RU2622449C1 - Система гелиотеплохладоснабжения - Google Patents

Система гелиотеплохладоснабжения Download PDF

Info

Publication number
RU2622449C1
RU2622449C1 RU2016129132A RU2016129132A RU2622449C1 RU 2622449 C1 RU2622449 C1 RU 2622449C1 RU 2016129132 A RU2016129132 A RU 2016129132A RU 2016129132 A RU2016129132 A RU 2016129132A RU 2622449 C1 RU2622449 C1 RU 2622449C1
Authority
RU
Russia
Prior art keywords
heat
air duct
air
vortex tube
southern
Prior art date
Application number
RU2016129132A
Other languages
English (en)
Inventor
Сергей Геннадьевич Емельянов
Николай Сергеевич Кобелев
Владимир Николаевич Кобелев
Андрей Владимирович Беседин
Василий Валерьевич Юшин
Владислав Владимирович Протасов
Алексей Иванович Пыхтин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority to RU2016129132A priority Critical patent/RU2622449C1/ru
Application granted granted Critical
Publication of RU2622449C1 publication Critical patent/RU2622449C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Central Air Conditioning (AREA)

Abstract

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах.
Система гелиотеплохладоснабжения содержит южный и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, а на внешней поверхности вихревой трубы выполнены ребра с уменьшающимися расстояниями между ними по направлению движения «горячего» потока. Изобретение должно обеспечить комфортные параметры воздуха в помещении животноводческой фермы. 3 ил.

Description

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах.
Известна система гелиотеплохладоснабжения (см. авторское свидетельство СССР №1733871, кл. F24J 2/42, 1992, бюл. №18), содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением.
Недостатком технического решения является энергоемкость при изменяющихся погодно-климатических условиях эксплуатации, когда по южному воздуховоду в нагнетательный вентилятор поступают мелкодисперсные загрязнения в виде каплеобразной влаги и твердых частиц, на перемещение которых приводом вентилятора затрачивается дополнительная энергия (см., например, Курчавин А.Г. и др. Экономия тепловой и электрической энергии. М.: 1980 г. - 280 с., ил.). Кроме того, и твердые частицы загрязнений, например атмосферная и/или технологическая пыль, интенсифицируют износ движущихся частей вентилятора.
Известна система гелиотеплохладоснабжения (см. патент РФ на изобретение №2554171, МПК F24J 2/42, опубл. 27.06.2015), содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменник - с помещением, при этом южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и выполнено с завихрителем, состоящим из четырех пластин, входные и выходные участки которых расположены один относительно другого под прямым углом, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений.
Недостатком данной системы является невозможность эффективного использования теплоты нагревающейся внешней поверхности вихревой трубы для накопления тепловой энергии в аккумуляторе, которая позволяет снижать энергозатраты на подогрев отопительной системы для поддержания комфортных параметров воздуха в помещении, особенно при отрицательных температурах окружающей среды.
Технической задачей предлагаемого изобретения является снижение нормированных энергозатрат на подогрев отопительной системы для обеспечения комфортных параметров воздуха в помещении животноводческой фермы за счет эффективного накопления тепловой энергии путем увеличения теплоотдачи вихревой трубы вследствие выполнения на ее внешней поверхности ребер с уменьшающимися расстояниями между ними по направлению движения «горячего» потока.
Технический результат достигается тем, что система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменник - с помещением, при этом южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и выполнено с завихрителем, состоящим из четырех пластин, входные и выходные участки которых расположены один относительно другого под прямым углом, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений, при этом на внешней поверхности вихревой трубы выполнены ребра с уменьшающимися расстояниями между ними по направлению движения «горячего» потока.
На фиг. 1 представлена схема системы гелиотеплохладоснабжения, на фиг. 2 - завихритель суживающегося сопла на входе в южный воздухопровод, на фиг. 3 - вихревая труба, на внешней поверхности которой расположены ребра.
Система содержит воздухопроводы: южный 1, подпольный 2, северный 3, теплообменный 4 и грунтовый 5 с грунтовыми теплопроводящими трубами 6, помещение 7, под которым расположен тепловой аккумулятор 8, вихревую трубу 9 с входом 10 для обрабатываемого воздуха, каналом «холодного» потока 11, соединенным с входом 12 фильтра 13 и каналом «горячего» потока 14, соединенным с грунтовым воздухопроводом 5, фильтр 13 своим выходом 15 соединен с внутренним объемом помещения 7, нагнетательный вентилятор 16, установленный в вентиляционной камере 17 и соединенный подпольным воздухопроводом 2 через воздушные заслонки 18 и 19 с входом 10 вихревой трубы 9 и с выходом 12 фильтра 13, вытяжной вентилятор 20, установленный в вентиляционной камере 21 и соединенный теплообменным 4 воздухопроводом с северным 3 воздухопроводом, осуществляющим выброс воздуха из помещения 7 в атмосферу.
Южный 1 воздухопровод снабжен суживающимся соплом 22, которое установлено вне помещения 7 и выполнено с завихрителем 23, состоящим из четырех 24, 25, 26 и 27 пластин, входные 28, 29, 30, 31 и выходные 32, 33, 34 и 35 участки которых расположены один относительно другого под прямым углом. У входного отверстия 36 суживающегося сопла 22 на внутренней поверхности 37 выполнена круговая канавка 38, соединенное с устройством удаления загрязнений 39. На внешней поверхности 40 вихревой трубы 9 выполнены ребра 41 с уменьшающимися расстояниями между ними по ходу направления движения «горячего» потока, т.е. от входа 10 для обрабатываемого воздуха до канала «горячего» потока 14.
Система гелиотеплохладоснабжения работает следующим образом.
Основой функционирования вихревой трубы 9 является термодинамическое расслоение воздуха, поступающего во вход 10, на «горячий» переферийный и «холодный» осевой потоки. Конвективная теплота от «горячего» потока посредством теплопроводности передается внешней поверхности 40 (см., например, Меркулов А.П. Вихревой эффект и его применение в промышленности. - М., Машиностроение, 1979.- 386 с. ил.) и, далее, конвекцией в тепловой аккумулятор 8 для последующего подогрева атмосферного воздуха, движущегося по подпольному воздуховоду 2, что сокращает энергозатраты его подогрева за счет отопительной системы.
Дополнительное снижение энергозатрат отопительной системы подогрева атмосферного воздуха в тепловом аккумуляторе 8 достигается увеличением коэффициента теплоотдачи конвективного теплообмена за счет интенсификации съема тепла с внешней поверхности 40 вихревой трубы 9 путем выполнения на ней ребер (см., например, с. 168, Коваленко Л.М., Глушков А.Ф. Теплообменники с интенсификацией теплоотдачи. - М.: Энергоиздат, 1968. - 240 с. ил.).
Особенностью теплообмена в вихревой трубе 9 при термодинамическом расслоении воздуха является то, что температура «горячего» потока и, соответственно, температура внешней поверхности 40, а следовательно, коэффициент теплоотдачи и количество тепла, передаваемого конвекцией тепловому аккумулятору 8 от входа 10 до канала 14, уменьшается. Поэтому для поддержания максимальной теплоотдачи (соответствующей началу термодинамического расслоения у входа 10) на внешней поверхности 40 вихревой трубы 9 расположены ребра 41 таким образом, что расстояние между ними уменьшается от входа 10 к каналу 14 по соотношению l1>12>…>1n.
Снижение температуры на внешней поверхности 40 вихревой трубы 9 в зоне затухающего вращающегося «горячего» потока, т.е. от входа 10 к каналу 14, при передаче тепла конвекцией тепловому аккумулятору 8 компенсируется увеличением количества ребер вследствие уменьшения расстояния между ними.
В результате тепловой поток равномерно распределяется по ребрам 41 и осуществляет энергосберегающий подогрев атмосферного воздуха с максимальной отдачей тепловой энергии, соответствующей условно одинаковой температуре внешней поверхности 40 вихревой трубы 9, вне зависимости от процесса снижения температуры вращающегося «горячего» потока термодинамически расслоенного воздуха.
Следовательно, предлагаемое конструктивное решение существенно увеличивает возможность использования вихревой трубы в системе гелиотеплохладоснабжения.
При наличии каплеобразных частиц атмосферной и технологической влаги, а также твердых частиц пыли в атмосферном воздухе, поступающем по южному 1 воздухопроводу через подпольный воздухопровод 2 в нагнетательный вентилятор 16, его приводом затрачивается дополнительная энергия на транспортировку данной смеси на вход 10 вихревой трубы 9. Кроме того, загрязнения атмосферного воздуха интенсифицируют износ лопастей нагнетательного вентилятора 16 и, как следствие, снижается надежность системы гелиотеплохладоснабжения. Снабжение южного 1 воздухопровода суживающимся соплом 22 с завихрителем 23 приводит к тому, что атмосферный воздух с частицами загрязнений после входного отверстия 36 контактирует с входными участками 28, 29, 30, 31 четырех пластин 24, 25, 26 и 27, которые повернуты на прямой угол относительно выходных участков 32, 33, 34 и 35. В результате всасываемый атмосферный воздух в суживающемся сопле разделяется на четыре потока и по мере движения перемещается на 90°, что приводит перед поступлением его в южный 1 воздухопровод во вращательное движение. Под действием центробежных сил загрязненного атмосферного воздуха, частицы загрязнений отбрасываются к внутренней поверхности 37 суживающегося сопла 22 и перемещаются к круговой канавке 38 у входного отверстия 36, откуда поступают в устройство удаления загрязнений 39 для последующего удаления вручную или автоматически (на фиг. не показано).
Следовательно, в нагнетательный вентилятор 16 поступает очищенный от загрязнений атмосферный воздух и привод его потребляет нормированное количество энергии, вне зависимости от погодно-климатических условий эксплуатации системы гелиотеплохладоснабжения.
В теплое время года при температурах атмосферного воздуха выше значений температуры, предусмотренных параметрами микроклимата внутри помещения 7, например 25°С (воздушная заслонка 19 закрыта), атмосферный воздух по южному воздухопроводу 1 нагнетается в подпольный воздухопровод 2 вентилятором 16, установленным в вентиляционной камере 17. Из подпольного воздухопровода 2 по открытой воздушной заслонке 18 атмосферный воздух под избыточным давлением поступает на вход 10 вихревой трубы 9, в которой происходит расслоение на «холодный» (температура несколько ниже входящего в вихревую трубу атмосферного воздуха) и «горячий» (температура несколько выше входящего в вихревую трубу атмосферного воздуха) потоки воздуха. Холодный поток разделенного в вихревой трубе 9 атмосферного воздуха с заданной по условиям микроклимата внутри здания 7 температурой, например 18°С, по холодному каналу 11 вихревой трубы 9 поступает на вход 12 и в фильтр 13, где очищается от твердых частиц загрязнений, а также от жидких частиц сконденсировавшейся в процессе охлаждения парообразной влаги атмосферного воздуха, а, как известно, чем выше температура атмосферного воздуха, тем больше в нем влаги, при этом отделенные загрязнения в фильтре 13 удаляются из него через установку удаления загрязнений, например конденсатоотводчик поплавкового типа. «Горячий» поток атмосферного воздуха по горячему каналу 14 вихревой трубы 9 направляется в грунтовый воздухопровод 5, где охлаждается, отдавая тепло грунту, а сконденсировавшаяся в процессе охлаждения воздуха влага удаляется через теплопроводящие трубы 6 и дренируется в грунте. Охлажденный в грунтовом воздухопроводе 5 воздух поступает к входу 12 фильтра 13, где окончательно очищается от капельнообразных загрязнений и твердых частиц загрязнений, т.е. доводится до параметров, определяемых заданным микроклиматом в помещении 7. Из фильтра 13 обработанный воздух с заданными параметрами по температуре, влажности и степени очистки от твердых частиц поступает внутрь помещения 7.
Воздух из помещения 7 вентилятором 20, установленным в вентиляционной камере 21, направляется в теплообменный воздухопровод 4, где отдает тепло аккумулятору 8, и по северному воздухопроводу 3 выбрасывается в атмосферу.
Размещение вихревой трубы 9 в тепловом аккумуляторе 8 обеспечивает дополнительное накопление тепла, выделяемого через корпус вихревой трубы 9, в процессе расслоения обрабатываемого атмосферного воздуха на «холодный» и «горячий» потоки.
В результате тепловой аккумулятор 8 накапливает тепловую энергию, поступающую как от теплообменного воздухопровода 4, так и от корпуса вихревой трубы 9.
При снижении температуры нагнетаемого вентилятором 16 атмосферного воздуха ниже гостированной для заданных условий микроклимата здания 7, например в ночное время температура около 15°С, открывается воздушная заслонка 19 (воздушная заслонка 18 закрыта). Атмосферный воздух по южному воздухопроводу 1 вентилятором 16 через открытую воздушную заслонку 19 подается в фильтр 13, где очищается до заданных условиями микроклимата в помещении 7 параметров. Тепловой аккумулятор 8 отдает тепло всасываемому атмосферному воздуху в подпольном воздухопроводе 2, нагревая его до необходимой температуры. Если тепловой энергии, отдаваемой тепловым аккумулятором 8 атмосферному воздуху, движущемуся по подпольному воздухопроводу 2, недостаточно, то осуществляется подогрев отопительной системой (не указано), затраты которой будут снижены, так как значительная часть тепла поступает от теплового аккумулятора 8 и грунта.
Размещение фильтра 13 после вихревой трубы 9 в тепловом аккумуляторе 8 обеспечивает снижение энергоемкости очистки нагнетаемого вентилятором 16 через южный 1 воздухопровод атмосферного воздуха вовнутрь помещения 7 за счет частичной очистки в процессе расслоения обрабатываемого воздуха (часть твердых загрязнений перемещается в горячий поток и дренируется в грунт по теплообменным трубам 6). Также полученное тепло от аккумулятора 8 при низких температурах атмосферного воздуха устраняет возможность обмерзания фильтрующих элементов, приводящего к возрастанию гидравлического сопротивления при температурах атмосферного воздуха, имеющих значение существенно более низкое, чем предусмотрено параметрами микроклимата внутри помещения 7, вихревая труба 9 воздушной заслонкой 18 отключается от подпольного воздухопровода 2. Всасываемый атмосферный воздух нагревается как в южном воздухопроводе 1 за счет использования тепла солнечной радиации (южный воздухопровод выполнен из поглощающего солнечную радиацию материала), так и от теплового аккумулятора 8 в подпольном воздухопроводе 2. В случае недостатка данного тепла для получения заданной температуры воздуха, нагнетаемого вовнутрь помещения 7, применяется отопительная система (не показана) незначительной мощности.
Оригинальность предлагаемого технического решения заключается в том, что достигается снижение энергозатрат системы отопления для поддержания комфортных условий в помещении путем интенсификации отдачи тепла от вихревой трубы в тепловом аккумуляторе за счет выполнения на ее наружной поверхности ребер с уменьшающимся расстоянием их расположения от входа обрабатываемого воздуха до канала «горячего» потока.

Claims (1)

  1. Система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменник - с помещением, кроме того, южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и выполнено с завихрителем, состоящим из четырех пластин, входные и выходные участки которых расположены один относительно другого под прямым углом, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений, отличающаяся тем, что на внешней поверхности вихревой трубы выполнены ребра с уменьшающимся расстоянием между ними по направлению «горячего» потока.
RU2016129132A 2016-07-15 2016-07-15 Система гелиотеплохладоснабжения RU2622449C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016129132A RU2622449C1 (ru) 2016-07-15 2016-07-15 Система гелиотеплохладоснабжения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016129132A RU2622449C1 (ru) 2016-07-15 2016-07-15 Система гелиотеплохладоснабжения

Publications (1)

Publication Number Publication Date
RU2622449C1 true RU2622449C1 (ru) 2017-06-15

Family

ID=59068468

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016129132A RU2622449C1 (ru) 2016-07-15 2016-07-15 Система гелиотеплохладоснабжения

Country Status (1)

Country Link
RU (1) RU2622449C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724642C2 (ru) * 2018-02-08 2020-06-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Система гелиотеплохладоснабжения

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU735877A1 (ru) * 1977-12-19 1980-05-25 Одесский Технологический Институт Холодильной Промышленности Вихрева труба
RU77942U1 (ru) * 2008-04-28 2008-11-10 Закрытое акционерное общество "БРАВО Технолоджиз" Система отопления и гидродинамический теплогенератор
US20100139292A1 (en) * 2008-12-08 2010-06-10 Ram Grand Temperature adjustable airflow device
RU2554171C1 (ru) * 2014-02-18 2015-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Система гелиотеплохладоснабжения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU735877A1 (ru) * 1977-12-19 1980-05-25 Одесский Технологический Институт Холодильной Промышленности Вихрева труба
RU77942U1 (ru) * 2008-04-28 2008-11-10 Закрытое акционерное общество "БРАВО Технолоджиз" Система отопления и гидродинамический теплогенератор
US20100139292A1 (en) * 2008-12-08 2010-06-10 Ram Grand Temperature adjustable airflow device
RU2554171C1 (ru) * 2014-02-18 2015-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Система гелиотеплохладоснабжения

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724642C2 (ru) * 2018-02-08 2020-06-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Система гелиотеплохладоснабжения

Similar Documents

Publication Publication Date Title
CN106705224B (zh) 一种多层次热回收组合式空气处理器及其空气处理方法
CN204534952U (zh) 一种通风装置
CN106524317A (zh) 一种分质热回收冷剂过冷再热空调器及其空气处理方法
CN202769850U (zh) 太阳能烟囱复合露点间接蒸发冷却通风降温装置
CN201191049Y (zh) 基于再循环蒸发冷却塔和地源热泵冷热源的辐射空调系统
CN102444941A (zh) 一种极低冷热损失的洁净新风除湿系统
CN107228436A (zh) 一种基于太阳能和地冷的空调系统
CN206817624U (zh) 热回收热泵新风净化机组
CN203797874U (zh) 新风换气机
EA016637B1 (ru) Геотермальный кондиционер воздуха
JP2004212038A (ja) 建物の空調換気システム
CN104864527A (zh) 一种地铁站坑道型蒸发冷凝直膨冷风型通风空调系统
CN105180388A (zh) 垂直式双季用热管热回收机组
CN205957377U (zh) 洁净手术室用温湿度独立控制的恒温恒湿空调系统
CN110946076A (zh) 封闭式通风保温生猪养殖车间
RU2622449C1 (ru) Система гелиотеплохладоснабжения
CN108518765A (zh) 一种地铁站内组合式除湿装置及其除湿方法和应用
RU2282108C1 (ru) Поквартирная система вентиляции, отопления и кондиционирования в многоэтажных жилых зданиях
RU2296463C1 (ru) Электротеплоутилизационная установка
RU135091U1 (ru) Система гелиотеплохладоснабжения
RU2554171C1 (ru) Система гелиотеплохладоснабжения
CN106123114A (zh) 采用纤维布风器的对流辐射式墙体空调器
CN109682003A (zh) 一种带新风的散热器供暖装置
KR100329326B1 (ko) 통합 냉방 및 환기시스템
SU1733871A1 (ru) Система гелиотеплохладоснабжени

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180716