RU2620785C1 - Способ определения местоположения очага микросейсмического события - Google Patents

Способ определения местоположения очага микросейсмического события Download PDF

Info

Publication number
RU2620785C1
RU2620785C1 RU2016123651A RU2016123651A RU2620785C1 RU 2620785 C1 RU2620785 C1 RU 2620785C1 RU 2016123651 A RU2016123651 A RU 2016123651A RU 2016123651 A RU2016123651 A RU 2016123651A RU 2620785 C1 RU2620785 C1 RU 2620785C1
Authority
RU
Russia
Prior art keywords
microseismic
longitudinal
transverse
signal
wave
Prior art date
Application number
RU2016123651A
Other languages
English (en)
Inventor
Искандер Галеевич Казбулатов
Original Assignee
Общество с ограниченной ответственностью "Макросейс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Макросейс" filed Critical Общество с ограниченной ответственностью "Макросейс"
Priority to RU2016123651A priority Critical patent/RU2620785C1/ru
Application granted granted Critical
Publication of RU2620785C1 publication Critical patent/RU2620785C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/12Signal generation
    • G01V2210/123Passive source, e.g. microseismics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/20Trace signal pre-filtering to select, remove or transform specific events or signal components, i.e. trace-in/trace-out
    • G01V2210/23Wavelet filtering

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к области сейсмической разведки, в частности к способам обработки микросейсмических данных. Согласно заявленному способу определения местоположения очага микросейсмического события в процессе обработки исходного микросейсмического сигнала осуществляют его разложение на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками. На каждом из указанных масштабов d(n) строят функцию прямолинейности и находят при условии ее максимизации время прихода продольной составляющей микросейсмического сигнала. К каждой из исходных продольной и поперечной составляющих микросейсмического сигнала применяют дискретное вейвлет-преобразование с последующим разложением их на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками. На каждом из указанных масштабов d(n) строят отношения поперечных амплитуд к продольным и находят время прибытия поперечной составляющей микросейсмического сигнала. Определяют скорость прохождения составляющих микросейсмического сигнала, на основании которых вычисляют расстояние до очага микросейсмического события. Технический результат - снижение неопределенности при вычислении местоположения очага микросейсмического события при гидравлическом разрыве пласта. 3 з.п. ф-лы, 5 ил.

Description

Изобретение относится к области сейсмической разведки, в частности к способам обработки микросейсмических данных.
В настоящее время наибольшее распространение при обработке и интерпретации микросейсмических данных получили спектральные способы обработки с использованием быстрого преобразования Фурье (см. например патент РФ 2187828, G01V 1/30). Однако обработка с использованием быстрого преобразования Фурье различного рода микросейсмических данных не всегда позволяет достоверно распознать время прихода событий вследствие высокого уровня помех и занимает продолжительное время, что ограничивает выдачу рекомендаций по управлению процессом гидроразрыва пласта в режиме реального времени.
Данный недостаток может быть уменьшен с помощью вейвлет-преобразования данных с сейсмодатчиков. Известно, например, использование дискретного вейвлет-преобразования для обработки и анализа сигналов разнообразной природы (патент РФ №2246132). В указанном патенте дано подробное описание способа быстрого вычисления вейвлет-преобразований, которое может быть использовано при обработке сигналов, в частности в области обработки экспериментальных данных в физике, в гидроакустике, сейсмоакустике, радиолокации и т.д. В данном техническом решении посредством быстрого вычисления вейвлет-преобразования реализуется возможность анализировать сигнал с произвольной точностью измерения масштабов и временных сдвигов избыточного дискретного вейвлет-преобразования сигнала с произвольно заданным (выбранным) малым шагом дискретизации масштабных коэффициентов. Недостатком аналога является отсутствие возможности вычисления времен прихода продольной и поперечной составляющих волны, угла азимута падения волны, необходимых для вычисления местоположения очага микросейсмического события.
Наиболее близким к заявляемому способу является способ обработки сейсмических данных с использованием дискретного вейвлет-преобразования (патент РФ №2412454, G01V 1/48), согласно которому осуществляют прием сейсмических данных, их обработку, в процессе которой осуществляют представление сейсмических данных в виде набора сейсмических трасс, причем каждую из исходных сейсмических трасс, представленную в виде вектора отсчетов, подвергают дискретному вейвлет-преобразованию (М итераций) с получением вектора вейвлет-коэффициентов, содержащего детализирующие вейвлет-коэффициенты Кn с первого по уровень М включительно, а также гладкие вейвлет-коэффициенты последнего уровня преобразования ОМ, далее вектор вейвлет-коэффициентов разделяют на ряд векторов, каждый из которых содержит детализирующие вейвлет-коэффициенты Кn одного уровня и нули на месте всех остальных вейвлет-коэффициентов (детализирующий вектор уровня n), а также вектор, содержащий гладкие вейвлет-коэффициенты ОМ и нули на месте всех детализирующих коэффициентов (детализирующий вектор уровня М+1), каждый из указанных детализирующих векторов уровней с 1 по М+1 подвергают процедуре обратного дискретного вейвлет-преобразования с получением М+1 слоев детализации dl(n) и представлением (визуализацией) исходного сейсмического сигнала в виде составляющих dl(n) с различными энергетическими и частотными характеристиками; каждую из указанных составляющих (слоев детализации dl(n)) анализируют по целевой значимости с учетом решаемой сейсмической задачи, после чего осуществляют выборку значимых отдельных слоев детализации вейвлет-разложения исходного сейсмического сигнала для построения их частичных сумм для последующей обработки и отображения результатов обработки сейсмических данных.
Данный способ выбран в качестве прототипа. Он позволяет обеспечить возможность анализа сейсмических данных с локализацией особенностей сигнала в вейвлет-частотной области с повышенным качеством выделения особенностей сигнальной составляющей в пространственно-временных координатах, с разделением волновых полей на отдельные составляющие и повышением отношения сигнал/помеха.
Способ-прототип обладает рядом недостатков - низкая точность определения местоположения источника сигнала в толще Земли вследствие использования для сейсморазведки активного источника сигнала, расположенного на поверхности, что не позволяет вести пассивный микросейсмический мониторинг гидравлического разрыва пласта из-за отсутствия механизма вычисления времен прихода продольной и поперечной составляющих сейсмической волны для каждой из трех компонент, разнесенных в пространстве сейсмоприемников с помощью функции прямолинейности и расчета азимута угла падения волны, не позволяет выявить топологию образования трещин при гидравлическом разрыве пласта, не решает вопрос оперативного управления процессом гидравлического разрыва пласта в режиме реального времени.
Задача, на решение которой направлено изобретение - устранение указанных недостатков, а именно снижение неопределенности при вычислении местоположения очага микросейсмического события при гидравлическом разрыве пласта, построение топологии образования трещин гидравлического разрыва с высокой точностью путем вычисления времен прихода продольной и поперечной составляющих микросейсмической волны с группы трехкомпонентных сейсмоприемников, возможность оперативного управления процессом гидравлического разрыва пласта для снижения экономических, экологических и социальных рисков.
Поставленная задача решается способом определения местоположения очага микросейсмического события, при котором осуществляют прием исходного микросейсмического сигнала, его обработку с применением дискретного вейвлет-преобразования, с последующим использованием с учетом решаемой сейсмической задачи, в котором в отличие от прототипа в процессе обработки осуществляют разложение исходного микросейсмического сигнала на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками, на каждом из указанных масштабов d(n) строят функцию прямолинейности и находят при условии ее максимизации время прихода продольной составляющей микросейсмического сигнала, которое в качестве наибольшего значения собственного вектора положения используют для расчета угла азимута очага сейсмического события, вращают X, Y координаты в продольных и поперечных плоскостях на угол азимута и полученные таким образом новые X, Y компоненты исходного сигнала подвергают дискретному вейвлет-преобразованию с последующим разложением исходного микросейсмического сигнала на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками, на каждом из указанных масштабов d(n) строят отношения поперечных амплитуд к продольным и находят время прибытия поперечной составляющей микросейсмического сигнала, определяют скорость прохождения продольной и поперечной составляющей микросейсмического сигнала в определенном интервале толщи Земли, а расстояние D до очага микросейсмического события вычисляют из соотношения
Figure 00000001
где D - расстояние, tP - время первого вступления продольной составляющей волны, tS - время первого вступления поперечной составляющей волны, υP - скорость продольной составляющей волны, υS - скорость поперечной составляющей волны.
Поставленная задача решается также тем, что скорости продольной и поперечной составляющей микросейсмического сигнала определяют геофизическими методами акустического каротажа либо кросс-дипольного акустического каротажа.
Для решения поставленной задачи обработка данных с выдачей результата расчета местоположения очага микросейсмического события происходит в режиме реального времени.
Кроме того, полученные данные о местоположении микросейсмического события сопоставляются с расчетными, и на основании величины их расхождения осуществляют выдачу управляющих команд в процессе гидравлического разрыва пласта и выработку дальнейшего выполнения плана закачки.
На фиг. 1 изображена последовательность расчета времени прибытия продольной составляющей микросейсмической волны с применением функции прямолинейности. На фиг. 2 изображена последовательность расчета времени прибытия поперечной составляющей микросейсмической волны с применением отношений амплитуд. На фиг. 3 показан пример трехкомпонентного микросейсмического сигнала и функции прямолинейности в шести масштабах. На фиг. 4 показаны интервалы времени между точками прибытия продольной и поперечной составляющих волны. На фиг. 5 показана совокупность точек, образующих топологию трещин. Вид сверху (а) и сбоку (б) на результаты микросейсмического исследования успешного гидравлического разрыва двух скважин. Цветными окружностями показаны разные стадии процесса.
Способ согласно изобретению осуществляют в следующей последовательности операций.
Принимают микросейсмический сигнал скважинными или наземными трехкомпонентными сейсмоприемниками (геофонами, гидрофонами). Для определения времени прибытия продольной составляющей волны используют свойство линейной поляризации продольной составляющей и ее распространение параллельно движению микросейсмической волны. Величиной степени линейной поляризации является функция прямолинейности, описанная Канасевичем.
Уравнение функции прямолинейности
Figure 00000002
где λ1 и λ2 - наибольшее и второе по величине собственные значения ковариационной матрицы соответственно.
Если ковариационная матрица (2) диагонализируема, то оценка прямолинейности траектории колебания частиц среды внутри определенного временного окна может быть получена из соотношений главной оси этой матрицы, т.е. оценка прямолинейности может быть дана из соотношения наибольшего и второго по величине значения ковариационной матрицы. Ковариационную матрицу представляют как
Figure 00000003
где X - «восточная» составляющая вейвлет-коэффициента для масштаба j;
Y - «северная» составляющая вейвлет-коэффициента для масштаба j;
Z - вертикальная составляющая вейвлет-коэффициента для масштаба j.
Ковариантность между X и Y определяют как
Figure 00000004
где μX и μY - средние значения X и Y соответственно.
Направление поляризации может быть измерено с учетом собственного вектора главной оси. Если λ1 - наибольшее собственное значение и λ2 - второе по величине собственное значение ковариационной матрицы, то функция (1) будет близка к единице, когда прямолинейность высока и близка к нулю, когда две главные оси приближаются друг к другу по величине (низкая прямолинейность).
Матрицу заполняют элементами - вейвлет-коэффициентами нескольких масштабов, которые получены при обработке микросейсмических сигналов в трех измерениях, используя дискретно-временное вейвлет-преобразование. Затем вычисляют собственные значения матрицы и соответствующие им собственные векторы. Строят функцию прямолинейности, таким образом получают функцию прямолинейности (Fj) для каждого масштаба. Далее строят составную функцию прямолинейности
Figure 00000005
так, чтобы функции прямолинейности каждого масштаба вносили свой вклад в ее создание
Figure 00000006
где j - номер масштаба.
Место, где эта функция имеет максимальное значение, принимают за время прибытия продольной волны.
На фиг. 3 заметно, что функции прямолинейности приблизительно равны единице, когда волновая форма линейно поляризована, и нулю, когда линейной поляризации нет. Это четко видно на первых четырех масштабах.
Для расчета азимута местоположения очага микросейсмического события используют построение функции прямолинейности и находят собственный вектор, связанный с наибольшим собственным значением зафиксированной продольной волны. Собственный вектор представляет собой направление линейной поляризации, которое указывает на угол азимута.
Время прибытия поперечной волны микросейсмического события определяют исследованием отношения поперечной амплитуды к продольной.
Азимут (θ), рассчитанный для продольной волны, используют для вращения двух плоскостей по отношению к продольной и поперечной составляющим соответственно по следующему уравнению:
Figure 00000007
где dr и dt - продольная и поперечная составляющие сигнала соответственно.
Применяют к продольной и поперечной составляющим сигнала дискретно-временное вейвлет-преобразование, получают несколько масштабов для каждой из составляющих. Как и для продольных волн получают коэффициенты xj и yj, которые представляют собой различные масштабы для продольной и поперечной составляющих соответственно (j - номер масштаба).
На каждом масштабе отношение поперечной амплитуды к продольной рассчитывают по следующей формуле:
Figure 00000008
где envtj и envrj - огибающие функции поперечной и продольной составляющих сигнала соответственно. Огибающая функция позволяет избежать вопросов, связанных с делением на ноль. Ее определяют как
Figure 00000009
где h - преобразование Гильберта от x.
Все масштабы объединяют для построения второй составной функции определения времени прибытия поперечной волны
Figure 00000010
Точку после прибытия продольной волны, имеющую величину, которая равна, по меньшей мере, половине наибольшего значения CT, выбирают в качестве времени прибытия поперечной волны. Наибольший пик CT не используют, т.к. он представляет собой время, когда поперечная волна достигает свою наибольшую амплитуду, а это происходит некоторое время спустя после первого прибытия.
Несколько различных семейств вейвлетов (Хаара, Добеши, Морле, FHAT, MHAT и т.д.) используются в вейвлет-разложении, т.к. выбор вейвлета при обработке сигнала очень важен для определения времени прибытия поперечной волны составной функцией.
Времена прибытия продольной и поперечной составляющих волн фиксируются в каждом из трех измерений в определенной точке пространства (сейсмоприемником, геофоном, гидрофоном, либо другим прибором). Таких точек пространства (сейсмоприемников, геофонов, гидрофонов, либо других приборов) может быть несколько. Измеряются интервалы времени между точками прибытия продольной и поперечной составляющих волны (фиг. 4)
Для падающей продольной составляющей волны угол азимута вычисляется построением функции прямолинейности и нахождения собственного вектора, связанного с наибольшим собственным значением зафиксированной продольной составляющей волны. Собственный вектор представляет собой направление линейной поляризации, которое указывает на угол азимута волны.
Скорость прохождения сейсмической волны в определенном интервале толщи Земли определяется геофизическими методами акустического каротажа, либо кросс-дипольного акустического каротажа.
Таким образом, известны время, скорость в единице интервала и азимут падающей на приемник сейсмической волны. По формуле (9) производится расчет расстояния до микросейсмического события для однородной скоростной модели
Figure 00000011
где D - расстояние, tP - время первого вступления продольной составляющей волны, tS - время первого вступления поперечной составляющей волны, υP - скорость продольной составляющей волны, υS - скорость поперечной составляющей волны.
Поскольку используется несколько сейсмоприемников, становится возможна инверсия источника колебаний, которая выполняется с помощью симплекс-метода или алгоритма сетевого поиска. Итоговое положение события рассчитывается путем минимизации пространственной ошибки по всем сейсмоприемникам, на пространственной карте ставится точка, соответствующая событию. Совокупность множества точек, нанесенных на карту, по мере возникновения микросейсмических событий во время проведения гидравлической стимуляции пласта образует графическое изображение инициируемых трещин. Графическая карта позволяет оценить геометрические параметры трещин и их ориентацию в пространстве.
По мере развития трещин гидравлического разрыва очаги микросейсмических событий будут менять свое местоположение в пространстве. Вычисленные местоположения очагов согласно описанному выше способу наносят на трехмерную карту в виде точек.
Пример конкретной реализации заявленного способа.
Пусть согласно программе закачки высота трещин должна составить 60 м, при этом мощность насыщенного углеводородами пласта в данной области равна 70 м, выше и ниже его расположены пласты, насыщенные водой. Прорыв трещин в водоносные слои грозит заводнением скважины и потерей экономической целесообразности ее дальнейшей эксплуатации, а также загрязнением водоносных слоев углеводородами. В процессе закачки заявляемым способом было установлено, что местоположение очагов микросейсмических событий опасно приблизилось к границам водоносного пласта. В этом случае принимается решение на останов насосов для предотвращения прорыва трещины выше либо ниже целевого пласта.
Таким образом, способ согласно изобретению позволяет эффективно выявлять время прибытия волн, сохраняя структуру сигнальной составляющей практически неизменной и обеспечивает, таким образом, более достоверное (по сравнению с частотной фильтрацией) выделение целевых волн, имеющих высокую информативную и прогнозную значимость при скважинных микросейсмических исследованиях.
Кроме того, очевидно, что анализ микросейсмических данных с использованием вейвлет-фильтрации согласно изобретению по слоям детализации расширяет возможности обработки и интерпретации волновых полей, обеспечивает возможность анализа микросейсмических данных с локализацией особенностей сигнала в вейвлет-частотной области с повышенным качеством выделения особенностей сигнальной составляющей в пространственно-временных координатах, с разделением волновых полей на отдельные составляющие и повышением соотношения «сигнал-шум».

Claims (6)

1. Способ определения местоположения очага микросейсмического события, при котором осуществляют прием исходного микросейсмического сигнала, его обработку с применением дискретного вейвлет-преобразования, с последующим использованием с учетом решаемой сейсмической задачи, отличающийся тем, что осуществляют разложение исходного микросейсмического сигнала на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками, на каждом из указанных масштабов d(n) строят функцию прямолинейности и находят при условии ее максимизации время прихода продольной составляющей микросейсмического сигнала, которое в качестве наибольшего значения собственного вектора положения используют для расчета угла азимута очага сейсмического события, вращают X, Y координаты в продольных и поперечных плоскостях на угол азимута и полученные таким образом новые X, Y компоненты исходного сигнала подвергают дискретному вейвлет-преобразованию с последующим разложением исходного микросейсмического сигнала на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками, на каждом из указанных масштабов d(n) строят отношения поперечных амплитуд к продольным и находят время прибытия поперечной составляющей микросейсмического сигнала, определяют скорость прохождения продольной и поперечной составляющей микросейсмического сигнала в определенном интервале толщи Земли, а расстояние D до очага микросейсмического события вычисляют из соотношения
Figure 00000012
где D - расстояние, tP - время первого вступления продольной составляющей волны, tS - время первого вступления поперечной составляющей волны, υP - скорость продольной составляющей волны, υS - скорость поперечной составляющей волны.
2. Способ по п. 1, отличающийся тем, что скорости продольной и поперечной составляющей микросейсмического сигнала определяют геофизическими методами акустического каротажа либо кросс-дипольного акустического каротажа.
3. Способ по п. 1, отличающийся тем, что обработка данных с выдачей результата расчета местоположения очага микросейсмического события происходит в режиме реального времени.
4. Способ по п. 1, отличающийся тем, что полученные данные о местоположении микросейсмического события сопоставляются с расчетными, и на основании величины их расхождения осуществляют выдачу управляющих команд в процессе гидравлического разрыва пласта и дальнейшего выполнения плана закачки.
RU2016123651A 2016-06-14 2016-06-14 Способ определения местоположения очага микросейсмического события RU2620785C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016123651A RU2620785C1 (ru) 2016-06-14 2016-06-14 Способ определения местоположения очага микросейсмического события

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016123651A RU2620785C1 (ru) 2016-06-14 2016-06-14 Способ определения местоположения очага микросейсмического события

Publications (1)

Publication Number Publication Date
RU2620785C1 true RU2620785C1 (ru) 2017-05-29

Family

ID=59032031

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016123651A RU2620785C1 (ru) 2016-06-14 2016-06-14 Способ определения местоположения очага микросейсмического события

Country Status (1)

Country Link
RU (1) RU2620785C1 (ru)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728200A (zh) * 2017-09-29 2018-02-23 中国石油化工股份有限公司 地面微地震压裂裂缝动态展布实时监测方法
CN107807381A (zh) * 2017-12-01 2018-03-16 招商局重庆交通科研设计院有限公司 基于岩体破裂微震波活动规律的边坡失稳风险的动态监测方法及装置
CN110716230A (zh) * 2018-07-13 2020-01-21 中国石油化工股份有限公司 一种井地联合微地震定位方法
CN110941013A (zh) * 2018-09-21 2020-03-31 中国石油化工股份有限公司 时间频率域能量聚焦方法和储层预测方法
CN111638555A (zh) * 2020-05-29 2020-09-08 中国石油天然气集团有限公司 解释微测井的方法及装置
CN111650640A (zh) * 2019-03-04 2020-09-11 中国石油天然气集团有限公司 裂缝网络复杂度评价方法及系统
CN112558147A (zh) * 2019-09-25 2021-03-26 中国石油化工股份有限公司 一种井中微地震数据的偏振分析方法及系统
CN113138420A (zh) * 2020-01-20 2021-07-20 中国石油天然气集团有限公司 微地震事件定位方法及装置
CN114019564A (zh) * 2021-10-18 2022-02-08 武汉大学 一种基于小波变换协方差模型的s波到时识别方法
CN114137609A (zh) * 2021-11-09 2022-03-04 长江地球物理探测(武汉)有限公司 线性微动数据校正方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6745129B1 (en) * 2002-10-29 2004-06-01 The University Of Tulsa Wavelet-based analysis of singularities in seismic data
RU2246132C2 (ru) * 2003-01-09 2005-02-10 Военно-морской институт радиоэлектроники Способ и устройство быстрого вычисления дискретного вейвлет-преобразования сигнала с произвольным шагом дискретизации масштабных коэффициентов
US20070242564A1 (en) * 2006-04-11 2007-10-18 Devi Kattelmalvadi R S Method of processing seismic data and method of producing a mineral hydrocarbon fluid and a computer program product
US7616524B1 (en) * 2006-08-25 2009-11-10 The University Of Tulsa Wavelet based intercept attribute for seismic exploration
RU2412454C2 (ru) * 2009-05-04 2011-02-20 Федеральное государственное унитарное предприятие Сибирский научно-исследовательский институт геологии, геофизики и минерального сырья Способ обработки сейсмических данных с использованием дискретного вейвлет-преобразования
RU2567434C2 (ru) * 2014-05-08 2015-11-10 Алексей Алексеевич Никитин Способ обработки и интерпретаций сейсмических данных

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6745129B1 (en) * 2002-10-29 2004-06-01 The University Of Tulsa Wavelet-based analysis of singularities in seismic data
RU2246132C2 (ru) * 2003-01-09 2005-02-10 Военно-морской институт радиоэлектроники Способ и устройство быстрого вычисления дискретного вейвлет-преобразования сигнала с произвольным шагом дискретизации масштабных коэффициентов
US20070242564A1 (en) * 2006-04-11 2007-10-18 Devi Kattelmalvadi R S Method of processing seismic data and method of producing a mineral hydrocarbon fluid and a computer program product
US7616524B1 (en) * 2006-08-25 2009-11-10 The University Of Tulsa Wavelet based intercept attribute for seismic exploration
RU2412454C2 (ru) * 2009-05-04 2011-02-20 Федеральное государственное унитарное предприятие Сибирский научно-исследовательский институт геологии, геофизики и минерального сырья Способ обработки сейсмических данных с использованием дискретного вейвлет-преобразования
RU2567434C2 (ru) * 2014-05-08 2015-11-10 Алексей Алексеевич Никитин Способ обработки и интерпретаций сейсмических данных

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728200A (zh) * 2017-09-29 2018-02-23 中国石油化工股份有限公司 地面微地震压裂裂缝动态展布实时监测方法
CN107807381A (zh) * 2017-12-01 2018-03-16 招商局重庆交通科研设计院有限公司 基于岩体破裂微震波活动规律的边坡失稳风险的动态监测方法及装置
CN107807381B (zh) * 2017-12-01 2023-06-20 招商局重庆交通科研设计院有限公司 基于岩体破裂微震波活动规律的边坡失稳风险的动态监测方法及装置
CN110716230B (zh) * 2018-07-13 2021-08-24 中国石油化工股份有限公司 一种井地联合微地震定位方法
CN110716230A (zh) * 2018-07-13 2020-01-21 中国石油化工股份有限公司 一种井地联合微地震定位方法
CN110941013A (zh) * 2018-09-21 2020-03-31 中国石油化工股份有限公司 时间频率域能量聚焦方法和储层预测方法
CN111650640A (zh) * 2019-03-04 2020-09-11 中国石油天然气集团有限公司 裂缝网络复杂度评价方法及系统
CN112558147A (zh) * 2019-09-25 2021-03-26 中国石油化工股份有限公司 一种井中微地震数据的偏振分析方法及系统
CN112558147B (zh) * 2019-09-25 2023-10-10 中国石油化工股份有限公司 一种井中微地震数据的偏振分析方法及系统
CN113138420A (zh) * 2020-01-20 2021-07-20 中国石油天然气集团有限公司 微地震事件定位方法及装置
CN111638555A (zh) * 2020-05-29 2020-09-08 中国石油天然气集团有限公司 解释微测井的方法及装置
CN111638555B (zh) * 2020-05-29 2023-02-10 中国石油天然气集团有限公司 解释微测井的方法及装置
CN114019564A (zh) * 2021-10-18 2022-02-08 武汉大学 一种基于小波变换协方差模型的s波到时识别方法
CN114019564B (zh) * 2021-10-18 2024-04-19 武汉大学 一种基于小波变换协方差模型的s波到时识别方法
CN114137609A (zh) * 2021-11-09 2022-03-04 长江地球物理探测(武汉)有限公司 线性微动数据校正方法及装置
CN114137609B (zh) * 2021-11-09 2023-12-01 长江地球物理探测(武汉)有限公司 线性微动数据校正方法及装置

Similar Documents

Publication Publication Date Title
RU2620785C1 (ru) Способ определения местоположения очага микросейсмического события
Li et al. Recent advances and challenges of waveform‐based seismic location methods at multiple scales
Baig et al. Microseismic moment tensors: A path to understanding frac growth
Eisner et al. Uncertainties in passive seismic monitoring
Virieux P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method
US9046620B2 (en) System and method for investigating sub-surface features and 3D imaging of non-linear property, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation
CA2743611C (en) Methods and systems for monitoring and modeling hydraulic fracturing of a reservoir field
WO2016185223A1 (en) Interferometric microseismic imaging methods and apparatus
CN109563736A (zh) 诸如有机页岩储层中的夹层碳酸盐层的各向异性地层中的水平应力和非线性常数的估计
CN102466816A (zh) 一种叠前地震数据地层弹性常数参数反演的方法
Riahi et al. Time‐lapse analysis of ambient surface wave anisotropy: A three‐component array study above an underground gas storage
RU2737846C2 (ru) Система установки наземных сейсмических датчиков с парами смежных многокомпонентных сейсмических датчиков на расстоянии в среднем по меньшей мере двадцать метров
AU2014407527B2 (en) Integrating vertical seismic profile data for microseismic anisotropy velocity analysis
US20160334528A1 (en) Systems and methods for characterizing subterranean formations utilizing azimuthal data
Zhang et al. Microseismic hydraulic fracture imaging in the Marcellus Shale using head waves
Zhong et al. Statistical analysis of background noise in seismic prospecting
Ampilov et al. Applied aspects of different frequency bands of seismic and water acoustic investigations on the shelf
Tran et al. An assessment of surface wave techniques at the Texas A&M national geotechnical experimentation site
Presnov et al. Dispersion dependences of elastic waves in an ice-covered shallow sea
Sheng et al. Seeking repeating anthropogenic seismic sources: Implications for seismic velocity monitoring at fault zones
Lei et al. Numerical studies of the statistics of seismic waveform propagation in random heterogeneous media
Wamriew et al. Microseismic Monitoring and Analysis Using Cutting-Edge Technology: A Key Enabler for Reservoir Characterization
RU2455664C1 (ru) Способ определения предвестника цунами
Duan et al. Monitoring of subsurface fracture flow using unsupervised deep learning for borehole microseismic waveform data
Rabinovich et al. Modeling of a reservoir fracture zone formed by hydraulic fracturing

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180615

NF4A Reinstatement of patent

Effective date: 20190506