RU2622695C1 - Способ управления поливом - Google Patents
Способ управления поливом Download PDFInfo
- Publication number
- RU2622695C1 RU2622695C1 RU2016100223A RU2016100223A RU2622695C1 RU 2622695 C1 RU2622695 C1 RU 2622695C1 RU 2016100223 A RU2016100223 A RU 2016100223A RU 2016100223 A RU2016100223 A RU 2016100223A RU 2622695 C1 RU2622695 C1 RU 2622695C1
- Authority
- RU
- Russia
- Prior art keywords
- precipitation
- soil
- irrigation
- humidity
- atmospheric pressure
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/16—Control of watering
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Cultivation Of Plants (AREA)
Abstract
Изобретение относится к области сельского хозяйства и может быть использовано в автоматизированных системах полива. При осуществлении способа управления поливом измеряют влажность почвы и интенсивность осадков. Дополнительно измеряют температуру и влажность воздуха, атмосферное давление и скорость ветра. Получают информацию о прогнозе выпадения осадков. Определяют периодичность, интенсивность и длительность полива. Увеличивают длительность полива при положительных разностях между заданными и фактическими значениями влажности почвы, интенсивности осадков, влажности воздуха и атмосферного давления. Уменьшают длительность полива при положительных разностях между заданными и фактическими значениями температуры воздуха и скорости ветра, а также положительном прогнозе выпадения осадков в установленное время. Обеспечивается повышение качества управления поливом. 1 ил.
Description
Изобретение относится к сельскому хозяйству и может быть использовано в автоматизированных системах полива. Цель изобретения - повышение качества управления.
Известен способ автоматического управления капельным поливом в теплице, включающий измерение датчиком влажности почвы на контрольном участке, принятие решения о назначении и окончании полива при достижении влажности почвы нижней и верхней границ и последующий полив участков в соответствии с поливной нормой (см. патент РФ №2216930, МПК7 A01G 25/16, A01G 9/00). Недостатком известного способа является низкое качество управления вследствие того, что в нем не учитывается зависимость интенсивности испарения влаги из почвы от температуры и влажности воздуха, атмосферного давления и скорости ветра. В результате отсутствия этого учета может, например, сформироваться такая ситуация, когда влажность почвы на контрольном участке окажется ниже нижней границы, но пониженная температура воздуха или повышенная его влажность, повышенное атмосферное давление или отсутствие ветра существенно сдерживают испарение влаги. Тем не менее, в соответствии с известным способом полив будет назначен и осуществлен в соответствии с поливной нормой. В результате почва окажется переувлажненной.
Возможна и обратная ситуация. Например, влажность почвы на контрольном участке будет выше верхней границы, а температура воздуха при этом - повышенной или его влажность - пониженной, атмосферное давление - пониженным и имеет место сильный ветер. В соответствие с известным способом превышение влажности почвы на контрольном участке значения верхней границы определит окончание полива, но повышенная температура воздуха, его пониженная влажность, пониженное атмосферное давление и наличие сильного ветра интенсифицируют испарение влаги. В результате почва окажется обезвоженной.
Наиболее близким по технической сущности и достигаемому результату к заявленному изобретению является способ управления и контроля автоматизированной системой полива (см. авторское свидетельство СССР №1319803, A01G 25/16, A01G 27/00), включающий измерения влажности почвы, наличия и интенсивности осадков, по результатам которых осуществляют включение и отключение оросительного оборудования, принятый за прототип.
Основным недостатком известного способа является низкое качество управления, допускающее, с одной стороны, переувлажнение почвы или перерасход воды и перерасход энергии на ее подачу и, с другой стороны, обезвоживание почвы. Отклонение влажности почвы на недопустимую величину при реализации известного способа объясняется тем, что этот способ не предусматривает учет следующих факторов:
- температуры воздуха;
- влажности воздуха;
- атмосферного давления;
- наличия и скорости ветра;
- информации метеорологических служб о прогнозе выпадения осадков в установленное время.
Температура воздуха, влажность воздуха, атмосферное давление, наличие и скорость ветра влияют на интенсивность испарения влаги. При выращивании растений может оказаться, что влажность почвы достигла минимально допустимого значения, но из-за низкой температуры воздуха, высокой влажности воздуха, высокого атмосферного давления или отсутствия ветра испарение влаги из почвы будет происходить медленно. При этом оросительное оборудование можно не включать или его следует включить с некоторой выдержкой времени, рассчитывая на изменение погоды. В противном случае может произойти переувлажнение почвы или перерасход энергии, затраченной на обеспечение работы оросительного оборудования. Аналогично при достижении влажности почвы верхнего допустимого значения немедленное отключение оросительного оборудования при повышенной температуре воздуха, пониженной влажности воздуха, низком атмосферном давлении и сильном ветре испарение влаги из почвы окажется интенсивным и почва будет обезвоживаться. Поэтому оросительное оборудование должно еще некоторое время оставаться во включенном состоянии.
Отсутствие учета информации метеорологических служб (синоптиков) также может привести к переувлажнению почвы и к повышенному расходу энергии. Например, при достижении влажности почвы нижнего допустимого значения способ по прототипу предполагает включение оросительного оборудования. Однако может оказаться, что в это время к местности выращивания растений приближается сильный ливень. Включение оросительного оборудования в этом случае неоправданно, так как через некоторое время влажность почвы может стать недопустимо высокой. Кроме того, включение оросительного оборудования обусловит перерасход энергии, перерасход воды и дополнительный износ движущихся частей и коррозию металлических элементов конструкции.
Испарение влаги из почвы представляет собой процесс перехода воды в газообразное состояние - в пар, не сопровождающийся разложением молекул на составляющие их атомы. Испарение состоит в отделении частиц от свободной поверхности почвы в окружающую среду. Это явление становится сильнее с повышением температуры. Повышение температуры воздуха двояко влияет на изменение скорости испарения. Во-первых, повышенная температура увеличивает упругость водяного пара и, во-вторых, облегчает его диффузию. Упругость пара над влажной почвой противодействует стремлению частиц влаги отделиться от ее поверхности. Теоретически при насыщения воздуха над почвой водяным паром испарение должно прекратиться. Однако вследствие нахождения почвы в открытом пространстве это насыщение не происходит. Поэтому можно заключить, что осушение почвы практически не увеличивает влажность среды. Испарение не прекращается, так как пар из надпочвенного слоя диффундирует в более отдаленное пространство или уносится течением воздуха. Таким образом, фактически остается только одностороннее влияние температуры воздуха: при увеличении температуры воздуха над почвой изменяется коэффициент диффузии пара, что приводит к повышению интенсивности испарения воды.
Например, имеются данные по зависимости продуктивной почвенной влаги в метровом слое при выращивании пшеницы в период от входа в трубку до восковой спелости от температуры и интенсивности осадков (Шульгин A.M. Климат почвы и его регулирование / Гидрометеорологическое издательство, Ленинград: 1967, с. 230):
ΔW=-0,36T+0,46m-0,03W+5,9
для Заволжья
ΔW=-0,26T+0,60m-0,46W+4,0
для Кулундинской степи,
где ΔW - изменение запасов воды, мм/сутки;
T - среднесуточная температура воздуха, °C;
m - количество осадков, мм/сутки;
W - начальное количество влаги в почве, мм.
Влажность воздуха, находящегося над почвой, также влияет на скорость испарения влаги. В условиях сухого воздуха влажностный напор со стороны осушаемой почвы возрастает и скорость испарения увеличивается. И, напротив, при высокой влажности воздуха процесс осушения почвы замедляется.
Известно, что атмосферное давление также существенно влияет на интенсивность осушения почвы. Так, в соответствии с формулой Дальтона, количество испарившейся за единицу времени влаги P может быть рассчитано по формуле
где A - коэффициент, учитывающий природу жидкости, г м2/с;
S - поверхность почвы, взаимодействующая с воздухом, м2;
F - предельная упругость водяного пара, мм рт.ст.;
H - атмосферное давление, мм рт.ст.
Увеличение количества испарившейся влаги при уменьшении атмосферного давления объясняется облегчением условий отрыва молекул воды и перехода их в газообразное состояние.
Одновременно на скорость испарения влаги оказывает влияние и скорость течения воздуха (в естественных условиях - ветра). Эта зависимость описывается формулой Де Гина
где u - скорость течения воздуха.
Известно, что даже непродолжительное отклонение содержания влаги в почве негативно сказывается на эффективности выращивания сельскохозяйственных растений (Кузнецова Е.И. Орошаемое земледелие: учебник / Е.И. Кузнецова, Е.Н. Закабунина, Ю.Ф. Спинич. - М.: ФГБОУ ВПО РНАЗУ, 2012 - 117 с.). Вместе с тем инерционность зависимости влажности почвы от внешних воздействий делает низкоэффективным управление поливом в функции влажности или выпадения осадков, как предложено в прототипе. Поэтому помимо управления поливом по отклонению влажности почвы от заданного значения или по факту выпадения осадков необходимо вести упреждающее управление по внешним воздействиям. Из вышеприведенной информации следует, что такими воздействиями в первую очередь являются температура воздуха, влажность воздуха, скорость ветра и атмосферное давление. Помимо учета внешних возмущающих факторов процесс полива должен быть скорректирован при получении информации об ожидаемых осадках.
Техническим результатом предлагаемого изобретения является повышение качества управления поливом, проявляющееся в более точном соблюдении агротехнических требований, увеличении быстродействия возвращения влажности почвы к заданному значению при воздействии температуры воздуха, влажности воздуха, атмосферного давления и скорости ветра, а также снижении риска переувлажнения почвы в результате воздействия осадков. Кроме того, предлагаемое изобретение позволит избежать перерасход энергии и воды, а также исключить неоправданный износ оросительного оборудования.
Такой технический результат достигается тем, что в известном способе управления поливом, включающем измерения влажности почвы, интенсивности осадков, по результатам которых осуществляют полив растений, дополнительно измеряют температуру и влажность воздуха, атмосферное давление, скорость ветра, а также получают информацию о прогнозе выпадения осадков, при этом периодичность и интенсивность полива определяют агротехническими требованиями, а его длительность - значениями влажности почвы, интенсивности осадков, температуры и влажности воздуха, а также атмосферного давления, скорости ветра и прогнозом выпадения осадков, при этом длительность полива увеличивают при положительных разностях между заданными и фактическими значениями влажности почвы, интенсивности осадков, влажности воздуха и атмосферного давления и уменьшают при положительных разностях между заданными и фактическими значениями температуры воздуха и скорости ветра, а также уменьшают при положительном прогнозе выпадения осадков в установленное время.
Управление поливом по заявленному способу осуществляется следующим образом. Периодичность и интенсивность полива определяются в соответствии с агротехническими требованиями по виду растений, периоду вегетации, способу выращивания, а также климатическим, погодным и почвенным условиям. Одновременно измеряют влажность почвы, интенсивность осадков, температуру воздуха, влажность воздуха, атмосферное давление и скорость ветра, а также получают информацию о прогнозе выпадения осадков. Длительность полива определяют в зависимости от значений влажности почвы, интенсивности осадков, температуры и влажности воздуха, а также атмосферного давления, скорости ветра и прогноза выпадения осадков. Длительность полива увеличивают при положительных разностях между заданными и фактическими значениями влажности почвы, интенсивности осадков, влажности воздуха и атмосферного давления и уменьшают при положительных разностях между заданными и фактическими значениями температуры воздуха и скорости ветра, а также уменьшают при положительном прогнозе выпадения осадков в установленное время.
Более подробное описание варьирования длительностью полива приведено ниже.
После измерения влажности y0 почвы, интенсивности осадков, температуры воздуха, влажности воздуха, атмосферного давления и скорости определяют разности между заданным значением влажности g0 почвы и его фактическим (измеренным) значением y0, между заданным значением интенсивности g1 осадков и его фактическим (измеренным) значением , между заданным значением температуры g2 воздуха и его фактическим (измеренным) значением, между заданным значением влажности g3 воздуха и его фактическим (измеренным) значением , между заданным значением атмосферного давления и его фактическим (измеренным) значением , между заданным значением скорости g5 ветра и его фактическим (измеренным) значением . Эти разности представляют собой значения отклонений
ε0=g0-y0,
Принципиальным отличием разности ε0 от ε1, ε2, ε3, ε4 и ε5 является то, что она характеризует отклонение управляемой величины. В то же время остальные разности свидетельствуют об отклонении возмущающих факторов.
Полученные значения разностей соответственно умножают на коэффициенты k0, k1, k2, k3, k4 и k5, учитывающие значимость каждого из факторов.
Длительность полива t определяют в соответствии с выражением
t=ε0⋅k0+ε1⋅k1-ε2⋅k2+ε3⋅k3+ε4⋅k4-ε5⋅k5
При получении положительного прогноза выпадения осадков в установленное время полив растений отменяется и оросительное оборудование не включается независимо от прочих условий.
Реализация предложенного способа управления поливом может осуществляться, например, с помощью автоматической системы, функциональная схема которой представлена на фиг. 1.
Орошаемый участок почвы представляет собой объект 1 управления, характеризующийся влажностью (управляемой величиной y0). На управляемую величину y0 оказывают влияние несколько природных факторов, являющихся по отношению к объекту 1 управления возмущающими воздействиями: , , , и . Этими возмущающими воздействиями являются: - интенсивность осадков, - температура воздуха, - влажность воздуха, - атмосферное давление, - скорость ветра.
Полив осуществляется посредством работы регулирующего органа 2, представляющего собой оросительное оборудование. Включение и выключение регулирующего органа 2 осуществляется регулятором 3, в качестве которого может быть использовано электронное устройство (например, процессор).
Учет вида растений, периода вегетации, способа выращивания, климатических, погодных и почвенных условий в соответствии с агротехническими требованиями производится в блоке 4 задания, на выходе которого формируется задающее воздействие g0. Это задающее воздействие определяет величину требуемой влажности почвы (объекта 1 управления).
Фактическое значение влажности почвы y измеряется воспринимающим элементом 5, представляющим собой датчик влажности. Электрический сигнал, соответствующий измеренной влажности, поступает на отрицательный вход сумматора 6. На положительный вход сумматора 6 подается задающее воздействие g0 с блока 4 задания. В сумматоре 6 производится операция сравнения входных сигналов посредством вычисления разности
ε0=g0-y0
Наличие сигнала ε0 отклонения (рассогласования) свидетельствует об отклонении фактической влажности почвы от заданного значения. При этом отрицательное значение ε0 соответствует о недоувлажнении почвы, а положительное - о переувлажнении. При превышении величины отклонения ε0 порога чувствительности регулятора 3 происходит срабатывание последнего и корректировка длительности полива. Регулирующий орган 2 (оросительное оборудование) включается на установленную длительность и воздействует на объект 1 управления посредством подачи требуемого количества воды, обозначенного на схеме управляющим воздействием u.
Рассмотренный контур автоматического управления реализует принцип «по отклонению». Этот принцип в основном обеспечивает требуемую влажность почвы, однако обладает двумя недостатками:
- для осуществления управления необходимо хотя бы кратковременное наличие сигнала отклонения ε0, свидетельствующего о неравенстве управляемой величины y0 заданному значению g0, что не всегда допустимо;
- вследствие относительно высокой инерционности отдельных элементов контура длительность переувлажнения или недоувлажнения почвы может превысить величину, установленную агротехническими требованиями.
Для исключения этих недостатков в систему автоматического управления введены пять контуров, реализующих принцип «по возмущению». Первый контур предусматривает формирование управляющего воздействия по величине интенсивности осадков, второй - по температуре воздуха, третий - по влажности воздуха, четвертый - по атмосферному давлению и пятый - по скорости ветра. Принцип «по возмущению» позволяет осуществить упреждающее изменение управляющего воздействия u, не допуская существенного отклонения влажности почвы y0. В то же время ограничиваться только этими пятью контурами было бы неправильно вследствие повышения риска неучтенного влияния каких-то других внешних факторов, влияющих на влажность почвы. Кроме того, из-за усложнения системы увеличивается вероятность выхода ее из строя. Поэтому в системе автоматического управления поливом предложено использовать комбинированный принцип, при котором принципы «по отклонению» и «по возмущению» реализуются одновременно. При этом в обычном режиме управление осуществляется «по возмущению», а при аварийной ситуации - «по отклонению». Таким образом, контур управления «по отклонению» предотвратит возможные ложные срабатывания контуров «по возмущению» и исключит выход управляемой величины y0 (влажности почвы) за установленные пределы.
В контуры, реализующие принцип управления «по возмущению», входят: воспринимающие элементы 7, 8, 9, 10 и 11, являющиеся датчиками интенсивности осадков, температуры воздуха, влажности воздуха, атмосферного давления и скорости ветра соответственно, а также сумматоры 12, 13, 14, 15 и 16. При этом выходы воспринимающих элементов 7, 8, 9, 10 и 11 подключены к отрицательным входам сумматоров 12, 13, 14, 15 и 16, а к положительным входам сумматоров 12, 13, 14, 15 и 16 подводятся задающие воздействия g1 g2, g3, g4 и g5, сформированные блоком 4 задания.
Сумматоры 12, 13, 14, 15 и 16 формируют сигналы рассогласования возмущающих воздействий в соответствии с условиями
Значения ε1, ε2, ε3, ε4 и ε5 подаются на вход регулятора 3, в котором производится вычисление длительности полива в соответствии с выражением
t=ε0⋅k0+ε1⋅k1-ε2⋅k2+ε3⋅k3+ε4⋅k4-ε5⋅k5
В состав регулятора 3 входят усилители 17, 18, 19, 20, 21 и 22, сумматоры 23, 24, 25, 26 и 27, а также решающий блок 23.
Значимость отклонений каждого фактора характеризуется значением коэффициентов k0, k1, k2, k3, k4 и k5, которые определяются оператором и задаются в виде коэффициентов передачи в блоках усилителей 17, 18, 19, 20, 21 и 22. Операция суммирования полученных произведений (ε0⋅k0), (ε1⋅k1), (ε2⋅k2), (ε3⋅k3), (ε4⋅k4) и (ε5⋅k5) с учетом их знаков выполняется с помощью сумматоров 23, 24, 25, 26 и 27. Полученная сумма с выхода сумматора 27 поступает на вход решающего блока 28, который формирует длительность включения регулирующего органа 2.
Агротехнические требования, определяющие периодичность и интенсивность полива, вводятся оператором в блок 4 задания, который формирует соответствующий сигнал и подает его непосредственно на вход решающего блока 28 регулятора 3.
Получение прогноза выпадения осадков в установленное время может производиться по линиям связи от соответствующих метеорологических служб, по каналам Интернет со специализированных порталов, а также от локальных метеорологических станций в непрерывном или периодическом режимах. Эта информация принимается приемным блоком 29 и также подается к решающему блоку 28 регулятора 3. В случае получения положительного прогноза выпадении осадков полив отменяется и регулирующий орган 2 не включается или отключается.
Таким образом, предлагаемый способ управления поливом предусматривает:
1) программное управление периодичностью и интенсивностью работы оросительного оборудования, позволяющее в основном соблюсти агротехнические требования;
2) управление длительностью включения оросительного оборудования по результатам оценки отклонений возмущающих воздействий (интенсивности осадков, температуры воздуха, влажности воздуха, атмосферного давления и скорости ветра), от их заданных значений, обеспечивающих повышенное качества полива за счет увеличения быстродействия;
3) управление длительностью включения оросительного оборудования по величине отклонения фактической влажности почвы от заданного значения, позволяющее избежать ложных срабатываний системы и не допускающее выхода значения влажности почвы за установленные пределы;
4) корректировку режима полива растений при получении положительного прогноза о выпадении осадков в установленное время, позволяющую избежать перерасхода энергии, воды и неоправданного износа оросительного оборудования, а также исключить переувлажнение почвы.
Предлагаемое изобретение может быть использовано для управления поливом в условиях открытого грунта при выращивании практически любых растений, а также в условиях защищенного грунта при исключении операций измерения интенсивности осадков, скорости ветра и получения информации о прогнозе выпадения осадков.
Claims (1)
- Способ управления поливом, включающий измерение влажности почвы и интенсивности осадков, по результатам измерения которых осуществляют полив растений, отличающийся тем, что дополнительно измеряют температуру и влажность воздуха, атмосферное давление, скорость ветра, а также получают информацию о прогнозе выпадения осадков, при этом периодичность и интенсивность полива определяют агротехническими требованиями, а его длительность - значениями влажности почвы, интенсивности осадков, температуры и влажности воздуха, а также атмосферного давления, скорости ветра и прогнозом о выпадении осадков, при этом длительность полива увеличивают при положительных разностях между заданными и фактическими значениями влажности почвы, интенсивности осадков, влажности воздуха и атмосферного давления и уменьшают при положительных разностях между заданными и фактическими значениями температуры воздуха и скорости ветра, а также уменьшают при положительном прогнозе выпадения осадков в установленное время.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016100223A RU2622695C1 (ru) | 2016-01-11 | 2016-01-11 | Способ управления поливом |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016100223A RU2622695C1 (ru) | 2016-01-11 | 2016-01-11 | Способ управления поливом |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2622695C1 true RU2622695C1 (ru) | 2017-06-19 |
Family
ID=59068529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016100223A RU2622695C1 (ru) | 2016-01-11 | 2016-01-11 | Способ управления поливом |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2622695C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1319803A1 (ru) * | 1985-06-05 | 1987-06-30 | Грозненское Научно-Производственное Объединение "Промавтоматика" | Способ управлени и контрол автоматизированной системой полива |
SU1329687A1 (ru) * | 1986-02-26 | 1987-08-15 | В.И. Пронов и И.А. Ким | Автоматизированна система управлени бороздковым поливом |
WO1995022799A1 (en) * | 1994-02-17 | 1995-08-24 | Waterlink Systems, Inc. | Evapotranspiration forecasting irrigation control system |
WO2010117944A1 (en) * | 2009-04-06 | 2010-10-14 | Martin Tommy J | Remote analysis and correction of crop condition |
KR101416296B1 (ko) * | 2013-01-25 | 2014-07-14 | (주)에스이랩 | 지능형 관수 제어 시스템 및 그의 제어 방법 |
-
2016
- 2016-01-11 RU RU2016100223A patent/RU2622695C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1319803A1 (ru) * | 1985-06-05 | 1987-06-30 | Грозненское Научно-Производственное Объединение "Промавтоматика" | Способ управлени и контрол автоматизированной системой полива |
SU1329687A1 (ru) * | 1986-02-26 | 1987-08-15 | В.И. Пронов и И.А. Ким | Автоматизированна система управлени бороздковым поливом |
WO1995022799A1 (en) * | 1994-02-17 | 1995-08-24 | Waterlink Systems, Inc. | Evapotranspiration forecasting irrigation control system |
WO2010117944A1 (en) * | 2009-04-06 | 2010-10-14 | Martin Tommy J | Remote analysis and correction of crop condition |
KR101416296B1 (ko) * | 2013-01-25 | 2014-07-14 | (주)에스이랩 | 지능형 관수 제어 시스템 및 그의 제어 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gu et al. | Irrigation scheduling approaches and applications: A review | |
Rallo et al. | Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation | |
US8712592B2 (en) | Controlling a resource demand system | |
Kool et al. | Energy and evapotranspiration partitioning in a desert vineyard | |
US8924031B1 (en) | Irrigation scheduling and supervisory control and data acquisition system for moving and static irrigation systems | |
US11310970B2 (en) | Method of determination of water stress in a one or more plants in a crop located in the vicinity of a soil moisture sensor array and knowledge of ETo | |
AU2022203130A1 (en) | Method of determination of water stress in one or more plants in a crop located in the vicinity of a soil moisture sensor array and knowledge of eto | |
US11805740B2 (en) | Systems and methods for monitoring and controlling crop irrigation schedules | |
Abrisqueta et al. | Soil water content criteria for peach trees water stress detection during the postharvest period | |
Montazar et al. | Crop coefficient curve for paddy rice from residual energy balance calculations | |
Segovia-Cardozo et al. | Detecting crop water requirement indicators in irrigated agroecosystems from soil water content profiles: An application for a citrus orchard | |
Vagulabranan et al. | Automatic irrigation system on sensing soil moisture content | |
Parry et al. | Comparison of a stand-alone surface renewal method to weighing lysimetry and eddy covariance for determining vineyard evapotranspiration and vine water stress | |
Espadafor et al. | Almond tree response to a change in wetted soil volume under drip irrigation | |
Vera et al. | Precise sustainable irrigation: A review of soil-plant-atmosphere monitoring | |
Vijay | Application of sensor networks in agriculture | |
Hermawan et al. | A quick dielectric method to determine insitu soil water content for precision water use under sustainable agricultural practices | |
RU2622695C1 (ru) | Способ управления поливом | |
Balbis et al. | Dynamic model of soil moisture for smart irrigation systems | |
WO2020047587A1 (en) | System and method for sensor-based auto-calibration of soil-moisture levels | |
KR102098853B1 (ko) | 배지 양액 농도 기반 양액 공급을 제어하는 시설원예용 양액 공급 장치 | |
Echiegu et al. | Optimization of Blaney-Morin-Nigeria (BMN) model for estimating evapotranspiration in Enugu, Nigeria | |
Shukla et al. | Evapotranspiration and crop coefficients for seepage-irrigated watermelon with plastic mulch in a sub-tropical region | |
YANG et al. | Analysis of the diurnal pattern of evaporative fraction and its controlling factors over croplands in the Northern China | |
Andreev et al. | Energy-saving irrigation management |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180112 |