленного изобретения является возможность получения фотокатализатора на основе тройной нано-гетероструктурной системы состава CdS-WO3-TiO2 с варьируемым распределением по составу компонентов, размерами частиц узкозонных полупроводников, диаметра и длины нанотрубок на подложке из титановой фольги, а также упрощение технологического процесса и снижение трудозатрат при получении данной системы высокой чистоты. Способ получения фотокатализатора на основе тройной нано-гетероструктурной системы состава CdS-WO3-TiO2 с формированием 3D-структур на основе диоксида титана осуществляется только электрохимическим методом в электролитах различного состава: при анодировании в процессе роста нанотрубок из диоксида титана на подложке из титановой фольги в электролите, который приготавливают из фторида аммония, дистиллированной воды и этиленгликоля, создаются включения второй фазы оксида вольфрама (VI) из металлического вольфрама, предварительно электрохимически восстановленного из раствора вольфрамата натрия в диметилформамиде и формамиде. Последующее одностадийное электрохимическое осаждение сульфида кадмия в полученную систему WO3-TiO2 осуществляется в водном растворе CdSO4 и Na2S2O4 при рН=7. Таким образом, путем варьирования условий проведения электрохимических процессов получают наноразмерную гетероструктурную систему CdS-WO3-TiO2 высокой степени чистоты с заданными параметрами, а именно, толщина слоя массива нанотрубок из диоксида титана, диаметр и длина нанотрубок из диоксида титана, размер частиц полупроводников оксида вольфрама (VI) и сульфида кадмия. 1 з.п. ф-лы, 6 ил., 2 пр.

Description

Изобретение относится к области электротехники, а именно к способам получения тройных нано-гетероструктур из полупроводниковых материалов, характеризующихся различной шириной запрещенной зоны, и может быть использовано при разработке фотокатализаторов на основе нано-гетероструктурных материалов в фотоэлектрохимических и фотокаталитических устройствах для получения чистого водорода и кислорода, синтеза органических молекул.
Фотокатализаторы на основе диоксида титана, используемые в настоящее время, активно изучаются в направлении увеличения фотокаталитической активности посредством уменьшения размера частиц и создания гетероструктурных систем. Класс наноразмерных гетероструктур содержит большое количество материалов, удовлетворяющих условиям, предъявляемым к создаваемым фотокаталитическим и фотоэлектрохимическим системам с требуемыми характеристиками в отношении активности и спектральной селективности при возбуждении солнечным светом.
Существующие методы [1-3] имеют ограничения по размерам создаваемых полупроводниковых материалов: воспроизводимость по размерному фактору требует дополнительной подготовки исходных компонентов; необходимость предотвращения агломерации частиц компонентов бинарной системы; высокая вероятность получения гетеросистемы с неравномерным распределением компонентов.
Известные способы формирования 3D-структур на основе диоксида титана [1-3], в частности, в процессе роста нанотрубок электрохимическим способом, являются принципиально новыми подходами к решению задачи получения фотокатализатора на основе диоксида титана.
Известен способ [1] электрохимического получения двойных оксидных систем на основе пористого покрытия из оксида титана, используемых в качестве фотокатализаторов. Системы представляют собой нанокристаллические или нанокристаллитные покрытия, содержащие смешанные оксиды металлов на металлических поверхностях. Способ включает анодирование металлической поверхности с образованием плазменных микродуг, при этом на ранней стадии анодирования образуется слой, содержащий непроводящий ток полимер, который превращается в слой геля, мицеллы которого ориентированы в соответствии с электромагнитным полем. Однако известный способ имеет ограниченные возможности по применимости ряда функциональных материалов в качестве отдельных компонентов системы из-за того, что позволяет работать только с оксидными полупроводниковыми компонентами гетероструктурной системы. Также известный способ имеет ограничение по чистоте получаемых двойных оксидных систем за счет того, что существует большая вероятность внесения примесей при разложении веществ, входящих в состав геля, в ходе анодирования и окисления участков металлической поверхности.
Известен способ [2] получения двойной гетероструктурной системы на основе нанотрубок из оксида титана и наночастиц сульфида кадмия, используемой в качестве фотокатализатора. Способ включает в себя электрохимическое получение массива нанотрубок из оксида титана на подложке из металлического титана, электрохимическое осаждение металлического кадмия из раствора хлорида кадмия с получением системы Cd-нанотрубки TiO2, термическое окисление металлического кадмия до оксида с получением системы CdO-нанотрубки TiO2, ионный обмен в растворе Na2S с получением системы CdS-нанотрубки TiO2. Однако известный способ является сложным в реализации за счет многостадийности и длительности технологического процесса. Нанесение оксида вольфрама (VI) данным способом невозможно.
Известен способ [3] получения гетероструктурного фотоэлектрокатализатора на основе нанотрубок из оксида титана, наночастиц сульфида кадмия и наночастиц оксида олова, допированного сурьмой, который показывает высокую эффективность при работе в видимой области спектра. Способ включает в себя электрохимическое получение массива нанотрубок из оксида титана на подложке из металлического титана, помещение частиц CdS в массив из нанотрубок диоксида титана и последующую загрузку в полученную систему оксида олова, допированного сурьмой. Однако известный способ является трудновоспроизводимым за счет многостадийности технологического процесса и сложности контроля количественного соотношения компонентов из-за агломерации частиц компонентов и высокой вероятности загрязнения системы примесями в составе получаемой гибридной системы CdS-TiO2-Sb/SnO2 при химическом способе внесения компонентов.
Известен способ получения тройной гибридной системы состава CdS-WO3-TiO2 с атомным соотношением Cd/Ti/W=1/1/1 [4], наиболее близкий к заявляемому изобретению и принятый в качестве прототипа. Для получения данной системы синтез проводился в два этапа. На первом этапе получали бинарную гибридную систему WO3-TiO2 (в мольном соотношении 1/1) золь-гель методом с использованием в качестве исходных компонентов 0.1 M раствора вольфрамата натрия в смеси азотной кислоты/этанола (объемное соотношение 1/1) и водной суспензии диоксида титана (Degussa Р25). Исходные составляющие перемешивались и отжигались при 450°C в течение четырех часов. На втором этапе синтеза тройной гибридной системы из полученной на первом этапе синтеза бинарной системы готовили водную суспензию, вносили в нее ацетат кадмия с концентрацией 4 мМ и капельно добавляли раствор сульфида натрия с концентрацией 4 мМ до получения сульфида кадмия, затем полученную смесь сульфида кадмия и частиц диоксида титана с нанесенными частицами оксида вольфрама (VI) и сульфида кадмия промывали дистиллированной водой, фильтровали и сушили при температуре 50-70°C в течение 60 минут. Фазовый и количественный состав подтверждали методами рентгенофазового, энергодисперсионного анализа, электронной дифракции.
Недостатком известного способа является неравномерность распределения частиц сульфида кадмия и оксида вольфрама (VI) по объему тройной гибридной системы CdS-WO3-TiO2, а также сложность регулирования размеров частиц этих компонентов в процессе получения за счет многостадийности и необходимости проведения дополнительных стадий, в частности, стадии промывки от побочных продуктов при химическом способе получения тройной нано-гетероструктурной системы состава CdS-WO3-TiO2. Другим недостатком известного способа является загрязнение CdS-WO3-TiO2 частицами сульфида кадмия за счет получения их в виде отдельных частиц наряду на втором этапе синтеза системы CdS-WO3-TiO2, что создает также опасность для здоровья при работе. Следующим недостатком известного способа является сложность и относительная дороговизна за счет соблюдения жесткого технологического контроля качества суспензии и состояния вспомогательных устройств: узкое распределение частиц исходного порошка по размерам, концентрации вводимых к порошку органических компонентов, учет требований, предъявляемых к чистоте реактивов в процессе химического синтеза.
Заявленное изобретение свободно от указанных недостатков.
Техническими результатами, достигаемыми заявленным изобретением, являются равномерность распределения частиц узкозонных полупроводников контролируемого размера по объему получаемой тройной полупроводниковой нано-гетероструктурной системы CdS-WO3-TiO2; чистота получаемой системы CdS-WO3-TiO2 за счет отсутствия свободных частиц сульфида кадмия при реализации электрохимического способа; упрощение и удешевление технологического процесса в целом.
Технический результат в заявленном изобретении реализован следующим образом. Способ получения тройной полупроводниковой нано-гетероструктурной системы состава CdS-WO3-TiO2 включал в себя электрохимическое восстановление вольфрама из раствора вольфрамата натрия на подложку из титановой фольги. При этом в качестве электролита использовалась смесь из диметилформамида и формамида (в объемном соотношении между собой 1:9), в которой растворялся вольфрамат натрия с концентрацией 1М. Электрохимическое восстановление проводилось в течение 1 часа при потенциале -2В. После проведения электрохимического восстановления подложка из титановой фольги с нанесенными на нее наночастицами металлического вольфрама промывалась дистиллированной водой. Далее проводилось анодирование подложки из титановой фольги с нанесенными на нее наночастицами металлического вольфрама в электролите, который приготавливали из фторида аммония в количестве 0.1 масс. %, дистиллированной воды в количестве 2.0 масс. % и этиленгликоля в количестве 97.9 масс. %, при потенциале +60B в течение не менее 3 часов с последующим отжигом на воздухе при температуре не менее 500°C на протяжении не менее 5 часов (скорость нагрева/охлаждения 30°/ч) с получением двойной системы WO3-TiO2. На следующем этапе получения тройной полупроводниковой нано-гетероструктурной системы состава CdS-WO3-TiO2 проводилось электрохимическое осаждение сульфида кадмия в системе WO3-TiO2. Условия электрохимического получения сульфида кадмия на подложке из ориентированных вертикально к подложке из титановой фольги нанотрубок диоксида титана, модифицированных оксидом вольфрама (VI), следующие: электролит - водный раствор CdSO4 с концентрацией не менее 0.002М, Na2S2O4 с концентрацией не менее 0.1М, рН раствора - 7, приложенный потенциал - -0.6В, время осаждения - не менее 30 минут.
Заявляемый способ позволяет получать наноразмерные компоненты системы с задаваемым заранее соотношением фаз и, соответственно, позволяет получать готовую тройную полупроводниковую нано-гетероструктурную систему состава CdS-WO3-TiO2 с необходимыми параметрами и свойствами, а именно, толщиной слоя, диаметром и длиной нанотрубок диоксида титана, размером частиц узкозонных полупроводников.
Предлагаемый способ иллюстрируется чертежами.
На Фиг. 1 представлена микрофотография поверхности титановой подложки с наночастицами металлического вольфрама.
На Фиг. 2 представлена микрофотография синтезированного массива нанотрубок диоксида титана, модифицированного оксидом вольфрама (VI), на подложке из титановой фольги.
На Фиг. 3 представлена микрофотография электрохимически осажденных наночастиц сульфида кадмия в бинарной системе WO3-TiO2 на подложке из титановой фольги.
На Фиг. 4 представлены рентгенограммы для демонстрации фазового состава полученных нанотрубок из TiO2, бинарных систем WO3-TiO2 и CdS/TiO2 и тройной системы CdS-WO3-TiO2.
На Фиг. 5 представлены данные электронной спектроскопии для подтверждения химического анализа полученных бинарной WO3-TiO2 и тройной CdS-WO3-TiO2 систем.
На Фиг. 6 представлен спектр комбинационного рассеяния для подтверждения фазового состава тройной CdS-WO3-TiO2 системы.
Заявленный способ получения фотокатализатора на основе тройной нано-гетероструктурной системы состава CdS-WO3-TiO2 был апробирован на лабораторной базе в режиме реального времени в Санкт-Петербургском государственном университете.
Результаты испытания подтверждены конкретными условиями реализации способа получения тройной нано-гетероструктурной системы состава CdS-WO3-TiO2 и данными по анализу промежуточных систем и конечной тройной нано-гетероструктурной системы состава CdS-WO3-TiO2 методами рентгенофазового анализа, колебательной спектроскопии комбинационного рассеяния, электронной спектроскопии и сканирующей электронной микроскопии.
Пример 1.
Пример 1 демонстрирует, что способ получения наноразмерной гетероструктурной системы CdS-WO3-TiO2, заявленный в изобретении, позволяет наноразмерную гетероструктурную систему CdS-WO3-TiO2 с равномерным распределением частиц узкозонных полупроводников контролируемого размера по объему получаемой тройной полупроводниковой нано-гетероструктурной системы CdS-WO3-TiO2 путем изменения условий проведения электрохимических процессов.
Так при проведении электрохимического восстановления на подложку из титановой фольги из раствора вольфрамата натрия с концентрацией 1М и при использовании в качестве электролита смеси, состоящей из диметилформамида и формамида в объемном соотношении 1/9, осаждались наночастицы металлического вольфрама. На Фиг. 1 представлена микрофотография поверхности титановой подложки с наночастицами металлического вольфрама с размером 20-30 нм.
При проведении анодирования подложки из титановой фольги с наночастицами металлического вольфрама при потенциале +60B в течение 3 часов получался массив нанотрубок из диоксида титана, модифицированных оксидом вольфрама (VI) - бинарная система WO3-TiO2. На Фиг. 2 представлена микрофотография системы WO3-TiO2. Полученные нанотрубки из диоксида титана одностенные, ориентированы вертикально по отношению к поверхности подложки из титановой фольги. Диаметр полученных нанотрубок составляет в среднем 50-70 нм, их длина - 500 нм.
Электрохимическое осаждение сульфида кадмия на подложке из массива нанотрубок из диоксида титана, ориентированных вертикально к подложке из титановой фольги и модифицированных оксидом вольфрама (VI), с использованием водного раствора электролита количественного состава 0.002М CdSO4, 0.1M Na2S2O4 при рН=7 и при потенциале -0.6B в течение 30 минут позволяет получить тройную нано-гетероструктурную систему CdS-WO3-TiO2 с наночастицами кадмия сульфида размером 30 нм (Фиг. 3). Электрохимический метод осаждения сульфида кадмия в предлагаемом способе позволяет равномерно распределять компоненты WO3 и CdS по объему системы, что обеспечивает хороший межфазный контакт.
Пример 2.
Пример 2 демонстрирует чистоту получаемой системы за счет использования на всех этапах электрохимического способа, а также упрощение технологического процесса в целом.
При апробации на подложку из титановой фольги электрохимическим восстановлением осаждались наночастицы металлического вольфрама из раствора вольфрамата натрия, в качестве электролита использовалась смесь, состоящая из диметилформамида и формамида в объемном соотношении 1/9, в котором был растворен вольфрамат натрия с концентрацией 1М. Электрохимическое восстановление проводилось в течение 1 часа при потенциале -2В. После этого подложку из титановой фольги с наночастицами металлического вольфрама промывали от электролита дистиллированной водой. Последующее анодирование подложки из титановой фольги с наночастицами металлического вольфрама проводилось при потенциале +60В 3 часа с последующим отжигом при 500°С в течение 5 часов (скорость нагрева/охлаждения 30°/ч). Электрохимическое осаждение сульфида кадмия проводили на подложке из массива нанотрубок из диоксида титана, ориентированных вертикально к подложке из титановой фольги и модифицированных оксидом вольфрама (VI), который был взят в качестве рабочего электрода, и с использованием водного раствора электролита состава 0.002М CdSO4, 0.1М Na2S2O4 при рН=7 и при потенциале -0.6B в течение 30 минут. Согласно результатам рентгенофазового анализа (Фиг. 4) наноразмерная гетероструктурная система CdS-WO3-TiO2 имеет соответствующие ее составу фазы, а именно, сульфида кадмия, оксида вольфрама (VI), диоксида титана в фазе анатаза. По данным электронной спектроскопии для химического анализа (Фиг. 5) все элементы, входящие в состав тройной гетероструктурной системы CdS-WO3-TiO2, а именно, титан, вольфрам, кадмий, сера, кислород, детектируются. На Фиг. 6 представлен спектр комбинационного рассеяния тройной системы CdS-WO3-TiO2. Все фазовые компоненты, входящие в систему, спектроскопически детектируются.
В предлагаемом способе получения тройной полупроводниковой нано-гетероструктурной системы состава CdS-WO3-TiO2 существует возможность получать как индивидуальные фазы диоксида титана - анатаз или рутил, так и смесь этих фаз, путем варьирования температурного режима отжига бинарной системы WO3-TiO2, в отличие от прототипа [4], в котором используется промышленный образец диоксид титана (Degussa Р25), содержащий одновременно две фазы анатаз и рутил, а также примесь оксида алюминия и/или оксида кремния. Пример 1 демонстрирует получение нанотрубок диоксида титана в фазе анатаза (Фиг. 4).
Технико-экономическая эффективность заявленного изобретения подтверждается примерами 1 и 2. Как видно из примера 1, заявленный способ получения фотокатализатора на основе тройной нано-гетероструктурной системы состава CdS-WO3-TiO2 с формированием 3D-структур на основе диоксида титана электрохимическим методом дает равномерность распределения оксида вольфрама (VI) и сульфида кадмия по объему нанотрубок оксида титана и чистоту получаемой системы от загрязнения посторонними примесями, содержащимися в исходных прекурсорах, что, в свою очередь, упрощает заявляемый способ за счет освобождения процесса от дополнительной стадии очистки от этих загрязнений. Кроме того, образующаяся 3D-структура заметно увеличивает функциональную, рабочую поверхность фотокатализатора. Электрохимический метод осаждения сульфида кадмия в заявленном способе предотвращает агломерацию наносимой фазы в отличие от химических способов получения, в которых растворы вступающих во взаимодействие компонентов используются, как правило, в малых концентрациях, и, как следствие, процесс осаждения повторяется несколько раз. Как видно из примера 2, заявленное изобретение предлагает способ получения наноразмерной гетероструктурной системы CdS-WO3-TiO2, позволяющий заметно упростить технологию получения, убрать из технологической цепочки стадии, связанные с проведением дополнительной очистки от нежелательных примесей, а также снизить затраты, связанные с использованием дешевых материалов и доступного оборудования. Электрохимический метод осаждения сульфида кадмия в предлагаемом способе отличается чистотой получаемого компонента CdS тройной системы CdS-TiO2-WO3, по сравнению с химическим осаждением, применяемом в прототипе [4]. Отдельных частиц кадмия сульфида в растворе не образуется, что делает заявляемый способ заметно менее опасным для труда, чем способ, предлагаемый в прототипе [4].
Использованные источники информации
1. Патент РФ № RU 2366766 "Способ анодирования металлических поверхностей и предназначенные для этого композиции", МПК C25D 11/02. Опубликован 10.09.2009.
2. Патент Китая CN 102677122 "Preparation method of superfine cadmium sulfide particles-sensitized titanium dioxide nanotube array". Опубликован 11.05.2012.
3. Патент Китая CN 102468361 "Method for manufacturing photoelectrocatalysis double-function electrode with wide wave range response". Опубликован 05.11.20.
4. Патент Южной Кореи KR 101160269 "Photoenergy conversion material using ternary hybrid semiconductor composite and method of preparing ternary same". Опубликован 15.04.2011 (прототип).

Claims (2)

1. Способ получения фотокатализатора на основе полупроводниковой нано-гетероструктуры CdS-WO3-TiO2, включающий получение системы WO3-TiO2 с использованием вольфрамата натрия в качестве источника вольфрама с последующим отжигом до формирования кристаллической структуры WO3-TiO2, затем получением тройной нано-гетероструктуры CdS-WO3-TiO2 с последующей сушкой при температуре 50-70°C в течение не менее 60 минут, отличающийся тем, что до получения системы WO3-TiO2 предварительно проводят электрохимическое восстановление вольфрама на подложке из титановой фольги в течение 1 часа при потенциале -2 В в электролите, который берут в смеси диметилформамида и формамида в объемном соотношении между собой 1:9 и растворенным в этой смеси вольфраматом натрия с концентрацией 1М, после чего промывают подложку из титановой фольги с предварительно осажденными на ней частицами вольфрама дистиллированной водой, затем проводят анодирование полученной подложки из титановой фольги с предварительно осажденными на ней частицами вольфрама в течение не менее 3 часов при потенциале +60 В в электролите, который приготавливают из фторида аммония в количестве 0.1 мас.%, дистиллированной воды в количестве 2.0 мас.% и этиленгликоля в количестве 97.9 мас.%, затем осуществляют отжиг двойной системы WO3-TiO2 на воздухе при температуре не менее 500°C течение не менее 5 часов, после чего на полученную подложку из титановой фольги с системой WO3-TiO2, содержащей нанотрубки TiO2, модифицированные наночастицами WO3, осуществляют электрохимическое осаждение наночастиц CdS в электролите из водного раствора 0.002М CdSO4, 0.1М Na2S2O4 при рН=7 и при потенциале -0.6 В в течение не менее 30 минут.
2. Способ по п. 1, отличающийся тем, что скорость нагрева и охлаждения выбирают не более 30°/ч.
RU2016114653A 2016-04-14 2016-04-14 Способ получения фотокатализатора на основе полупроводниковой нано-гетероструктуры CdS-WO3-TiO2 RU2624620C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016114653A RU2624620C1 (ru) 2016-04-14 2016-04-14 Способ получения фотокатализатора на основе полупроводниковой нано-гетероструктуры CdS-WO3-TiO2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016114653A RU2624620C1 (ru) 2016-04-14 2016-04-14 Способ получения фотокатализатора на основе полупроводниковой нано-гетероструктуры CdS-WO3-TiO2

Publications (1)

Publication Number Publication Date
RU2624620C1 true RU2624620C1 (ru) 2017-07-04

Family

ID=59312913

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016114653A RU2624620C1 (ru) 2016-04-14 2016-04-14 Способ получения фотокатализатора на основе полупроводниковой нано-гетероструктуры CdS-WO3-TiO2

Country Status (1)

Country Link
RU (1) RU2624620C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2408428C1 (ru) * 2009-07-20 2011-01-10 Федеральное государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет Способ получения фотокатализатора на основе нанокристаллического диоксида титана
CN102468361A (zh) * 2010-11-05 2012-05-23 同济大学 一种具有宽波范围响应的光电催化双功能电极的制备方法
KR101160269B1 (ko) * 2011-04-15 2012-06-27 포항공과대학교 산학협력단 삼성분계 반도체 복합체를 이용한 광전환 소재 및 이의 제조 방법
CN102677122A (zh) * 2012-05-11 2012-09-19 上海师范大学 一种超细硫化镉颗粒敏化的二氧化钛纳米管阵列的制备方法
WO2014151861A1 (en) * 2013-03-15 2014-09-25 Nitto Denko Corporation Multivalence photocatalytic heterogeneous materials for semiconductors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2408428C1 (ru) * 2009-07-20 2011-01-10 Федеральное государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет Способ получения фотокатализатора на основе нанокристаллического диоксида титана
CN102468361A (zh) * 2010-11-05 2012-05-23 同济大学 一种具有宽波范围响应的光电催化双功能电极的制备方法
KR101160269B1 (ko) * 2011-04-15 2012-06-27 포항공과대학교 산학협력단 삼성분계 반도체 복합체를 이용한 광전환 소재 및 이의 제조 방법
CN102677122A (zh) * 2012-05-11 2012-09-19 上海师范大学 一种超细硫化镉颗粒敏化的二氧化钛纳米管阵列的制备方法
WO2014151861A1 (en) * 2013-03-15 2014-09-25 Nitto Denko Corporation Multivalence photocatalytic heterogeneous materials for semiconductors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КГ2002123315А, 27.03.2004. *

Similar Documents

Publication Publication Date Title
Kwiatkowski et al. Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism
Tang et al. Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment
Wheeler et al. Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties
Malara et al. Controlling the surface energetics and kinetics of hematite photoanodes through few atomic layers of NiO x
Hernández et al. Photo-catalytic activity of BiVO4 thin-film electrodes for solar-driven water splitting
Liu et al. Films of WO3 plate-like arrays with oxygen vacancies proportionally controlled via rapid chemical reduction
Liu et al. Enhanced photoelectrochemical performance of plate-like WO3 induced by surface oxygen vacancies
Xie et al. Tip-grafted Ag-ZnO nanorod arrays decorated with Au clusters for enhanced photocatalysis
Liu et al. Enhanced charge separation in copper incorporated BiVO4 with gradient doping concentration profile for photoelectrochemical water splitting
Ma et al. A 3D triple-deck photoanode with a strengthened structure integrality: enhanced photoelectrochemical water oxidation
Sudhagar et al. Enhanced photoelectrocatalytic water splitting at hierarchical Gd3+: TiO2 nanostructures through amplifying light reception and surface states passivation
Go et al. PVP-assisted synthesis of nanostructured transparent WO3 thin films for photoelectrochemical water splitting
Xu et al. Electrodeposition of ZnSe thin film and its photocatalytic properties
Zhu et al. Electrochemically synthesized tungsten trioxide nanostructures for photoelectrochemical water splitting: Influence of heat treatment on physicochemical properties, photocurrent densities and electron shuttling
Vo et al. Solvent-engineering assisted synthesis and characterization of BiVO4 photoanode for boosting the efficiency of photoelectrochemical water splitting
KR20080037721A (ko) 양극 전해 산화처리에 의한 결정성 산화티탄 피막의제조방법
Cestaro et al. Phase and microstructure control of electrodeposited Manganese Oxide with enhanced optical properties
Davaslıoğlu et al. WO3 decorated TiO2 nanotube array electrode: Preparation, characterization and superior photoelectrochemical performance for rhodamine B dye degradation
Kim et al. Facile and controllable surface-functionalization of TiO2 nanotubes array for highly-efficient photoelectrochemical water-oxidation
Ramalingam et al. Surface and electrochemical characterization of N-Fe-doped-TiO2 nanoparticle prepared by hydrothermal and facile electro-deposition method for visible light driven pollutant removal
Su et al. Engineered WO 3 nanorods for conformal growth of WO 3/BiVO 4 core–shell heterojunction towards efficient photoelectrochemical water oxidation
Peng et al. Recent progress on post-synthetic treatments of photoelectrodes for photoelectrochemical water splitting
Sabet et al. Deposition of lead sulfide nanostructure films on TiO2 surface via different chemical methods due to improving dye-sensitized solar cells efficiency
Ghayeb et al. Effect of silver sulfide decorating on structural, optical and photo catalytic properties of iron-doped titanium dioxide nanotubes films
Bouhjar et al. Electrodeposited chromium-doped α-Fe2O3 under various applied potential configurations for solar water splitting

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20180326

Effective date: 20180326