RU2624601C1 - Способ измерения степени сшивки полиэтилена низкой и высокой плотности (варианты) и устройство для его осуществления - Google Patents
Способ измерения степени сшивки полиэтилена низкой и высокой плотности (варианты) и устройство для его осуществления Download PDFInfo
- Publication number
- RU2624601C1 RU2624601C1 RU2016101740A RU2016101740A RU2624601C1 RU 2624601 C1 RU2624601 C1 RU 2624601C1 RU 2016101740 A RU2016101740 A RU 2016101740A RU 2016101740 A RU2016101740 A RU 2016101740A RU 2624601 C1 RU2624601 C1 RU 2624601C1
- Authority
- RU
- Russia
- Prior art keywords
- polyethylene
- crosslinking
- spectra
- measuring
- degree
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Relating To Insulation (AREA)
Abstract
Использование: для измерения степени сшивки полиэтилена (ПЭ) низкой (ПЭНП) и высокой плотности (ПЭВП). Сущность изобретения заключается в том, что измеряют разность для амплитуды максимумов ΔI спектров токов термостимулированной деполяризации (ТСД) короноэлектретов ПЭНП и ПЭВП толщиной h>250 мкм до и после сшивки с помощью устройства, в котором при измерении спектров токов термостимулированной деполяризации образцы полиэтилена помещают между заземленным электродом и блокированным измерительным электродом с блокирующей изоляцией в виде неполярного слоя двуокиси кремния, полученного в результате отжига при 700-1000°C пластинок слюды мусковит толщиной 10 мкм, при этом измерение спектров токов термостимулированной деполяризации сшитых и несшитых полиэтиленов низкой и высокой плотности осуществляют при скорости линейного нагрева β=10 град/мин, а степень сшивки полиэтилена определяют с помощью следующего математического выражения:
Ксш = ΔI / Imax нсш,
где Ксш - коэффициент степени сшивки;
ΔI - уменьшение тока в максимуме спектров токов термостимулированной деполяризации после сшивки, А. Технический результат: обеспечение возможности повышения точности определения степени сшивания электроизоляционного полиэтилена ПЭВП и ПЭНП. 3 н.п. ф-лы, 2 ил.
Description
Изобретение относится к измерительной технике и может быть использовано, например, для измерения степени сшивки полиэтилена (ПЭ) низкой (ПЭНП) и высокой плотности (ПЭВП). Способ предназначен для проверки качества радиационного сшивания полиэтилена ПЭ высокой ПЭВП и низкой ПЭНП плотности, полиэтиленовой кабельной изоляции и полиэтиленовой изоляции самонесущего изолированного провода. Предлагаемое изобретение относится к электроизмерительной и кабельной технике и может быть использовано в кабельной промышленности для проверки качества сшивания полиэтиленовой кабельной изоляции и полиэтиленовой изоляции самонесущего изолированного провода.
Известен способ контроля степени сшивки полиэтиленовой кабельной изоляции с помощью выделения гель-фракции кабельного полиэтилена после длительного пребывания в горячем параксилоле [Патент РФ №2195002, G01R 31/12, Опубликовано: 20.12.2002]. При оценке степени сшивки по этому способу образцы кабельной изоляции подвергают размельчению, предварительному взвешиванию, после чего на длительное время (порядка 8 часов) помещают в горячий параксилол, который выступает в качестве растворителя полиэтилена. После длительного растворения в параксилоле нерастворившийся остаток полиэтилена высушивают и взвешивают на аналитических весах. О степени сшивки полиэтилена судят по потере веса образца после растворения.
Признаками, совпадающими с существенными признаками заявляемого способа, являются только назначение данного технического решения.
Этот метод недостаточно точен, а также обладает существенным недостатком - большой длительностью проведения измерений и высокой токсичностью параксилола, используемого в качестве растворителя.
Известен способ оценки степени сшивки кабельного полиэтилена по результатам испытания образцов изоляции на разрыв (определение прочности по Вика) [Патент РФ №2086995, G01R 31/12, опубликовано: 10.08.1997]. При оценке степени сшивки по этому способу из образцов кабельной изоляции вырезаются специальные заготовки (в виде лопаточек). Образцы кабельной изоляции одним концом закрепляются на специальные крепления в термостате, а со стороны второго конца к ним на зажиме прикрепляется груз определенного веса. Под действием силы веса при определенной температуре в термостате после некоторого времени пребывания образцы изоляции разрываются. О степени сшивания полиэтиленовой изоляции судят по времени пребывания изоляции в термостате под нагрузкой.
Признаком, совпадающим с существенными признаками заявляемого способа, также является назначение.
Этот аналог также обладает недостаточной точностью и существенным недостатком этого метода является длительность проведения испытаний.
Ближайшим аналогом заявляемого способа является способ контроля сшивки полиэтиленовой кабельной изоляции, который может быть использован для определения концентрации электрически активных центров захвата в полимерной кабельной изоляции [Патент РФ №2247974, МПК7 G01N 27/60. Способ контроля сшивки полиэтиленовой кабельной изоляции / Новиков Г.К., Смирнов А.И., Жданов А.С., Новикова Л.Н., Маркова Г.В., Швецова Н.Р.; заявитель и патентообладатель Иркутский гос. ун-т. - заявл. 10.02.2004; опубл. 10.03.2005, Бюл. №7. - 2 с.]. Сущность его заключается в поляризации кабельной изоляции в поле коронного разряда с последующим определением электретной разности потенциалов Uэ для сшитого и несшитого образцов.
Признаками прототипа, совпадающими с существенными признаками заявляемого способа, являются: поляризация образцов в поле униполярного электрического коронного разряда.
Недостатком известного способа является невозможность определения марки ПЭ, его плотности (ПЭВП или ПЭНП используется при анализе степени сшивки).
Известно устройство для измерения спектров токов ТСД в диэлектриках (Ю.А. Гороховатский, Г.А. Бардовский. Термоактивационная токовая спектроскопия высокоомных полупроводников и диэлектриков. - М.: Наука; 1991, с. 128, 130).
Признаками аналога, совпадающими с существенными признаками заявляемого устройства, являются термостат с электродами, электрометр, двухкоординатный самописец, терморегулятор.
В результате того, что в аналоге устройства измерительный электрод не блокирован, процесс деполяризации измеряется только в приповерхностном слое диэлектрика, а в основном объеме измерение деполяризации невозможно. В этом причина неопределенности физической интерпритации спектров токов ТСД. Движение носителей заряда может быть как через толщу образца, так и в сторону измерительного электрода, что делает непригодным устройство для определения степени сшивки полиэтилена ПЭНП и ПЭВП.
За прототип устройства принято устройство для контроля степени сшивки полиэтиленовой кабельной изоляции (Г. Сесслер. Электреты. Москва: Мир, 1983, с. 109, 126).
Признаками прототипа, совпадающими с существенными признаками заявляемого устройства, являются термостат с заземленным электродом и блокированным измерительным электродом, электрометр, двухкоординатный самописец, терморегулятор.
В прототипе, несмотря на наличие блокированного измерительного электрода в качестве блокирующей изоляции, использован воздух или нетермостойкий полимерный материал (TP<300°C), имеющий низкую электрическую прочность, что вызывает преждевременную разрядку поляризованных образцов при измерении спектров токов ТСД, что затрудняет измерение спектров и снижает точность определения степени сшивки ПЭВП и ПЭНП.
Задачей предлагаемого изобретения является создание способа и устройства, позволяющих наиболее точно определить степень сшивания электроизоляционного полиэтилена ПЭВП и ПЭНП.
Технический результат заявляемого изобретения заключается в повышении точности определения степени сшивания электроизоляционного полиэтилена ПЭВП и ПЭНП с помощью измерения спектров токов ТСД.
Технический результат изобретения достигается тем, что в способе измерения степени сшивки полиэтилена низкой и высокой плотности, охарактеризованном в п. 1 формулы изобретения, включающем поляризацию образцов в поле униполярного электрического коронного разряда и измерение спектров токов термостимулированной деполяризации, согласно изобретению измеряют разность для амплитуды максимумов ΔI спектров токов термостимулированной деполяризации короноэлектретов полиэтилена низкой и высокой плотности толщиной h>250 мкм до и после сшивки с помощью устройства, в котором при измерении спектров токов термостимулированной деполяризации образцы полиэтилена помещают между заземленным электродом и блокированным измерительным электродом с блокирующей изоляцией в виде слоя двуокиси кремния SiO2, полученного в результате отжига при 700-1000°C пластинок слюды мусковит толщиной 10 мкм, при этом измерение спектров токов термостимулированной деполяризации сшитых и несшитых полиэтиленов низкой и высокой плотности осуществляют при скорости линейного нагрева β=10 град/мин, а степень сшивки полиэтилена определяют с помощью следующего математического выражения:
Ксш=ΔI/Imax нсш, где
Ксш - коэффициент степени сшивки;
ΔI - уменьшение тока в максимуме спектров токов термостимулированной деполяризации после сшивки, A;
Imax нсш - амплитуда максимума спектра токов термостимулированной деполяризации для несшитой полиэтиленовой изоляции низкой и высокой плотности, A.
Технический результат изобретения достигается тем, что в способе измерения степени сшивки полиэтилена низкой и высокой плотности, охарактеризованном в п. 2 формулы изобретения, включающем поляризацию образцов в поле униполярного электрического коронного разряда и измерение спектров токов термостимулированной деполяризации, согласно изобретению измеряют разность величины заряда ΔQ спектров токов термостимулированной деполяризации короноэлектретов полиэтилена низкой и высокой плотности толщиной h>250 мкм до и после сшивки с помощью устройства, в котором при измерении спектров токов термостимулированной деполяризации образцы полиэтилена помещают между заземленным электродом и блокированным измерительным электродом с блокирующей изоляцией в виде слоя двуокиси кремния SiO2, полученного в результате отжига при 700-1000°C пластинок слюды мусковит толщиной 10 мкм, при этом измерение спектров токов термостимулированной деполяризации сшитых и несшитых полиэтиленов низкой и высокой плотности осуществляют при скорости линейного нагрева β=10 град/мин, а степень сшивки полиэтилена определяют с помощью следующего математического выражения:
Ксш=ΔQ/Qнсш, где
Ксш - коэффициент степени сшивки;
ΔQ - уменьшение заряда спектров токов термостимулированной деполяризации после сшивки, Кл;
Qнсш - площадь спектра токов термостимулированной деполяризации для несшитой полиэтиленовой изоляции низкой и высокой плотности, Кл.
Технический результат изобретения достигается тем, что устройство для измерения степени сшивки полиэтилена низкой и высокой плотности, содержащее воздушный термостат с измерительным и заземляемым электродами, электрометр, самописец и терморегулятор, отличается тем, что в качестве измерительного электрода использован блокированный измерительный электрод с блокирующей изоляцией в виде неполяризуемого слоя двуокиси кремния SiO2, полученного в результате отжига при 700-1000°C пластинок слюды мусковит толщиной 10 мкм.
При проведении отжига пластинок слюды мусковит при температуре менее 700°C не достигается чистого неполярного слоя SiO2, то есть частично будет сохраняться поляризация слюды. Проведение отжига пластинок слюды мусковит более 1000°C нецелесообразно, так как произойдет разрушение слоя изоляции.
Другими словами, варианты заявляемого способа представляют собой способ контроля сшивки полиэтиленовой кабельной изоляции, включающий помещение испытуемого образца в поле электрического газового коронного разряда ЭГКР, измерение спектра тока ТСД в системе блокированного измерительного электрода, регистрацию максимального значения тока ТСД I образца или его заряд Q при поляризации сшитого и несшитого образцов в поле коронного разряда. В ЭГКР осуществляют поляризацию концевых полярных C-H связей полиэтиленовой ПЭВП и ПЭНП изоляции с приложением высокого положительного напряжения на игольчатый коронирующий электрод. Ток ТСД измеряют с помощью электрометра или электрометрического усилителя в условиях блокированного измерительного электрода. Коэффициент сшивки для ПЭВП и ПЭНП изоляции и заключение о степени сшивания полиэтиленовой кабельной изоляции К получают путем сравнения амплитуд максимумов тока Imax или величин заряда в спектре ТСД, сформированных от образца ПЭВП, ПЭНП кабеля с несшитой изоляцией и исследуемого образца, степень сшивания определяют по формулам:
Ксш=ΔI/Imax нсш или
Ксш=ΔQ/Qнсш,
где ΔI и ΔQ - уменьшение тока в максимуме или заряда ТСД за счет уменьшения концентрации концевых полярных C-H связей в результате сшивания полиэтиленовой ПЭНП и ПЭВП изоляции,
Imax нсш - амплитуда максимума или Qнсш - площадь спектра ТСД для несшитой полиэтиленовой ПЭВП и ПЭНП изоляции.
Экспериментально установлено, что концевые полярные C-H связи в полиэтилене ПЭВП и ПЭНП могут выступать в качестве электрически активных центров захвата электронов и они определяют электретную поляризацию полиэтилена (площадь спектра ТСД и высоту максимумов тока ТСД).
Величина электретной разности потенциалов для заполяризованного в коронном разряде образца (площадь спектра ТСД и высота максимумов тока ТСД) полиэтиленовой кабельной изоляции определяются концентрацией центров захвата N, плотностью тока ЭГКР jЭГКР и толщиной поляризуемой изоляции h:
Из уравнения (1) следует, что при постоянных значениях плотности тока ЭГКР jЭГКР величина электретной разности потенциалов Uэ зависит только от концентрации центров захвата N.
В качестве центров захвата носителей заряда в полиэтилене выступают концевые полярные группы C-H полимерной макромолекулы.
Полярные концевые группы C-H в полиэтилене обладают дипольным моментом 0,4 Д и по этой причине способны удерживать носители заряда и создавать электретную поляризацию в ПЭ.
При радиационном сшивании полиэтилена ПЭВП и ПЭНП происходит уменьшение концентрации полярных концевых групп C-H, которые замещаются сшитыми неполярными C-C группами.
Неполярные группы C-C неспособны захватывать носители заряда, поскольку дипольный момент для них равен нулю. По этой причине становится очевидно, что в результате сшивки полиэтилена ПЭВП и ПЭНП в нем уменьшается количество полярных боковых групп C-H, которые замещаются неполярными группами C-C. Все это, в свою очередь, приводит к уменьшению концентрации центров захвата носителей заряда и уменьшению поляризуемости ПЭВП и ПЭНП после сшивания.
Исследуемые образцы ПЭ одинаковой толщины h (h>250 мкм) поляризуются в поле униполярного электрического газового коронного разряда ЭГКР и располагают между измерительными электродами ТСД спектрометра для контроля сшивки ПЭНП и ПЭВП.
Ограничение по толщине (толщина образцов - более 250 мкм) обусловлено эффектом влияния подвижности носителей заряда μ на процесс рекомбинации зарядового облака в ПЭ.
В заявляемом устройстве блокирующий слой двуокиси кремния SiO2 толщиной 10 мкм обладает более высокой электрической прочностью по сравнению с воздухом в прототипе и не обладает электретной поляризуемостью, что позволяет значительно повысить точность определения степени сшивки полиэтилена низкой и высокой плотности. Отличия заявляемых вариантов способа от способа-прототипа и отличия заявляемого устройства от устройства-прототипа доказывают новизну заявляемой группы изобретений.
Широко известно использование слюды мусковит в качестве электроизоляционных материалов, например слюды прокладочной мусковит СПМ-1, СПМ-2 (Режим доступа: http://www.sluda.ru/?lang=rus&idn=a21). Однако не известно из уровня техники использование в качестве блокирующего слоя изоляционного слоя из двуокиси кремния, полученного в результате отжига при 700-1000°C пластинок слюды мусковит толщиной 10 мкм. Следовательно, заявляемая группа изобретений соответствует условию патентоспособности «изобретательский уровень».
Изобретение поясняется чертежами, где:
на фиг. 1 представлены спектры токов термостимулированной деполяризации ТСД короноэлектретов ПЭНП и ПЭВП, толщиной 250 мкм до - (1, 3) и после - (2, 4) радиационной сшивки, поляризованных в одинаковых условиях в ЭГКР.
на фиг. 2 представлена схема заявляемого устройства (ТСД-спектрометра) для измерения степени сшивки ПЭНП и ПЭВП.
5 - воздушный термостат ТК-500; 6 - электрометр ЭД-05: 7 - двухкоординатный самописец - Н-307; 8 - программатор температуры БТП-78; 9 - блокированный измерительный электрод; 10 - исследуемый ПЭВП или ПЭНП, 11 - заземляемый электрод.
Способ осуществляют следующим образом.
Плоский образец ПЭ или ПЭ кабельной изоляции толщиной не менее 250 мкм - {во избежание влияния эффекта подвижности носителей заряда μ в ПЭНП и ПЭВП - [μе,p=1-0,4 10-13 м2 (Вс)-1] на результаты измерения спектров токов термостимулированной деполяризации ТСД [Патент РФ №2046364, МПК6 G01R 31/12, G01R 31/14, G01R 31/08, Опубликовано: 20.10.1995]} помещают на поверхность стального электрода в системе электродов игла-плоскость и осуществляют его поляризацию в электрическом газовом коронном разряде ЭГКР. В ЭГКР поляризуются полярные концевые C-H связи радиационно-сшитого и исходного-несшитого ПЭВП, ПЭНП. Для поляризованных в ЭГКР образцов несшитого и радиационно-сшитого ПЭ измеряют спектры токов термостимулированной деполяризации ТСД в предлагаемом устройстве при скорости линейного нагрева β=10 град/мин. На основании полученных спектров токов ТСД определяют величину тока в максимуме спектра ТСД для не сшитого и сшитого образцов ПЭ - Imax нсш и Imax сш соответственно или из измерений площади спектра ТСД - их электрический заряд - Qнсш и Qсш.
Степень сшивания по варианту способа, охарактеризованному в п. 1 формулы изобретения, определяют по формуле
Ксш=ΔI/Imax нсш, где
Ксш - коэффициент степени сшивки;
ΔI - уменьшение тока в максимуме спектров токов термостимулированной деполяризации после сшивки за счет уменьшения концентрации концевых полярных C-H связей в результате сшивания полиэтиленовой ПЭНП и ПЭВП изоляции, А;
Imax нсш - амплитуда максимума спектра токов термостимулированной деполяризации для несшитой полиэтиленовой изоляции низкой и высокой плотности, А.
Степень сшивания по варианту, охарактеризованному в п. 2 формулы изобретения, определяют по формуле
Ксш=ΔQ/Qнсш, где
Ксш - коэффициент степени сшивки;
ΔQ - уменьшение заряда спектров токов термостимулированной деполяризации после сшивки за счет уменьшения концентрации концевых полярных C-H связей в результате сшивания полиэтиленовой ПЭНП и ПЭВП изоляции, Кл;
Qнсш - площадь спектра токов термостимулированной деполяризации для несшитой полиэтиленовой изоляции низкой и высокой плотности, Кл;
где ΔI и ΔQ - уменьшение тока в максимуме или заряда ТСД за счет уменьшения концентрации концевых полярных C-H связей в результате сшивания полиэтиленовой ПЭНП и ПЭВП изоляции.
Способ и устройство позволяет повысить скорость и точность определения степени сшивания электроизоляционного полиэтилена ПЭВП и ПЭНП без использования традиционных токсичных растворителей, которые используются при выделении гель-фракции ПЭ.
В качестве примера реализации способа измерения степени сшивки ПЭ методом измерения спектров токов ТСД на фиг. 1 представлены спектры токов термостимулированной деполяризации ТСД короноэлектретов ПЭНП и ПЭВП толщиной 250 мкм до - (1, 3) и после - (2, 4) радиационной сшивки, поляризованных в одинаковых условиях в ЭГКР. Видно, что после радиационной сшивки амплитуда максимумов Imax и величина электретного заряда Q короноэлектретов уменьшается в несколько раз. Этот эффект уменьшения амплитуды максимумов Imax и величина электретного заряда Q ПЭНП и ПЭВП короноэлектретов, возникающий за счет радиационного сшивания ПЭ, позволяет определить степень сшивки ПЭ с помощью формул: Ксш=ΔI/Imax нсш или Ксш=ΔQ/Qнсш, где ΔI и ΔQ - уменьшение тока в максимуме или заряда ТСД Imax нсш - амплитуда максимума или Qнсш - площадь спектра ТСД для несшитой полиэтиленовой ПЭВП и ПЭНП изоляции.
Для случая, представленного на фиг. 1, коэффициент степени сшивки Ксш ПЭНП и ПЭВП составляет 0,5 и 0,7 соответственно, то есть 50% и 70%.
Отличительной особенностью предлагаемого способа измерения степени сшивки ПЭВП и ПЭНП изоляции по вариантам пункта 1 и пункта 2 формулы изобретения является то, что образцы ПЭ имеют толщину h>250 мкм, поляризация образцов осуществляется в положительном униполярном ЭГКР и спектры токов ТСД ПЭНП и ПЭВП измеряются в системе блокированных электродов.
Устройство для измерения степени сшивки ПЭНП и ПЭВП состоит из четырех электрически соединенных блоков: воздушного термостата ТК-500 - 1, электрометра - 2, двухкоординатного самописца - 3 и блока программатора температуры - 4.
Отличительной особенностью предлагаемого устройства является то, что при измерении спектров токов ТСД ПЭНП и ПЭВП образцы ПЭ, предварительно поляризованные в ЭГКР, помещаются между блокированным измерительным и заземленным электродами и измерение спектров токов ТСД сшитых и несшитых ПЭНП и ПЭВП осуществляют при скорости линейного нагрева β=10 град/мин.
Устройство работает следующим образом.
Пример практической реализации способа и устройства.
Для измерения степени сшивки ПЭ были выбраны образцы сшитого и несшитого ПЭНП производства завода Полимеров НК Роснефть и образцы ПЭВП фирмы Borealis толщиной h=250 мкм. Все образцы поляризовались в ЭГКР в одинаковых условиях. Для полученных короноэлектретов измерялись спектры токов ТСД с помощью предлагаемого ТСД устройства. Спектры токов ТСД для сшитых и несшитых ПЭНП и ПЭВП представлены на фиг. 1. Для случая, представленного на фиг. 1, степень сшивки Ксш ПЭНП и ПЭВП составляет - 0,5 и 0,7 соответственно, то есть 50% и 70%.
Схема устройства для измерения сшивки полиэтилена ПЭНП и ПЭВН представлена на фиг. 2. ПЭНП или ПЭВП короноэлектрет помещается в термостате 1 между двумя электродами из нержавеющей стали, один из которых блокирован слоем изоляции из двуокиси кремния SiO2, полученного в результате отжига при 700-1000°C пластинок слюды мусковит толщиной 10 мкм, а второй заземлен. Температура термостата ТК-500 изменяется по линейному закону со скоростью β=10 град/мин и регулируется программатором температуры БТП-78. Ток ТСД измеряется электрометром или электрометрическим усилителем. Спектр ТСД записывается двухкоординатным самопишущим прибором Н-307.
Claims (11)
1. Способ измерения степени сшивки полиэтилена низкой и высокой плотности, включающий поляризацию образцов в поле униполярного электрического коронного разряда и измерение спектров токов термостимулированной деполяризации, отличающийся тем, что измеряют разность для амплитуды максимумов ΔI спектров токов термостимулированной деполяризации короноэлектретов полиэтилена низкой и высокой плотности толщиной h>250 мкм до и после сшивки с помощью устройства, в котором при измерении спектров токов термостимулированной деполяризации образцы полиэтилена помещают между заземленным электродом и блокированным измерительным электродом с блокирующей изоляцией в виде неполярного слоя двуокиси кремния SiO2, полученного в результате отжига при 700-1000°С пластинок слюды мусковит толщиной 10 мкм, при этом измерение спектров токов термостимулированной деполяризации сшитых и несшитых полиэтиленов низкой и высокой плотности осуществляют при скорости линейного нагрева β=10 град/мин, а степень сшивки полиэтилена определяют с помощью следующего математического выражения:
Ксш = ΔI / Imax нсш,
где Ксш - коэффициент степени сшивки;
ΔI - уменьшение тока в максимуме спектров токов термостимулированной деполяризации после сшивки, А;
Imax нсш - амплитуда максимума спектра токов термостимулированной деполяризации для несшитой полиэтиленовой изоляции низкой и высокой плотности, А.
2. Способ измерения степени сшивки полиэтилена низкой и высокой плотности, включающий поляризацию образцов в поле униполярного электрического коронного разряда и измерение спектров токов термостимулированной деполяризации, отличающийся тем, что измеряют разность для амплитуды максимумов величины заряда ΔQ спектров токов термостимулированной деполяризации короноэлектретов полиэтилена низкой и высокой плотности толщиной h>250 мкм до и после сшивки с помощью устройства, в котором при измерении спектров токов термостимулированной деполяризации образцы полиэтилена помещают между заземленным электродом и блокированным измерительным электродом с блокирующей изоляцией в виде неполярного слоя двуокиси кремния SiO2, полученного в результате отжига при 700-1000°С пластинок слюды мусковит толщиной 10 мкм, при этом измерение спектров токов термостимулированной деполяризации сшитых и несшитых полиэтиленов низкой и высокой плотности осуществляют при скорости линейного нагрева β=10 град/мин, а степень сшивки полиэтилена определяют с помощью следующего математического выражения:
Ксш = ΔQ / Qнсш,
где Ксш - коэффициент степени сшивки;
ΔQ - уменьшение заряда спектров токов термостимулированной деполяризации после сшивки, Кл;
Qнсш - площадь спектра токов термостимулированной деполяризации для несшитой полиэтиленовой изоляции низкой и высокой плотности, Кл.
3. Устройство для измерения степени сшивки полиэтилена низкой и высокой плотности, содержащее воздушный термостат с блокированным измерительным и заземляемым электродами, электрометр, самописец и терморегулятор, отличающееся тем, что в качестве блокирующей изоляции блокированного измерительного электрода использован неполярный слой двуокиси кремния SiO2, полученный в результате отжига при 700-1000°С пластинок слюды мусковит толщиной 10 мкм.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016101740A RU2624601C1 (ru) | 2016-01-20 | 2016-01-20 | Способ измерения степени сшивки полиэтилена низкой и высокой плотности (варианты) и устройство для его осуществления |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016101740A RU2624601C1 (ru) | 2016-01-20 | 2016-01-20 | Способ измерения степени сшивки полиэтилена низкой и высокой плотности (варианты) и устройство для его осуществления |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2624601C1 true RU2624601C1 (ru) | 2017-07-04 |
Family
ID=59312471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016101740A RU2624601C1 (ru) | 2016-01-20 | 2016-01-20 | Способ измерения степени сшивки полиэтилена низкой и высокой плотности (варианты) и устройство для его осуществления |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2624601C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3680358A (en) * | 1970-07-15 | 1972-08-01 | Rikagaku Kenkyusho | Method for determining transition temperature of dielectric |
SU1631472A1 (ru) * | 1988-12-12 | 1991-02-28 | Петрозаводский государственный университет им.О.В.Куусинена | Способ определени электрической прочности мусковита |
RU2195002C2 (ru) * | 2000-08-10 | 2002-12-20 | Иркутский государственный университет | Способ определения электрической прочности, времени релаксации и проводимости изоляции электрических проводов и кабелей |
RU2247974C1 (ru) * | 2003-07-15 | 2005-03-10 | Иркутский государственный университет | Способ контроля сшивки полиэтиленовой кабельной изоляции |
RU2310190C1 (ru) * | 2006-07-27 | 2007-11-10 | Государственное образовательное учреждение высшего профессионального образования "Мордовский государственный университет им. Н.П. Огарева" | Способ контроля степени сшивки полиэтилена |
-
2016
- 2016-01-20 RU RU2016101740A patent/RU2624601C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3680358A (en) * | 1970-07-15 | 1972-08-01 | Rikagaku Kenkyusho | Method for determining transition temperature of dielectric |
SU1631472A1 (ru) * | 1988-12-12 | 1991-02-28 | Петрозаводский государственный университет им.О.В.Куусинена | Способ определени электрической прочности мусковита |
RU2195002C2 (ru) * | 2000-08-10 | 2002-12-20 | Иркутский государственный университет | Способ определения электрической прочности, времени релаксации и проводимости изоляции электрических проводов и кабелей |
RU2247974C1 (ru) * | 2003-07-15 | 2005-03-10 | Иркутский государственный университет | Способ контроля сшивки полиэтиленовой кабельной изоляции |
RU2310190C1 (ru) * | 2006-07-27 | 2007-11-10 | Государственное образовательное учреждение высшего профессионального образования "Мордовский государственный университет им. Н.П. Огарева" | Способ контроля степени сшивки полиэтилена |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10677835B2 (en) | Evaluation method for insulation performance of insulator | |
Zhao et al. | Space charge in polyethylene under combined AC and DC voltages | |
Mallem et al. | Temperature effect on electrical characteristics of negative DC corona charged polyimide films | |
Fukuma et al. | Space charge dynamics in LDPE films immediately before breakdown | |
JP2018031743A (ja) | 絶縁体の電荷分布の測定方法 | |
RU2624601C1 (ru) | Способ измерения степени сшивки полиэтилена низкой и высокой плотности (варианты) и устройство для его осуществления | |
Muslim et al. | Electrical characterization of synthetic ester liquid over wide temperature range (− 60° C/200° C) | |
Liu et al. | Research of Dielectric spectroscopy on insulation ageing assessment of XLPE cables | |
Pradhan et al. | A new approach to estimate activation energy of oil-impregnated pressboard stressed under switching impulse at different temperatures | |
Noah et al. | Measurement of space charge distribution in alumina-filled epoxy resin for application in HVDC GIS | |
RU2247974C1 (ru) | Способ контроля сшивки полиэтиленовой кабельной изоляции | |
Bassi et al. | Conductivity and Dielectric Dissipation Factor (tan δ) Measurements of Insulating Oils of New and Aged Power Transformers—Comparison of Results Between Portable Square Wave and Conventional Bridge Methods | |
Maur et al. | Investigation on Effects of Thermal Ageing on LDPE Based on Polarization and Depolarization Currents | |
Bhatt et al. | Poly-dispersive Nature of relaxation times Characteristics of Poly-(diamino-naphthalene) doped Poly-(vinyl-alcohol) films from AC impedance analysis | |
Wolny et al. | Influence of ageing and moisture degree of aramid-oil insulation on depolarization current | |
Medhioub et al. | Heat treatment effects on dielectric and physico-chemical properties of an epoxy polymer | |
Vu et al. | Transient space charge phenomena in HVDC model cables | |
Zheng et al. | Space charge monitoring in cables at low DC electrical field | |
RU2086995C1 (ru) | Способ определения электрической прочности твердых диэлектриков | |
Ziari et al. | Influence of the temperature on the surface potential decay of polymer films charged negatively by corona discharge under light radiation | |
Kumar et al. | A comparative study of the polarization–depolarization current measurements on different polymeric materials | |
Hegde et al. | Considerations on using Thermal Pulses for Space Charge Measurements in Medium Thickness Insulating Samples | |
RU2195002C2 (ru) | Способ определения электрической прочности, времени релаксации и проводимости изоляции электрических проводов и кабелей | |
Li et al. | Correlative Calibration for Space Charge Measurement in Cables Using PEA Method | |
Havran et al. | Accelerated Thermal Aging of the Liquid Dielectrics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20210121 |