RU2623839C1 - Устройство для определения сопротивления геосинтетических материалов ударной динамической нагрузке - Google Patents
Устройство для определения сопротивления геосинтетических материалов ударной динамической нагрузке Download PDFInfo
- Publication number
- RU2623839C1 RU2623839C1 RU2016140927A RU2016140927A RU2623839C1 RU 2623839 C1 RU2623839 C1 RU 2623839C1 RU 2016140927 A RU2016140927 A RU 2016140927A RU 2016140927 A RU2016140927 A RU 2016140927A RU 2623839 C1 RU2623839 C1 RU 2623839C1
- Authority
- RU
- Russia
- Prior art keywords
- inductor
- cone
- height
- ferromagnetic core
- length
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/04—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Изобретение относится к химической промышленности, а именно к производству геосинтетических материалов из химических волокон (нитей), и испытанию их на определение сопротивления ударной динамической нагрузке. Сущность изобретения заключается в том, что в устройстве для определения сопротивления геосинтетических материалов ударной динамической нагрузке между направляющим стержнем и ударным конусом помещена цилиндрическая часть, на которой снаружи размещен ферромагнитный сердечник в форме полого цилиндра, защитный экран выполнен из немагнитного материала, инертного к электромагнитным волнам, а на его внешней стороне установлена катушка индуктивности, при этом высота ферромагнитного сердечника соответствует длине катушки индуктивности, а длина катушки индуктивности больше высоты ударного конуса в 1,5 раза; при этом катушка индуктивности включена в измерительную цепь, где она электрически соединена с мостовой измерительной схемой, к входу которой подключен генератор сигналов, а к выходу - усилитель-детектор и последовательно соединенные между собой квадратор, нормирующий преобразователь и измерительный прибор. Технический результат – повышение быстродействия и точности процесса испытания. 2 ил., 1 табл.
Description
Изобретение относится к химической промышленности, а именно к производству геосинтетических материалов из химических волокон (нитей) и испытанию их на определение сопротивления ударной динамической нагрузке.
Известно техническое решение, предназначенное для измерения ударной прочности [ГОСТ 27736-88. Детали и изделия из древесины и древесных материалов. Метод определения ударной прочности и защитно-декоративных покрытий. - Москва: Изд-во стандартов, 1988. - 11 с.], содержащее вертикальную трубку с отверстиями для сбрасывания шарика на поверхность испытуемого образца, закрепленного в зажимную рамку.
Данное техническое решение не позволяет проводить испытание с неткаными и ткаными геосинтетическими материалами ввиду особенностей их строения, где основными элементами строения являются волокна и нити, обладающие упругими свойствами.
Известно техническое устройство для определения прочности материалов [Пат. №2014597. Российская Федерация, МПК G01N 33/38. Устройство для определения прочности стройматериалов / Тарлычев A.M.; заявитель и патентообладатель Тарлычев A.M. - №4921926/33; заявл. 29.03.1991; опубл. 15.06.1994. - 7 с.], содержащее корпус со сферическим ударным наконечником и измерителем силы удара.
Недостатком данного технического решения является то, что оно не позволяет проводить испытания с неткаными и ткаными геосинтетическими материалами по причине того, что сферическая поверхность наконечника сжимает, а не перфорирует геосинтетические материалы, содержащие волокна и нити, обладающие упругими свойствами.
Наиболее близким по технической сущности к заявляемому техническому решению, выбранному в качестве прототипа, является устройство для испытания геосинтетических материалов с применением падающего конуса [ГОСТ Р ИСО 13433-2014. Материалы геосинтетические. Метод определения перфорации при динамической нагрузке (испытание падающим конусом). - Москва: Стандартинформ, 2014. - 14 с.], содержащее стойку с основанием, головку с выпускным механизмом, падающий конус, измерительный конус, направляющий стержень, металлический экран, зажимные пластины, установочный винт, защитный слой для конуса. Данное техническое решение предполагает использование лишней операции с применением измерительного конуса, что требует дополнительных затрат времени на осуществление самого процесса измерения. Кроме этого измерительный конус имеет массу, отличную от падающего конуса, что обуславливает дополнительную погрешность при измерении.
Недостатками прототипа являются затраты времени на лишнюю измерительную операцию и снижение точности измерения по причине использования дополнительного измерительного элемента.
Техническим результатом устройства является повышение быстродействия и точности процесса испытания.
Указанный результат достигается тем, что в устройстве для определения сопротивления геосинтетических материалов ударной динамической нагрузке, содержащем стойку прибора, кольцевой механизм для зажима испытуемого образца в горизонтальном положении, защитный экран, ударный конус с направляющим стержнем в основании и выпускной механизм для спускания его с фиксированной высоты, согласно изобретению, между направляющим стержнем и ударным конусом помещена цилиндрическая часть, на которой снаружи размещен ферромагнитный сердечник в форме полого цилиндра, защитный экран выполнен из немагнитного материала, инертного к электромагнитным волнам, а на его внешней стороне установлена катушка индуктивности, при этом высота ферромагнитного сердечника соответствует длине катушки индуктивности, а длина катушки индуктивности больше высоты ударного конуса в 1,5 раза; при этом катушка индуктивности включена в измерительную цепь, где она электрически соединена с мостовой измерительной схемой, к входу которой подключен генератор сигналов, а к выходу - усилитель-детектор и последовательно соединенные между собой квадратор, нормирующий преобразователь и измерительный прибор.
Изобретение поясняется чертежами, где на фиг. 1 показана общая схема устройства, на фиг. 2 - структурная схема включения катушки индуктивности в измерительную цепь.
Устройство для определения сопротивления геосинтетических материалов ударной динамической нагрузке (фиг. 1) содержит стойку прибора 1, в основании 2 которой находятся установочные винты 3 для установки ее в вертикальное положение. Выше к стойке 1 прикреплен кольцевой механизм 4 для зажима испытуемого образца в горизонтальном положении, которое закреплено зажимными винтами 5. Выше к стойке 1 в вертикальном положении прикреплен защитный экран 6, выполненный из немагнитного материала, на внешней поверхности которого размещена катушка индуктивности 7. В верхней части стойки 1 расположен выпускной механизм 8 для фиксации и отпуска с помощью рычага 9 направляющего стержня 10, связанного резьбовым соединением с цилиндрической частью 11 ударного конуса 12, расположенной между направляющим стержнем 10 и ударным конусом 12. На цилиндрической части 11 ударного конуса 12 расположен ферромагнитный сердечник 13 в форме полого цилиндра. В самом основании стойки 1 расположен амортизационный слой 14 для защиты конуса от механических повреждений. Катушка индуктивности 7 включена в измерительную цепь (фиг. 2), где она электрически соединена с мостовой измерительной схемой 15, к входу которой подключен генератор сигналов 16, а к выходу усилитель-детектор 17. Далее квадратор, нормирующий преобразователь 19, измерительный прибор 20 последовательно соединены между собой. Длина катушки индуктивности 7 больше высоты рабочей части ударного конуса 11 в 1,5 раза и соответствует высоте ферромагнитного сердечника 13.
Устройство функционирует следующим образом. Подготовленный для испытания образец геосинтетического материала (фиг. 1) помещают в кольцевой механизм 4 для зажима испытуемого образца в горизонтальном положении и фиксируют его зажимными винтами 5 без провисания. Стойку прибора 1 устанавливают в вертикальное положение с помощью установочных винтов 3. Направляющий стержень 10, соединенный с цилиндрической частью 11 ударного конуса 12 (в основании диаметром 50 мм и массой 1000±5 г), закрепляют в верхней части стойки 1 с помощью выпускного механизма 8. При проведении испытания образца воздействием на рычаг 9 выпускного механизма 8 освобождается ударный конус 12, расположенный на высоте 500±2 мм, который перемещается вертикально внутри защитного экрана 6, выполненного из диэлектрика (немагнитного материала) и имеющего внутренний диаметр на 5 мм больше диаметра в основании ударного конуса 12. В процессе падения ударный конус 12 изменяет индуктивность катушки 7 вследствие расположенного на цилиндрической поверхности ударного конуса 12 ферромагнитного сердечника 13, выполненного в форме полого цилиндра. Для предохранения поверхности ударного конуса 12 от механических повреждений в основании размещен амортизирующий слой 14, выполненный из плотной резины. Катушка индуктивности 7 соединена с мостовой измерительной схемой 15, к входу которой подключен генератор сигналов 16, обеспечивающий питание мостовой измерительной схемы, а к выходу усилитель-детектор 17, который усиливает сигнал рассогласования измерительного моста. Квадратор 18 преобразует сигнал усилитель-детектора 17 в сигнал, пропорциональный площади отверстия в исследуемом образце, полученного от ударного конуса 12. Нормирующий преобразователь 19 согласует сигнал квадратора 18 с входом измерительного прибора 20 для обеспечения удобного отсчета результата измерения в единицах площади отверстия в исследуемом образце. При фиксировании ударного конуса 12, имеющего коническую поверхность под углом 45°, после удара в испытываемом образце, на индикаторе измерительного прибора 20 будет высвечено значение площади S отверстия в пробе в единицах измерения мм2, образованного ударным конусом 12, пропорциональное полученному напряжению с выхода нормирующего преобразователя 20. Защитный экран 6 выполнен из немагнитного материала, инертного к электромагнитным волнам. Длина катушки индуктивности 7 больше высоты рабочей части ударного конуса 12 в 1,5 раза и составляет 90 мм. Высота ферромагнитного сердечника 13 соответствует длине катушки индуктивности 7.
Для достижения условия линейности зависимости индуктивности катушки 7 от площади S ударного конуса 12 ввиду перемещения около нее ферромагнитного сердечника 13 в форме полого цилиндра, размещенного на цилиндрической части ударного конуса 12, длина катушки Lк индуктивности 7 выполнена больше высоты Нк рабочей части ударного конуса 12 в 1,5 раза.
Для испытания использовались образцы нетканых геосинтетических материалов марки «ФилТек» поверхностной плотности 150 г/м2, предназначенных для строительства автомобильных дорог при укладке их в земляное полотно. Результаты испытаний приведены в таблице.
Данные, приведенные в таблице, показывают, что быстродействие процесса испытания по предлагаемому техническому решению в среднем на 32 с больше, чем при испытании образца в соответствии с прототипом.
Повышение точности процесса измерения подтверждается тем, что конечный результат измерения прямых многократных измерений записывается в виде:
(где x - конечный результат измерения; - среднее значение измеряемой величины; Δx - абсолютная погрешность; t - нормированное отклонение (коэффициент Стьюдента); σx - среднее квадратическое отклонение ; n - число измерений.
Ввиду того, что в прототипе конечный результат измерения представляется в единицах измерения мм, а в предлагаемом техническом решении в единицах измерения мм2, сравнение по показателям точности осуществляем не в абсолютных, а в относительных единицах, т.е. согласно выражению . В результате имеем на основании данных таблицы относительную погрешность по прототипу δx=4,5%, а по предлагаемому техническому решению δx=1,5%. При сравнении с прототипом относительная погрешность δx заявляемого технического решения меньше на 3%. Следовательно, точность измерения при использовании предлагаемого технического решения оказалась выше.
Claims (1)
- Устройство для определения сопротивления геосинтетических материалов ударной динамической нагрузке, содержащее стойку прибора, кольцевой механизм для зажима испытуемого образца в горизонтальном положении, защитный экран, ударный конус с направляющим стержнем в основании и выпускной механизм для спускания его с фиксированной высоты, отличающееся тем, что между направляющим стержнем и ударным конусом помещена цилиндрическая часть, на которой снаружи размещен ферромагнитный сердечник в форме полого цилиндра, защитный экран выполнен из немагнитного материала, инертного к электромагнитным волнам, а на его внешней стороне установлена катушка индуктивности, при этом высота ферромагнитного сердечника соответствует длине катушки индуктивности, а длина катушки индуктивности больше высоты рабочей части конуса в 1,5 раза; катушка индуктивности включена в измерительную цепь, где она электрически соединена с мостовой измерительной схемой, к входу которой подключен генератор сигналов, а к выходу - усилитель-детектор и последовательно соединенные между собой квадратор, нормирующий преобразователь и измерительный прибор.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016140927A RU2623839C1 (ru) | 2016-10-18 | 2016-10-18 | Устройство для определения сопротивления геосинтетических материалов ударной динамической нагрузке |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016140927A RU2623839C1 (ru) | 2016-10-18 | 2016-10-18 | Устройство для определения сопротивления геосинтетических материалов ударной динамической нагрузке |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2623839C1 true RU2623839C1 (ru) | 2017-06-29 |
Family
ID=59312262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016140927A RU2623839C1 (ru) | 2016-10-18 | 2016-10-18 | Устройство для определения сопротивления геосинтетических материалов ударной динамической нагрузке |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2623839C1 (ru) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1471111A1 (ru) * | 1986-04-11 | 1989-04-07 | Е.М.Подлазов | Прибор дл определени прочности материалов |
US5437182A (en) * | 1992-02-07 | 1995-08-01 | Zellweger Luwa Ag | Method and device for determining strength properties of the warp threads of a warp |
-
2016
- 2016-10-18 RU RU2016140927A patent/RU2623839C1/ru not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1471111A1 (ru) * | 1986-04-11 | 1989-04-07 | Е.М.Подлазов | Прибор дл определени прочности материалов |
US5437182A (en) * | 1992-02-07 | 1995-08-01 | Zellweger Luwa Ag | Method and device for determining strength properties of the warp threads of a warp |
Non-Patent Citations (1)
Title |
---|
ГОСТ Р ИСО 13433-2014. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109283047B (zh) | 一种深地工程环境下岩体损伤监测系统及评价方法 | |
CN103018148B (zh) | 一种测量煤芯孔隙度的方法 | |
US7243526B2 (en) | Device and method for measuring the impact properties of a sport field surface | |
KR101731070B1 (ko) | 낙추식 계장화 샤르피 충격 시험 장치 | |
JP4911470B2 (ja) | 土壌水分計付き貫入試験器 | |
CN106124151B (zh) | 特高压直流单柱复合支柱绝缘子抗震试验装置及其试验方法 | |
US3859841A (en) | Cushioning material test device | |
Campbell | An investigation of the plastic behaviour of metal rods subjected to longitudinal impact | |
CN209265789U (zh) | 一种基于惠斯通电桥的杨氏模量测量装置 | |
RU2623839C1 (ru) | Устройство для определения сопротивления геосинтетических материалов ударной динамической нагрузке | |
CN206902781U (zh) | 锚杆内力外测的检测装置 | |
Yoon et al. | Microcones configured with full-bridge circuits | |
US3324713A (en) | Micro-tensile testing machine | |
d'Onofrio et al. | A new torsional shear device | |
RU191433U1 (ru) | Устройство для статического зондирования грунта | |
CN202809591U (zh) | 一种静力触探系统 | |
RU171973U1 (ru) | Устройство для определения прочности геосинтетических материалов при динамическом продавливании | |
US9618436B2 (en) | Automatic impulse hammer for characterization of mechanical properties of a material | |
CN104236446B (zh) | 钻孔多分量应变测量头 | |
CN216285754U (zh) | 一种基于光纤光栅的水平双向地震传感器 | |
Isah et al. | Measurement of small-strain stiffness of soil in a triaxial setup: Review of local instrumentation | |
CN110398449B (zh) | 岩芯夹持器和岩石物理参数测试装置 | |
CN104006746B (zh) | 一种基于自由落体的位移测量方法及装置 | |
Newman | A vibrating reed apparatus for measuring the dynamic mechanical properties of polymers | |
Safaqah et al. | The elastomer gage for local strain measurement in monotonic and cyclic soil testing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191019 |