RU2622534C2 - Способ извлечения благородных металлов из отработанных штабелей кучного выщелачивания - Google Patents

Способ извлечения благородных металлов из отработанных штабелей кучного выщелачивания Download PDF

Info

Publication number
RU2622534C2
RU2622534C2 RU2015140677A RU2015140677A RU2622534C2 RU 2622534 C2 RU2622534 C2 RU 2622534C2 RU 2015140677 A RU2015140677 A RU 2015140677A RU 2015140677 A RU2015140677 A RU 2015140677A RU 2622534 C2 RU2622534 C2 RU 2622534C2
Authority
RU
Russia
Prior art keywords
stack
gold
fraction
months
productive
Prior art date
Application number
RU2015140677A
Other languages
English (en)
Other versions
RU2015140677A (ru
Inventor
Татьяна Викторовна Башлыкова
Сергей Владимирович Рыжов
Евгения Александровна Аширбаева
Иван Николаевич Грознов
Original Assignee
Общество с ограниченной ответственностью "НВП Центр-ЭСТАгео" (ООО НВП Центр-ЭСТАгео")
Открытое акционерное общество "Золото Селигдара" (ОАО "Золото Селигдара")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "НВП Центр-ЭСТАгео" (ООО НВП Центр-ЭСТАгео"), Открытое акционерное общество "Золото Селигдара" (ОАО "Золото Селигдара") filed Critical Общество с ограниченной ответственностью "НВП Центр-ЭСТАгео" (ООО НВП Центр-ЭСТАгео")
Priority to RU2015140677A priority Critical patent/RU2622534C2/ru
Publication of RU2015140677A publication Critical patent/RU2015140677A/ru
Application granted granted Critical
Publication of RU2622534C2 publication Critical patent/RU2622534C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/08Obtaining noble metals by cyaniding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к биогидрометаллургическому вскрытию золота и серебра в отработанных штабелях кучного выщелачивания и может использоваться в горно-обогатительной, горно-химической, металлургической отраслях. Способ включает естественное природное обезвреживание штабеля кучного цианидного выщелачивания, разделение материала по крупности на продуктивную и непродуктивную фракции посредством высокоинтенсивного виброгрохочения с одновременной водной промывкой материала. Продуктивную фракцию направляют на окомкование с цементом и сульфатом двухвалентного железа, переукладку в новый штабель, биовскрытие золота и серебра с использованием раствора бактериального комплекса микроорганизмов Ac. ferrooxidans и Ac. thiooxidans собственного биоценоза, цианирование, контрольную водную промывку штабеля. Техническим результатом является повышение глубины переработки минерального сырья с получением дополнительной товарной продукции. 4 з.п. ф-лы, 1 табл., 2 пр.

Description

Изобретение относится к цветной металлургии, а именно к гидрометаллургической переработке техногенного минерального сырья и, в частности, к биогидрометаллургическому вскрытию золота в отработанных штабелях кучного выщелачивания.
Способ может быть использован в горно-обогатительной, горно-химической, металлургической отраслях.
Современная стратегия недропользования направлена на сбалансированное потребление природных ресурсов с высокой степенью комплексности их использования, включая утилизацию образовавшихся (лежалых) и образующихся (текущего производства) отходов переработки.
Минерально-сырьевая база благородных металлов РФ в последние десятилетия прогрессивно сокращается, качество вовлекаемых в переработку руд ухудшается с изменением их вещественного состава, снижением содержания благородных металлов и уменьшением размерности минеральных фаз от тонкой до эмульсионной и т.д. В связи с истощением запасов богатых золотых россыпей и золотосодержащих руд все чаще в качестве стратегического направления развития выбирают разработку месторождений бедных и забалансовых руд, маломощных по запасам месторождений относительно богатых руд, отходов горных, обогатительных и металлургических производств. В этих условиях принципиальное значение имеет создание таких технологий переработки полезных ископаемых, в особенности руд благородных металлов, которые обеспечивают увеличение объемов получаемой товарной продукции с одновременным снижением потерь ценных компонентов и возможно более высокой степенью утилизации образующихся отходов переработки. Для переработки таких руд, как правило, используют методы кучного выщелачивания (КВ).
Отработанные штабели кучного выщелачивания содержат благородные (золото, серебро), цветные (медь, цинк, свинец), черные (железо, марганец) металлы и другие компоненты, которые могут стать дополнительным источником товарной продукции и пополнить ресурсную базу страны. Штабели представляют собой весьма большие по массе техногенные объекты, требующие специальных мер для их обезвреживания и рекультивации, поскольку основными технологическими приемами извлечения золота и серебра являются экологически небезопасные цианидный и кислотный процессы. Кроме того, отработанные штабели оказывают отрицательное воздействие на окружающую среду, занимая огромные земельные площади и являясь источником как дренажа подотвальных вод, так и пылеобразования. Причин потерь золота при кучном цианировании рудных материалов множество, в том числе приуроченность золота к гидроксидам железа по пириту, которые имеют плотное внутреннее строение и заключены в матрице массивного кварца; связь золота с микрокристаллическим неокисленным пиритом и другими сульфидами в массивном кварце, недоступными для воздействия цианистых растворов; наличие на частицах золота налетов тонко дисперсных агрегатов гидроксидов железа и слюдисто-глинистых минералов; гнездообразный характер выделений микроскопических и субмикроскопических частиц золота в минералах породы и др. Учитывая, что извлечение золота из руд кучным цианидным способом составляет в среднем 50-65%, а серебра 30-50%, в отработанных штабелях остается значительное количество этих металлов при содержании золота от 0,3 до 2,0 г/т серебра - 1,0-10 г/т и более, в зависимости от вещественного состава и степени раскрытия золота в закладываемом в штабель исходном материале.
Эффективное извлечение благородных металлов из лежалых материалов штабелей практически неосуществимо без применения предварительных комплексных технологических решений по вскрытию металлов. Примеры прямых прототипов по доизвлечению благородных металлов из лежалых материалов штабелей кучного выщелачивания золота отсутствуют.
Известен способ кучного выщелачивания металлов из отвалов горных пород горнорудных предприятий, включающий орошение отвала оборотными сернокислотными растворами, окисление сульфидов металлов кислородом воздуха, катализируемым микроорганизмами Thiobacillus ferrooxidans, растворение получаемых сульфатов меди, цинка и железа, обработку продуктивного раствора сернистым натрием с переводом меди и цинка в осадок медно-цинкового концентрата, жидкая фаза из которого возвращается на орошение (патент RU 2188872, опубл. 10.09.2002).
Способ касается выщелачивания меди и цинка из добычных отвалов, которые не подвергались кучному цианидному выщелачиванию и не рассматривались как источник дополнительного извлечения золота.
Цель изобретения - повышение полноты извлечения запасов путем более эффективной переработки минерального сырья с максимально полным доизвлечением ценных компонентов, созданием условий для глубокой утилизации складированных отходов и снижением экологической нагрузки на окружающую среду.
Задачи, на решение которых направлен предлагаемый способ: доизвлечение благородных и цветных металлов из отработанных штабелей кучного выщелачивания путем их глубокой биогидрометаллургической переработки, отвечающей высоким экологическим требованиям; снижение потерь ценных компонентов до уровня, позволяющего рекультивировать вторично отработанные штабели руды либо использовать их материал в стройиндустрии без вреда для окружающей среды.
Техническим результатом является повышение глубины переработки минерального сырья с получением дополнительной товарной продукции.
Суть способа заключается в следующем. После естественного природного обезвреживания (экохимической очистки) штабеля кучного выщелачивания золота до допустимого остаточного содержания цианида (ПДК - 0,1 мг/л) определяют крупность непродуктивной (не содержащей значимых количеств золота и серебра) фракции, которую удаляют посредством мокрого высокоинтенсивного виброгрохочения с одновременной промывкой материала свежей водой, продуктивную фракцию направляют на окомкование, укладывают в новый штабель и подвергают цианированию с последующей контрольной водной промывкой штабеля перед рекультивацией.
Экохимическое обезвреживание штабеля под действием естественного комплекса физических, химических и биологических процессов длится от 2,5 до 5 лет и является экономически и экологически приемлемым вследствие относительно низкой стоимости по сравнению с химической очисткой (гипохлорирование, окисление перекисью водорода, продувка смесью сернистого газа и воздуха, цианосорбция и пр.), уменьшения вторичного загрязнения отходов, обеспечения одновременной очистки от нескольких загрязнителей, соответствия современным экологическим нормативам. За этот срок цианид в штабеле распадается на естественные составляющие (углерод и азот), из которых азот является активным источником жизнеобеспечения бактерий. Визуальным критерием готовности отработанного штабеля к вторичной переработке является появление на его поверхности интенсивной растительности.
При высокоинтенсивном виброгрохочении происходит максимальная дезинтеграция материала с раскрытием сростков золота с другими минералами за счет больших ускорений, создаваемых на поверхности сетки и в толще материала (ок. 1000 g), многочастотного характера нелинейных вибраций (на сетке одновременно присутствует сплошной широкий спектр частот), сильных вибрационных импульсов, исходящих от многочастотной возбуждающей системы. Подаваемая свежая вода выполняет функции промывной. Отмеченные характеристики грохочения могут быть реализованы при использовании, например, грохота «Ultimate Screener™» (Kroosh Tehnologies Ltd., HYDROLA Ltd., Израиль) для мокрого и сухого просеивания зернистых смесей с дополнительной промывкой материала и без нее и обеспечением высокой производительности (до 50 т/час на 1 кв. м сетки грохота). Кроме классификации по крупности и дезинтеграции слежавшегося материала штабеля виброгрохочение выполняет также функцию насыщения руды кислородом воздуха перед биовскрытием.
К непродуктивной фракции обезвреженного штабеля чаще всего относится фракция крупностью более 10 мм, в которой содержание золота находится на уровне 0,09-0,15 г/т, серебра - на уровне 0,15-10 г/т при распределении металлов на уровне 5-7% и выходе фракции 28-48% от массы первоначально заложенного на выщелачивание материала.
Отвальный по содержанию золота материал крупностью более 10 мм может быть частично уложен в основание вторичного штабеля при переукладке, а также использоваться для организации нижних слоев новых штабелей кучного выщелачивания при расширении производства.
Окомкование продуктивной фракции (подрешетного продукта виброгрохота) проводят при расходе цемента 5-10 кг/т материала, сульфата двухвалентного железа - 0,5-1,5 кг/т, воды в составе раствора сульфата железа - 150 л/т при концентрации Fe(II) в растворе 3-10 г/л. Влажность окатышей - 12-16%.
В качестве бактериального комплекса используют раствор, содержащий штаммы тионовых железоокисляющих микроорганизмов Acidithiobacillus ferrooxidans и тионовых сероокисляющих микроорганизмов Acidithiobacillus thiooxidans, выделенных из исходных руд, материала отработанных штабелей или близрасположенных непроточных водных источников. Методы выделения, накопления (культивирования), количественного учета, определения активности и изучения микроорганизмов детально описаны в литературных источниках (например, лит. 1-4). В минеральном субстрате отработанного штабеля уже имеются практически все источники питания для микроорганизмов окислительного действия. Полученные штаммы смешивают в соотношении 1:1 с созданием биокомплекса микроорганизмов, который затем культивируют на питательной среде 9К (табл.) для достижения необходимой удельной концентрации биоклеток на уровне 106-107 клеток/мл в течение 10 суток. Исходные параметры бактериального раствора: pH 1,8-2,1, Eh 640-680 мВ, температура 30-35°C. Удельный расход бактериального раствора составляет 0,5-2 л/час на 1 м2 поверхности (12-48 л/сут. на 1 м2), длительность орошения - 6-12 месяцев с последующей выдержкой штабеля без орошения в течение 3 месяцев, после чего проводят цианидное выщелачивание благородных металлов. Через 5-6 месяцев после окончания цианирования штабель подвергают контрольной водной промывке для дополнительного доизвлечения золота и серебра, поскольку процесс бактериального окисления, а следовательно и процесс вскрытия благородных металлов обладает пролонгированным действием.
Figure 00000001
Способ позволяет:
- повысить эффективность переработки минерального сырья;
- повысить полноту и комплексность использования природного минерального сырья за счет доизвлечения золота на 30-40%, серебра - на 40-60%, цветных металлов (медь, цинк) относительно этих показателей при первичном кучном выщелачивании;
- получить дополнительную высоколиквидную товарную продукцию;
- использовать экохимическое природное обезвреживание штабеля под действием естественных процессов, которое экономически и экологически более выгодно вследствие относительно более низкой стоимости в сравнении с химическим обезвреживанием, уменьшения вторичного загрязнения отходов, обеспечения одновременной очистки от нескольких загрязнителей, соответствия современным экологическим нормативам;
- создать условия для использования материалов отработанных штабелей в производстве стройматериалов;
- снизить отрицательное воздействие складированных отходов и экологическую нагрузку на окружающую среду.
Пример 1
Первоначально кучному цианидному выщелачиванию золота подвергали рыхлые окисленные золотоносные пирит-кварцевые руды одного из якутских золоторудных месторождений с содержанием золота 2,3 г/т, рудная минерализация которых была представлена сульфидами, в основном пиритом. Более 80% золота в рудах присутствовало в виде «невидимого» субмикроскопической размерности. Материал отработанного штабеля после естественного природного обезвреживания в течение 3-х лет представлял собой дробленый продукт агломерации руды (с цементом) крупностью менее 40 мм, в котором более 75% золота приходилось на долю нецианируемого, нераскрытого, связанного с сульфидами, породными и кислоторастворимыми минералами. Материал штабеля направляли на высокоинтенсивное виброгрохочение с достижением максимальной дезинтеграции материала, раскрытия сростков, разрушения пленок гидроксидов железа на частицах золота и с одновременной промывкой водой. Удаляемая непродуктивная фракция (надрешетный продукт виброгрохочения) крупностью более 10 мм содержала 0,10 г/т золота и выходе фракции 28,5%.
Продуктивную фракцию (подрешетный продукт виброгрохочения) крупностью -10+0 мм, содержащую 3,95 г/т золота при выходе фракции 71,5%, направляли на окомкование при расходе цемента 4,9 кг/т, сульфата двухвалентного железа - 0,8 кг/т, воды 150 л/т (концентрация Fe(II) в растворе - 5,3 г/л) и укладку в новый штабель с основанием, выложенным непродуктивной фракцией первичного штабеля крупностью более 10 мм.
Из выделенных из исходных руд штаммов микроорганизмов Ac. ferrooxidans и Ас. thiooxidans создали биокомплекс при их соотношении 1:1, который культивировали на питательной среде 9К до достижения удельной концентрации биоклеток на уровне 106-107 клеток/мл в течение 10 суток. Полученным раствором с начальными значениями pH 1,91, Eh 659 мВ, температуры 33°C орошали поверхность нового штабеля с удельным расходом 0,6 л/час на 1 м2 поверхности (14,4 л на 1 м2 в сутки) в течение 10 месяцев с последующей выдержкой штабеля без орошения в течение 3 месяцев. После окончания биовскрытия проводили цианирование и сорбцию золота из продуктивного раствора известным способом. Из продуктивной фракции материала отработанного штабеля кучного выщелачивания с содержанием золота 3,95 г/т извлечение золота составило 93,92%. Увеличение извлечения золота относительно этого показателя при первичном кучном выщелачивании - 38,8%; остаточное содержание золота в штабеле - 0,24 г/т. Через 5,5 месяцев путем контрольной водной промывки штабеля доизвлечено 2,67% золота, и его содержание в отработанном штабеле снижено до отвального значения (0,13 г/т). Итоговый показатель сквозного извлечения золота из руды - 96,59%.
Пример 2
Биовскрытию подвергали материал кучного выщелачивания золотоносных пирит-кварцевых метасоматитов (березитов) по субщелочным кварцевым сиенитам одного из месторождений Восточной Сибири, по вещественному составу представлявший собой продукт агломерации (с цементом) окисленных дробленых до 40 мм руд после экохимического обезвреживания штабеля в течение 3,5 лет и содержащего 1,45 г/т золота и 52,7 г/т серебра. Потери золота были обусловлены высокой долей (более 70%) нецианируемого золота в плотных сростках породообразующих минералов, сульфидах и кислоторастворимых минералах. Большая часть золота присутствовала в виде эмульсионного и «невидимого», то есть имела субмикроскопическую размерность. Основными причинами потерь серебра также являлись тонкая вкрапленность серебросодержащих минералов и их невскрытые сростки с породообразующими и сульфидными минералами.
Материал первичного отработанного штабеля направляли на высокоинтенсивное виброгрохочение с одновременной водной промывкой и достижением максимальной дезинтеграции материала и раскрытия сростков за счет создаваемых больших ускорений, многочастотного характера нелинейных вибраций и сильных вибрационных импульсов.
Непродуктивная фракция грохочения крупностью более 10 мм содержала 0,2 г/т золота при распределении 6,42% и выходе фракции 46,5%; 9,76 г/т серебра при распределении 8,62%. Продуктивную фракцию крупностью менее 10 мм, содержащую 2,53 г/т золота и 89,76 г/т серебра при выходе фракции 53,65%, направляли на окомкование при расходе цемента 6 кг/т, сульфата двухвалентного железа - 1,2 кг/т, воды 150 л/т (концентрация Fe(II) в растворе - 8 г/л) и укладку в новый штабель с основанием, частично выложенным непродуктивной фракцией крупностью более 10 мм.
Предварительно подготовленным раствором биокомплекса микроорганизмов Ас. ferrooxidans и Ac. thiooxidans (см. пример 1) с начальными значениями pH 1,8, Eh 665 мВ, температуры 32°C орошали поверхность нового штабеля со скоростью 0,6 л/час на 1 м2 поверхности (14,4 л на 1 м2 в сутки) в течение 12 месяцев с последующей выдержкой штабеля без орошения в течение 3 месяцев. После окончания биовскрытия проводили цианирование и сорбцию металлов из продуктивного раствора известным способом. Из продуктивной фракции материала отработанного штабеля кучного выщелачивания с содержанием золота 1,45 г/т извлечение золота составило 88,4%, серебра - 90,2% Увеличение извлечений металлов относительно этих показателей при первичном кучном выщелачивании составило 40,7% золота и 48,6% серебра. Контрольная водная промывка штабеля через 6 месяцев позволила доизвлечь 3,8% золота и 5,2% серебра. Сквозное извлечение золота из руды составило 92,2%, серебра - 95,4%.
Список литературы
1. Каравайко Г.И. Микроорганизмы рудных месторождений, их физиология и использование в гидрометаллургии. Автореф. дисс. на соискание учен. степени докт. биол. наук. М., 1973.
2. Биотехнология металлов. Практическое руководство (Науч. редакторы: Г.И. Каравайко (СССР), Дж. Росси (Италия), А. Агате (Индия), С. Грудев (Болгария), З.A. Авакян (СССР). М.: Центр Международных проектов ГКНТ в соответствии с программой международного проекта СССР/ЮНЕП «Биотехнология металлов как экономически приемлемый метод рационального использования минеральных ресурсов», 1989. 375 с.
3. Полькин С.И., Адамов Э.В., Панин В.В. Технология бактериального выщелачивания цветных и редких металлов. М.: «Недра», 1982. 288 с.
4. Васючков Ю.Ф. Биотехнология горных работ: Учебник. М.: Изд-во «Горная книга», 2011. 351 с.

Claims (5)

1. Способ извлечения благородных металлов из отработанных штабелей кучного выщелачивания, включающий естественное природное обезвреживание материала штабеля, разделение материала высокоинтенсивным грохочением с одновременной промывкой свежей водой на непродуктивную фракцию крупностью более 10 мм с содержанием золота 0,09-0,15 г/т при выходе фракции не менее 28% и продуктивную фракцию, при этом продуктивную фракцию направляют на окомкование, укладывают в новый штабель, осуществляют биовскрытие материала нового штабеля путем орошения раствором бактериального комплекса микроорганизмов Ac. ferrooxidans и Ас. thiooxidans, соответствующих собственному биоценозу исходной руды, в соотношении 1:1 с начальными значениями рН 1,8-2,1, Eh 640-680 мВ, при температуре раствора 30-35°С с удельной концентрацией биоклеток 106-107 клеток/мл и удельным расходом бактериального раствора 0,5-2 л/час на 1 м2 поверхности при длительности 6-12 месяцев с последующей выдержкой штабеля без орошения в течение 3 месяцев, после которой проводят цианирование и контрольную водную промывку.
2. Способ по п. 1, отличающийся тем, что естественное природное обезвреживание штабеля осуществляют от 2,5 до 5 лет.
3. Способ по п. 1, отличающийся тем, что продуктивную фракцию окомковывают с 5-10 кг/т цемента и 0,5-1,5 кг/т сульфата двухвалентного железа при концентрации сульфата железа в растворе воды 3-10 г/л.
4. Способ по п. 1, отличающийся тем, что цианирование проводят через 5-6 месяцев после биовскрытия.
5. Способ по п. 1, отличающийся тем, что контрольную водную промывку проводят через 5-6 месяцев после цианирования с доизвлечением благородных металлов.
RU2015140677A 2015-09-23 2015-09-23 Способ извлечения благородных металлов из отработанных штабелей кучного выщелачивания RU2622534C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015140677A RU2622534C2 (ru) 2015-09-23 2015-09-23 Способ извлечения благородных металлов из отработанных штабелей кучного выщелачивания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015140677A RU2622534C2 (ru) 2015-09-23 2015-09-23 Способ извлечения благородных металлов из отработанных штабелей кучного выщелачивания

Publications (2)

Publication Number Publication Date
RU2015140677A RU2015140677A (ru) 2017-03-29
RU2622534C2 true RU2622534C2 (ru) 2017-06-16

Family

ID=58505751

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015140677A RU2622534C2 (ru) 2015-09-23 2015-09-23 Способ извлечения благородных металлов из отработанных штабелей кучного выщелачивания

Country Status (1)

Country Link
RU (1) RU2622534C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678277C1 (ru) * 2017-08-24 2019-01-24 Федеральное государственное бюджетное учреждение науки Институт горного дела Севера им. Н.В. Черского Сибирского отделения Российской академии наук Экогеотехнологический способ вторичной подземной обработки остаточно-целиковых глубокопогребенных золотороссыпных месторождений криолитозоны
RU2679724C1 (ru) * 2017-10-19 2019-02-13 Общество с ограниченной ответственностью "НВП Центр-ЭСТАгео" (ООО "НВП Центр-ЭСТАгео") Кучное биовыщелачивание бедного упорного минерального сырья природного и техногенного происхождения

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1594361A (en) * 1977-03-04 1981-07-30 Foster Wheeler Ltd Extraction of gold and silver
RU2009234C1 (ru) * 1991-11-25 1994-03-15 Всероссийский научно-исследовательский институт химической технологии Способ кучного выщелачивания руд
RU2154118C2 (ru) * 1998-09-08 2000-08-10 Институт проблем комплексного освоения недр РАН Способ цианирования
RU2188872C2 (ru) * 2000-02-22 2002-09-10 Чучалин Лев Климентьевич Способ кучного выщелачивания металлов из отвалов горных пород горно-рудных предприятий
WO2004042094A1 (en) * 2002-11-06 2004-05-21 Xstrata Queensland Ltd Reducing cyanide consumption in gold recovery from finely ground sulphide ores and concentrates
RU2283882C2 (ru) * 2004-10-07 2006-09-20 Читинский государственный университет (ЧитГУ) Способ кучного цианидного выщелачивания золота

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1594361A (en) * 1977-03-04 1981-07-30 Foster Wheeler Ltd Extraction of gold and silver
RU2009234C1 (ru) * 1991-11-25 1994-03-15 Всероссийский научно-исследовательский институт химической технологии Способ кучного выщелачивания руд
RU2154118C2 (ru) * 1998-09-08 2000-08-10 Институт проблем комплексного освоения недр РАН Способ цианирования
RU2188872C2 (ru) * 2000-02-22 2002-09-10 Чучалин Лев Климентьевич Способ кучного выщелачивания металлов из отвалов горных пород горно-рудных предприятий
WO2004042094A1 (en) * 2002-11-06 2004-05-21 Xstrata Queensland Ltd Reducing cyanide consumption in gold recovery from finely ground sulphide ores and concentrates
RU2283882C2 (ru) * 2004-10-07 2006-09-20 Читинский государственный университет (ЧитГУ) Способ кучного цианидного выщелачивания золота

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678277C1 (ru) * 2017-08-24 2019-01-24 Федеральное государственное бюджетное учреждение науки Институт горного дела Севера им. Н.В. Черского Сибирского отделения Российской академии наук Экогеотехнологический способ вторичной подземной обработки остаточно-целиковых глубокопогребенных золотороссыпных месторождений криолитозоны
RU2679724C1 (ru) * 2017-10-19 2019-02-13 Общество с ограниченной ответственностью "НВП Центр-ЭСТАгео" (ООО "НВП Центр-ЭСТАгео") Кучное биовыщелачивание бедного упорного минерального сырья природного и техногенного происхождения

Also Published As

Publication number Publication date
RU2015140677A (ru) 2017-03-29

Similar Documents

Publication Publication Date Title
Kaksonen et al. Acid and ferric sulfate bioleaching of uranium ores: A review
Jacinto et al. Removal and recovery of Critical Rare Elements from contaminated waters by living Gracilaria gracilis
Kaksonen et al. The role of microorganisms in gold processing and recovery—A review
RU2461637C1 (ru) Способ переработки техногенного минерального сырья с извлечением промышленно ценных и/или токсичных компонентов
Sousa et al. Strategies for reducing the environmental impact of reprocessing mercury-contaminated tailings in the artisanal and small-scale gold mining sector: insights from Tapajos River Basin, Brazil
Glombitza et al. Metal-containing residues from industry and in the environment: Geobiotechnological urban mining
Mishra et al. Biotechnological avenues in mineral processing: Fundamentals, applications and advances in bioleaching and bio-beneficiation
JP6802453B2 (ja) 鉱物精鉱用の担体及び鉱物精鉱の浸出法
Chen et al. Heavy metals recovery from printed circuit board industry wastewater sludge by thermophilic bioleaching process
RU2622534C2 (ru) Способ извлечения благородных металлов из отработанных штабелей кучного выщелачивания
CN110090847B (zh) 一种含硫化矿物废石的快速风化成土方法
Sousa et al. A systematic review of sustainable gold extraction from raw ores using alternative leaching reagents
Neag et al. Hydrometallurgical recovery of gold from mining wastes
Li et al. Effective multi-metal removal from plant incineration ash via the combination of bioleaching and brine leaching
Petersen From understanding the rate limitations of bioleaching mechanisms to improved bioleach process design
JP4146896B2 (ja) 非攪拌表面バイオリアクター中の固形物質のバイオ処理方法
Villachica et al. Circular economy in tailings management
Маслобоев et al. Geoecological validation of mechanisms and parameters of physical-chemical processes facilitating the in-depth processing of complex suphide ores and mining wastes
Jandieri et al. Manganese biomining from manganese-bearing industrial wastes of Georgia
Valério et al. Bioleaching from coal wastes and tailings: A sustainable biomining alternative
RU2560627C2 (ru) Способ выщелачивания ценных компонентов и редкоземельных элементов из зольно-шлакового материала
RU2679724C1 (ru) Кучное биовыщелачивание бедного упорного минерального сырья природного и техногенного происхождения
Constantin et al. Methods for processing mining wastes from copper extraction for the recovery of precious metals
Mehrabani et al. Bioleaching of a low grade sphalerite concentrate produced from flotation tailings
RU2509166C1 (ru) Способ извлечения дисперсного золота из упорных руд и техногенного минерального сырья