RU2624089C1 - Способ определения режимов работы газотурбинного двигателя, соответствующих минимальным значениям осевой силы, действующей на радиально-упорный подшипник - Google Patents

Способ определения режимов работы газотурбинного двигателя, соответствующих минимальным значениям осевой силы, действующей на радиально-упорный подшипник Download PDF

Info

Publication number
RU2624089C1
RU2624089C1 RU2016127356A RU2016127356A RU2624089C1 RU 2624089 C1 RU2624089 C1 RU 2624089C1 RU 2016127356 A RU2016127356 A RU 2016127356A RU 2016127356 A RU2016127356 A RU 2016127356A RU 2624089 C1 RU2624089 C1 RU 2624089C1
Authority
RU
Russia
Prior art keywords
engine
bearing
operating modes
component
appearance
Prior art date
Application number
RU2016127356A
Other languages
English (en)
Inventor
Владимир Валентинович Посадов
Виктор Михайлович Ринаров
Ольга Львовна Посадова
Денис Андреевич Слободской
Original Assignee
Публичное акционерное общество "Научно-производственное объединение "Сатурн"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Научно-производственное объединение "Сатурн" filed Critical Публичное акционерное общество "Научно-производственное объединение "Сатурн"
Priority to RU2016127356A priority Critical patent/RU2624089C1/ru
Application granted granted Critical
Publication of RU2624089C1 publication Critical patent/RU2624089C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines

Abstract

Изобретение относится к области испытаний и эксплуатации газотурбинных двигателей. Техническим результатом является повышение надежности работы подшипника и двигателя в целом, снижение трудоемкости и затратности при реализации способа за счет сохранения неизменной материальной части, расширение области использования способа, включая эксплуатацию двигателей. В способе определения режимов работы газотурбинного двигателя, соответствующих минимальным значениям осевой силы, действующей на радиально-упорный подшипник, при котором измеряют сигнал с датчика, установленного на опору подшипника, и определяют режимы работы двигателя, предварительно определяют частоту вращения сепаратора подшипника и частоты, кратные ей в целое число раз, не превышающее число тел качения, измеряют динамический сигнал, в спектре которого наблюдают за появлением составляющей на одной из предварительно определенных частот, определяют режимы работы двигателя, соответствующие появлению этой составляющей, и делают их переходными. 3 з.п. ф-лы, 3 ил.

Description

Предлагаемое изобретение относится к области двигателестроения и может найти применение при стендовых испытаниях и эксплуатации газотурбинных двигателей, а также для создания систем диагностики.
Осевая сила воспринимается радиально-упорным подшипником ротора и передается через силовые элементы опоры на корпусные детали двигателя. Величина осевой силы, характер ее изменения от запуска до максимального режима работы двигателя является важным параметром, влияющим на работоспособность подшипника и двигателя в целом. Опасными для работы двигателя являются режимы, на которых осевая сила, действующая на радиально-упорный подшипник, принимает нулевое значение с последующим изменением направления на противоположное. Для обеспечения нормальных условий работы двигателя осевая сила, нагружающая подшипник, должна быть не меньше минимальной. Это условие должно быть выполнено для каждой опоры.
Известны расчетные методики определения осевой силы (Скубачевский Г.С. Авиационные газотурбинные двигатели. Конструкция и расчет деталей. М.: Машиностроение, 1981. С. 38-47), но из-за невозможности учета всех важных влияющих факторов они имеют недопустимо высокие для практики погрешности и могут дать лишь качественную оценку.
В настоящее время наиболее достоверным и широко используемым является способ прямого измерения осевой силы путем статического тензометрирования.
Наиболее близким является способ определения режимов работы газотурбинного двигателя, соответствующих минимальным значениям осевой силы, действующей на радиально-упорный подшипник, при котором измеряют сигнал с датчика, установленного на опору подшипника, и определяют режимы работы двигателя (А.А. Иноземцев, В.Л. Сандрацкий. Газотурбинные двигатели. Пермь, ОАО «Авиадвигатель», 2006, С. 166-169, п. 4.1.1.6. - Осевая сила).
В прототипе измеряют статические сигналы с тензорезисторов, размещенных на тензометрических кольцах, установка которых требует доработки опоры и подшипника, т.е. изменения конструкции, что снижает надежность доработанной опоры и неприемлемо для условий эксплуатации двигателя, т.к. с переделанной опорой он сможет работать ограниченное время, кроме того, увеличиваются затраты на реализацию способа.
Для определения режимов работы двигателя, соответствующих минимальным значениям осевой силы, не требуется определения значений осевой силы в единицах физической величины, а следовательно, не требуется и предварительная дополнительная градуировка - определение зависимости уровня сигналов с датчиков от величины осевой силы.
Техническим результатом, на достижение которого направлен предлагаемый способ, является повышение надежности работы подшипника и двигателя в целом, снижение трудоемкости и затратности при реализации способа за счет сохранения неизменной материальной части (внесения конструктивных изменений в опору не требуется), расширение области использования способа, включая эксплуатацию двигателей.
Технический результат достигается тем, что в способе определения режимов работы газотурбинного двигателя, соответствующих минимальным значениям осевой силы, действующей на радиально-упорный подшипник, при котором измеряют сигнал с датчика, установленного на опору подшипника, и определяют режимы работы двигателя, в отличие от известного, предварительно определяют частоту вращения сепаратора подшипника и частоты, кратные ей в целое число раз, не превышающее число тел качения, измеряют динамический сигнал, в спектре которого наблюдают за появлением составляющей на одной из предварительно определенных частот, определяют режимы работы двигателя, соответствующие появлению этой составляющей, и делают их переходными.
Если при наработке двигателя его техническое состояние сохранилось стабильным, то режимы работы, соответствующие появлению в спектре этой составляющей, совпадают с ранее определенными значениями.
Если при наработке двигателя произошли изменения его технического состояния, то режимы работы, соответствующие появлению в спектре этой составляющей, отличаются от ранее определенных значений.
Измеряют динамический сигнал с вибропреобразователя или с тензорезисторов.
Способ поясняется чертежами, на которых изображены:
фиг. 1 - графики изменения осевой силы, определяемой способом прямого измерения, и частоты вращения ротора в процессе испытаний двигателя;
фиг. 2 - спектр динамического сигнала при достижении минимального значения осевой силы при наборе частоты вращения;
фиг. 3 - спектр динамического сигнала при достижении минимального значения осевой силы при снижении режима.
Способ осуществляют следующим образом.
Предварительно определяют частоту вращения сепаратора подшипника и частоты кратные ей в целое число раз, не превышающее число тел качения z подшипника, k⋅ƒс, где k=1÷z (Генкин М.Д., Соколова А.Г. Виброакустическая диагностика машин и механизмов. М.: Машиностроение, 1987. - С. 248).
На опору подшипника без ее доработки устанавливают датчики, например вибропреобразователь или тензорезисторы, с выхода которых регистрируют динамический сигнал. При отсутствии возможности установки датчика непосредственно на опору допускается его установка на силовой корпус вблизи подшипника, в плоскости опоры, однако в этом случае выделение полезного сигнала может быть затруднено наличием в спектре большого количества посторонних составляющих и ухудшения отношения сигнал/шум.
Измеряют динамический сигнал с датчика. Выполняют в спектре динамического сигнала поиск дискретной (не размытой по частоте), составляющей на одной из предварительно определенных частот. Размытость составляющей на частоте, близкой к сепараторной, свидетельствует о ее газодинамическом, а не механическом происхождении. Определяют режимы работы двигателя, соответствующие появлению этой составляющей.
Найденные режимы соответствуют минимальным значениям осевой силы, действующей на радиально-упорный подшипник. С целью недопущения повреждения подшипника и двигателя в целом их делают переходными без стабилизации и измерения контрольных точек.
При наработке двигателя продолжают следить за появлением в спектре ранее определенной составляющей.
Если при наработке двигателя не произошли изменения его технического состояния, то режимы работы, соответствующие появлению в спектре этой составляющей, не отличаются от ранее определенных значений.
Если при наработке двигателя произошли изменения его технического состояния (износ деталей, изменение зазоров и пр.), то режимы работы, соответствующие появлению в спектре этой составляющей, отличаются от ранее определенных значений.
При обработке вибрации на результат определения составляющих на частоте вращения сепаратора подшипника и кратных от нее оказывают влияние резонансные характеристики корпуса в месте постановки датчика, что требует отбраковки единичных выбросов из массива полученных значений и учета резонансной характеристики корпуса в месте постановки датчика с целью корректировки амплитуд, составляющих на частоте k⋅ƒc.
Способ был реализован при стендовых испытаниях газотурбинного двигателя. Двигатель был препарирован датчиками вибрации МВ-44. Для сравнения полученных результатов с прототипом (способом прямого измерения с помощью статического тензометрирования) двигатель был препарирован тензодатчиками, наклеенными на тензометрические кольца. Информацию с датчиков регистрировали синхронно.
Предварительно определили частоту вращения сепаратора ƒc подшипника и кратные ей частоты по формуле
Figure 00000001
где ƒр - частота вращения ротора, Гц;
d - диаметр тела качения, мм;
D0 - диаметр окружностей центров тел качения, мм;
ϕ - угол контакта шариков по беговой дорожке, °;
k=1÷z;
z - число тел качения подшипника.
По результатам расчета частота вращения сепаратора подшипника составила по отношению к частоте вращения ротора: ƒc=0,4⋅ƒp.
В процессе испытаний при изменении направления осевой силы на противоположное были определены режимы работы двигателя способом прямого измерения (фиг. 1) и предлагаемым способом (фиг. 2, фиг. 3).
В способе прямого измерения (прототип) изменение направления осевой силы на противоположное при повышении режима зафиксировано в момент времени t1 на измеренной частоте вращения ротора n1=10150 об/мин, а при снижении режима в момент времени t2 на n2=11650 об/мин (фиг. 1).
На фиг. 2, фиг. 3 показаны зависимости амплитуды (в вольтах) динамического сигнала от частоты.
По предлагаемому способу в спектре вибрации осуществляли поиск составляющей на частоте вращения сепаратора подшипника и кратных ей. При наборе частоты вращения в момент времени t1 (фиг. 2) зафиксирована составляющая на частоте вращения сепаратора подшипника ƒc=65 Гц (k=1), которой соответствовала частота вращения ротора ƒр=165 Гц (9900 об/мин). При снижении частоты вращения в момент времени t2 (фиг. 3) эта составляющая зафиксирована на частоте ƒс=75,5 Гц, которой соответствовала частота вращения ротора ƒр=189 Гц (11315 об/мин). Эти режимы работы двигателя соответствуют минимальным значениям осевой силы, действующей на подшипник. Для снижения риска повреждения деталей двигателя найденные режимы сделали переходными.
Расхождение результатов, полученных предлагаемым способом, по сравнению с прототипом (способом прямого измерения) не превышает 3%.
В связи с тем, что в процессе наработки двигателя происходит износ деталей и узлов, изменяются радиальные зазоры, изменяется и осевая сила, действующая на подшипник, то ее необходимо контролировать.
При наработке двигателя следили за появлением в спектре ранее определенной составляющей.
При повышении режима зафиксирована составляющая на частоте вращения сепаратора подшипника ƒc=99 Гц, которой соответствовала частота вращения ротора ƒр=247,5 Гц (14850 об/мин). При снижении частоты вращения эта составляющая зафиксирована на частоте ƒс=113,4 Гц, которой соответствовала частота вращения ротора ƒр=283,5 Гц (17010 об/мин).
В связи с тем что при наработке двигателя режимы работы, соответствующие появлению составляющей в спектре на частоте ƒc, отличались от ранее определенных значений, то остановили его работу для анализа результатов, выполнения визуального и бороскопического осмотров.
Способ позволяет определить опасные режимы работы газотурбинного двигателя, соответствующие минимальным значениям осевой силы, действующей на радиально-упорный шарикоподшипник, без внесения изменений в конструкцию опоры, что повышает надежность работы двигателя в целом без увеличения затрат на реализацию способа и расширяет область его использования, включая эксплуатацию.

Claims (4)

1. Способ определения режимов работы газотурбинного двигателя, соответствующих минимальным значениям осевой силы, действующей на радиально-упорный подшипник, при котором измеряют сигнал с датчика, установленного на опоре подшипника, и определяют режимы работы двигателя, отличающийся тем, что предварительно определяют частоту вращения сепаратора подшипника и частоты, кратные ей в целое число раз, не превышающее число тел качения, измеряют динамический сигнал, в спектре которого наблюдают за появлением составляющей на одной из предварительно определенных частот, определяют режимы работы двигателя, соответствующие появлению этой составляющей, и делают их переходными.
2. Способ по п. 1, отличающийся тем, что если при наработке двигателя его техническое состояние сохранилось стабильным, то режимы работы, соответствующие появлению в спектре этой составляющей, совпадают с ранее определенными значениями.
3. Способ по п. 1, отличающийся тем, что если при наработке двигателя произошли изменения его технического состояния, то режимы работы, соответствующие появлению в спектре этой составляющей, отличаются от ранее определенных значений.
4. Способ по п. 1, отличающийся тем, что измеряют динамический сигнал с вибропреобразователя или тензорезисторов.
RU2016127356A 2016-07-06 2016-07-06 Способ определения режимов работы газотурбинного двигателя, соответствующих минимальным значениям осевой силы, действующей на радиально-упорный подшипник RU2624089C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016127356A RU2624089C1 (ru) 2016-07-06 2016-07-06 Способ определения режимов работы газотурбинного двигателя, соответствующих минимальным значениям осевой силы, действующей на радиально-упорный подшипник

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016127356A RU2624089C1 (ru) 2016-07-06 2016-07-06 Способ определения режимов работы газотурбинного двигателя, соответствующих минимальным значениям осевой силы, действующей на радиально-упорный подшипник

Publications (1)

Publication Number Publication Date
RU2624089C1 true RU2624089C1 (ru) 2017-06-30

Family

ID=59312490

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016127356A RU2624089C1 (ru) 2016-07-06 2016-07-06 Способ определения режимов работы газотурбинного двигателя, соответствующих минимальным значениям осевой силы, действующей на радиально-упорный подшипник

Country Status (1)

Country Link
RU (1) RU2624089C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU199131U1 (ru) * 2020-02-27 2020-08-18 Публичное Акционерное Общество "Одк-Сатурн" Устройство измерения сил, воздействующих на опору ротора газотурбинного двигателя, с помощью динамического тензометрирования

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6009701A (en) * 1996-12-20 2000-01-04 Rolls-Royce, Plc Ducted fan gas turbine engine having a frangible connection
EP1444491B1 (en) * 2001-11-16 2009-04-22 Goodrich Pump & Engine Control Systems, Inc. Vibration monitoring system for gas turbine engines
RU2551447C1 (ru) * 2014-02-27 2015-05-27 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Способ вибрационной диагностики технического состояния подшипниковой опоры ротора двухвального газотурбинного двигателя
RU2556477C1 (ru) * 2014-09-01 2015-07-10 Закрытое акционерное общество "Научно-производственное предприятие "Топаз" Способ вибродиагностирования газотурбинных двигателей в эксплуатации по информации бортовых устройств регистрации
RU2575243C1 (ru) * 2014-10-01 2016-02-20 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Способ виброакустической диагностики технического состояния подшипников в составе газотурбинного двигателя

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6009701A (en) * 1996-12-20 2000-01-04 Rolls-Royce, Plc Ducted fan gas turbine engine having a frangible connection
EP1444491B1 (en) * 2001-11-16 2009-04-22 Goodrich Pump & Engine Control Systems, Inc. Vibration monitoring system for gas turbine engines
RU2551447C1 (ru) * 2014-02-27 2015-05-27 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Способ вибрационной диагностики технического состояния подшипниковой опоры ротора двухвального газотурбинного двигателя
RU2556477C1 (ru) * 2014-09-01 2015-07-10 Закрытое акционерное общество "Научно-производственное предприятие "Топаз" Способ вибродиагностирования газотурбинных двигателей в эксплуатации по информации бортовых устройств регистрации
RU2575243C1 (ru) * 2014-10-01 2016-02-20 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Способ виброакустической диагностики технического состояния подшипников в составе газотурбинного двигателя

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ИНОЗЕМЦЕВ А.А. и др. Газотурбинные двигатели, Пермь, ОАО "АВИАДВИГАТЕЛЬ", 2006, с.166-169). *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU199131U1 (ru) * 2020-02-27 2020-08-18 Публичное Акционерное Общество "Одк-Сатурн" Устройство измерения сил, воздействующих на опору ротора газотурбинного двигателя, с помощью динамического тензометрирования

Similar Documents

Publication Publication Date Title
US7770458B2 (en) Method of detecting damage to an engine bearing
US10281438B2 (en) System and method of detecting defects of a rolling bearing by vibration analysis
JP7013787B2 (ja) 風力発電用風車の状態監視装置、状態監視方法、及び状態監視システム
CN107976318B (zh) 对飞机燃烧室动力学的间接监测
US10215664B2 (en) Methods and systems for estimating residual useful life of a rolling element bearing
US20090046964A1 (en) Method and apparatus for bearing monitoring
WO2014123443A1 (ru) Способ вибрационной диагностики и прогнозирования внезапного отказа двигателя и устройство
RU2551447C1 (ru) Способ вибрационной диагностики технического состояния подшипниковой опоры ротора двухвального газотурбинного двигателя
RU2624089C1 (ru) Способ определения режимов работы газотурбинного двигателя, соответствующих минимальным значениям осевой силы, действующей на радиально-упорный подшипник
RU2478923C2 (ru) Способ диагностики технического состояния межроторного подшипника двухвального газотурбинного двигателя
RU2640463C1 (ru) Способ определения режимов работы газотурбинного двигателя, на которых осевая сила, действующая на радиально-упорный подшипник, принимает минимальные и максимальное значения
KR101662125B1 (ko) 배기가스 터보차저 마찰 베어링의 베어링 유극을 확인하는 방법
KR100436573B1 (ko) 진동 및 소음품질 자동검사장치
RU2682839C1 (ru) Способ контроля технического состояния судового дизель-генератора в эксплуатации
RU2709238C1 (ru) Способ диагностики технического состояния подшипника качения ротора турбомашины
RU2658118C1 (ru) Способ диагностики подшипниковых опор турбореактивного двигателя
RU2690231C1 (ru) Способ диагностики состояния газодинамической опоры ротора поплавкового гироскопа
RU2432560C1 (ru) Способ диагностики радиального зазора в шарикоподшипниках
Thanagasundram et al. Autoregressive based diagnostics scheme for detection of bearing faults
Dempsey et al. Comparison of test stand and helicopter oil cooler bearing condition indicators
RU2682561C1 (ru) Способ определения технического состояния токосъемников
RU2585800C1 (ru) Способ исследования динамических свойств вращающегося ротора
RU2552389C1 (ru) Устройство для диагностики технического состояния межроторного подшипника двухвального газотурбинного двигателя
Harker et al. Rolling element bearing monitoring using high gain eddy current transducers
RU2664748C1 (ru) Способ диагностики технического состояния подшипника качения ротора газотурбинного двигателя