RU2619774C1 - Импульсная ускорительная трубка - Google Patents

Импульсная ускорительная трубка Download PDF

Info

Publication number
RU2619774C1
RU2619774C1 RU2016114922A RU2016114922A RU2619774C1 RU 2619774 C1 RU2619774 C1 RU 2619774C1 RU 2016114922 A RU2016114922 A RU 2016114922A RU 2016114922 A RU2016114922 A RU 2016114922A RU 2619774 C1 RU2619774 C1 RU 2619774C1
Authority
RU
Russia
Prior art keywords
cathode
tube
current lead
housing
insulator
Prior art date
Application number
RU2016114922A
Other languages
English (en)
Inventor
Андрей Леонидович Юрьев
Татьяна Васильевна Лойко
Света Львовна Эльяш
Дмитрий Павлович Николаев
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом"), Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Priority to RU2016114922A priority Critical patent/RU2619774C1/ru
Application granted granted Critical
Publication of RU2619774C1 publication Critical patent/RU2619774C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes

Landscapes

  • Particle Accelerators (AREA)

Abstract

Изобретение относится к импульсной ускорительной трубке и может использоваться для генерации электронных и рентгеновских пучков наносекундной и субнаносекундной длительности и может быть использовано в ускорителях на напряжения до 1 MB и выше. В заявленном устройстве изолятор выполнен керамическим, со стороны токоввода корпус имеет дополнительный патрубок с торцевым фланцем для присоединения к формирующей линии, внутренние и наружные поверхности корпуса и патрубка и поверхности токоввода, катододержателя и катода образуют единые цилиндрические токопроводящие поверхности, расположенные соосно по отношению друг к другу. При этом взрывоэмиссионный катод выполнен многоострийным, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия. Техническим результатом является расширение функциональных возможностей трубки за счет работы как в газонаполненных линиях высокого давления, так и в линиях с жидким диэлектриком, возможность обеспечения частотной генерации электронных и рентгеновских пучков субнаносекундной длительнсти с минимальными искажениями, а также увеличения надежности и ресурса. 6 ил.

Description

Предлагаемое изобретение относится к устройствам для генерации электронных и рентгеновских пучков наносекундной и субнаносекундной длительности и может быть использовано в ускорителях на напряжения до 1 MB и выше.
Известна миниатюрная импульсная рентгеновская трубка (Лойко Т.В. и др. «Импульсная рентгеновская трубка», патент RU №2160480, кл. МПК Н01J 35/00, опубл. 10.12.2000 г.), содержащая вакуумированный металлический корпус с прострельной мишенью (анодом) и окном для вывода излучения, внутренний электрод трубки, состоящий из токоввода и закрепленного на нем взрывоэмиссионного катода, а также изолятор.
Недостатками трубки являются:
- малые габариты миниатюрной трубки делают невозможным частотный режим работы;
- отсутствие возможности генерации электронов;
- малая длина образующей изолятора, что ограничивает рабочее напряжение и ресурс работы трубки;
- выполнение изолятора из стекла делает невозможной работу трубки в атмосфере сжатого газа;
- наличие ступенчатых переходов на внутреннем электроде трубки, состоящем из токоввода и катода; переходы являются неоднородностями на пути распространения импульсов напряжения субнаносекундной длительности, что приводит к временному уширению импульсов.
Наиболее близкой к заявляемой является импульсная электронная трубка ИМА3-150Э (Желтов К.А. Пикосекундные сильноточные ускорители. - Москва: Энергоатомиздат, 1991. - С. 29), содержащая вакуумированную оболочку, включающую в себя металлический корпус и расположенный внутри него стеклянный конический изолятор, на малом основании которого закреплен катододержатель с присоединенными к нему токовводом и трубчатым взрывоэмиссионным катодом, напротив катода расположено закрепленное на торцевом участке корпуса бериллиевое окно для выпуска электронов.
Недостатками трубки является низкая механическая прочность стеклянного изолятора, что не позволяет использовать трубку в газонаполненных формирующих линиях в среде газа под давлением до 5 МПа; малый ресурс трубчатого катода, который имеет сравнительно небольшую длину эмитирующих острий и поэтому быстро изнашивается; трубчатый катод формирует неоднородный электронный пучок на аноде (выпускном окне) с выраженной фокусировкой в центральной части, что снижает допустимую амплитуду тока в трубке и делает невозможным частотный режим работы. Трубки по аналогу и прототипу могут работать только в среде жидкого диэлектрика.
При создании данного изобретения решалась задача разработки надежной импульсной ускорительной трубки для генерации наносекундных и субнаносекундных пучков электронов с энергией до 1 МэВ, способной работать в среде сжатого газа под давлением до 5 МПа. Электронные пучки могут быть конвертированы в рентгеновские при установке на пути электронов мишени из тантала, вольфрама и т.д.
Техническим результатом является расширение функциональных возможностей трубки за счет работы как в газонаполненных линиях высокого давления, так и в линиях с жидким диэлектриком, обеспечения частотной генерации электронных и рентгеновских пучков субнаносекундной длительности с минимальными искажениями, а также увеличения надежности и ресурса.
Указанный технический результат достигается тем, что по сравнению с известной импульсной ускорительной трубкой, содержащей вакуумированную оболочку, включающую в себя металлический корпус и расположенный внутри него полый конический изолятор, на малом основании которого закреплен катододержатель с присоединенными к нему токовводом и взрывоэмиссионным катодом, напротив катода расположено закрепленное на торцевом участке корпуса окно с прострельным анодом, большее основание изолятора закреплено на корпусе, новым является то, что изолятор выполнен керамическим, со стороны токоввода корпус имеет дополнительный патрубок с торцевым фланцем для присоединения к формирующей линии, внутренние поверхности корпуса и патрубка и соответственно наружные поверхности токоввода, катододержателя и катода образуют единые цилиндрические токопроводящие поверхности, расположенные соосно по отношению друг к другу, взрывоэмиссионный катод выполнен многоострийным, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия.
Выполнение изолятора керамическим позволяет значительно повысить его механическую прочность по сравнению со стеклянными изоляторами трубок по аналогу и прототипу. Изоляторы из корундовой керамики типа ВК94-1 и ВК100-1 легко выдерживают давления до 5 МПа (50 атм) и выше. Высокая механическая прочность изолятора, входящего в вакуумированную оболочку, обеспечивает возможность работы трубки в газонаполненных формирующих линиях высокого давления. Достоинством таких линий в отличие от линий с жидким диэлектриком, является возможность работы в частотном режиме. Это объясняется тем, что в газонаполненных линиях можно использовать газовые разрядники-обострители с малым временем восстановления электропрочности электроразрядного промежутка (порядка сотых долей секунды для азота) в отличие от, например, масляных, для восстановления которых требуется прокачка электроразрядного промежутка в течение нескольких минут.
Выполнение корпуса с дополнительным патрубком с фланцем, расположенным на торце патрубка, дает возможность герметичного присоединения трубки к формирующей линии при обеспечении качественного электрического контакта корпуса трубки с корпусом линии. Последнее необходимо для того, чтобы трубка служила продолжением линии с тем же волновым сопротивлением и могла осуществлять без искажений генерацию импульсов электронов субнаносекундной длительности.
Выполнение внутренних поверхностей корпуса и патрубка и соответственно наружных поверхностей токоввода, катододержателя и катода в виде единых цилиндрических токопроводящих поверхностей, расположенных соосно по отношению друг к другу, позволяет рассматривать трубку как отрезок формирующей линии. Длина заявляемой трубки не ограничена, поскольку она фактически является продолжением формирующей линии с тем же волновым сопротивлением, и увеличение длины трубки не приводит к искажению поступающего на катод субнаносекундного импульса. Внутренний же диаметр корпуса трубки ограничен в значительно меньшей степени, чем у трубки по прототипу, и определяется минимальной длительностью τ импульса, передаваемого по линии (Желтов К.А. Пикосекундные сильноточные ускорители. - Москва: Энергоатомиздат, 1991. - С. 9):
Figure 00000001
;
Figure 00000002
Figure 00000003
,
где f - критическая частота, Гц;
c - скорость света в вакууме, м/с
D - внутренний диаметр внешнего проводника линии, м;
d - внешний диаметр внутреннего проводника линии, м;
π=3.14;
ε - диэлектрическая проницаемость изоляционной среды линии (для газа ε≈1).
Согласно этим формулам, для формирования импульса длительностью 0.15 нс (что является наилучшим результатом в работах по созданию субнаносекундных ускорителей электронов с энергией 150-1000 кВ) допускается использовать газонаполненную линию диаметром около 50 мм. Соответственно такой же диаметр может иметь и ускорительная трубка. Это значительно больше диаметра трубки по прототипу ИМА-3 (30 мм). Увеличение диаметра корпуса позволяет повысить длину изолятора и тем самым увеличить электропрочность, надежность и ресурс трубки.
Выполнение катода многоострийным, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия, позволяет увеличить надежность и ресурс трубки. Многоострийный катод имеет большую суммарную длину эмитирующих кромок, что приводит к уменьшению плотности эмиссионного тока и снижению эрозии острий по сравнению с прототипом. Закрепление его эмитирующих острий на плоском участке торца катода позволяет расположить эмитирующие кромки в одной плоскости и избежать эффекта фокусировки электронного пучка на аноде, что так характерно для трубчатого катода, используемого в трубке по прототипу. Отсутствие фокусировки и увеличение суммарной длины эмитирующих кромок способствует повышению ресурса катода и анода, что приводит к повышению ресурса и всей трубки. Кроме того, заявляемая трубка может работать в частотном режиме и выдерживать токовые импульсы, которые в трубке по прототипу приводят к ее полному разрушению за несколько импульсов.
Таким образом, в данном изобретении реализуется указанный технический результат, поскольку наличие керамического изолятора и дополнительного патрубка с торцевым фланцем, а также то, что внутренние поверхности корпуса и патрубка и соответственно наружные поверхности токоввода, катододержателя и катода образуют единые цилиндрические токопроводящие поверхности, расположенные соосно по отношению друг к другу, катод многоострийный, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия - все перечисленные отличительные признаки позволяют расширить функциональные возможности трубки за счет работы как в газонаполненных линиях высокого давления, так и в линиях с жидким диэлектриком, обеспечения частотной генерации электронных и рентгеновских пучков субнаносекундной длительности с минимальными искажениями, а также увеличения надежности и ресурса.
На фиг. 1 показана конструкция ускорительной трубки по аналогу.
На фиг. 2 показана конструкция ускорительной трубки по прототипу (трубка ИМА3-150Э).
На фиг. 3 показана конструкция заявляемой трубки.
На фиг. 4 показан фрагмент газонаполненной формирующей линии с присоединенной к ней заявляемой трубки.
На фиг. 5 показаны автографы электронных пучков трубки заявляемой трубки (слева) и ИМА3-150Э (справа).
На фиг. 6 показана осциллограмма тока электронов за окном заявляемой трубки. Развертка по горизонтали - 2 нс/деление.
На фигурах обозначены следующие элементы:
1 - корпус;
2 - полый конический изолятор;
3 - катододержатель;
4 - токоввод;
5 - взрывоэмиссионный катод;
6 - эмитирующие острия;
7 - окно с прострельным анодом;
8 - патрубок;
9 - фланец;
10 - корпус формирующей линии (он же внешний проводник);
11 - внутренний проводник формирующей линии;
12 - прижимной фланец;
13 - герметизирующая прокладка;
14 - стягивающий болт;
15, 16 - токопроводящие поверхности проводников формирующей линии.
Заявляемая трубка (фиг. 3) содержит вакуумированную оболочку, состоящую из металлического корпуса 1 и расположенного внутри него полого конического изолятора 2, на малом основании которого закреплен катододержатель 3 с присоединенными к нему токовводом 4 и взрывоэмиссионным катодом 5 с эмитирующими остриями 6, напротив катода расположено закрепленное на торцевом участке корпуса окно 7 с прострельным анодом, большее основание изолятора закреплено на корпусе 1, со стороны токоввода 4 корпус имеет дополнительный патрубок 8 с торцевым фланцем 9. Корпус 1, катододержатель 3 и катод изготовлены из ковара 29НК, изолятор 2 - из керамики ВК94-1, токоввод 4 - из латуни, эмитирующие острия 6 - из танталовой фольги толщиной 0.05 мм, патрубок 8 и фланец 9 - из стали 12Х18Н10Т.
Принцип работы трубки заключается в следующем. При подаче импульса высокого напряжения на токоввод 4, происходит взрывная эмиссия электронов с эмитирующих острий 6. Под воздействием разности потенциалов в зазоре между взрывоэмиссионным катодом 5 и окно с прострельным анодом 7 происходит ускорение электронов, которые затем проходят через прострельный анод и выпускаются в атмосферу.
Было изготовлено 5 трубок по заявляемой конструкции и проведены их испытания при подключении к газонаполненной формирующей линии субнаносекундного ускорителя на напряжение 800 кВ при длительности импульсов на трубке 0.3 нс. Перед определением характеристик была произведена тренировка трубок (по 50 импульсов) с частотой 0.5 Гц, что никак не сказалось на работоспособности трубок. На фиг. 5 показаны автографы электронных пучков трубки ИМА3-150Э и заявляемой трубки, полученные на пленках ЦВИД-01-1 при их расположении вплотную к прострельным окнам трубок. По фиг.5 видно, что электронный пучок заявляемой трубки имеет более равномерное распределение, и в нем отсутствует участок центральной фокусировки, как это имеет место в трубке ИМА3-150Э. Лучшая равномерность электронного пучка на окне должна привести к увеличению ресурса трубки и возможности работать при больших токах.
Осциллография формы импульса тока электронов за окном заявляемой трубки, приведенная на фиг. 6, производилась осциллографом с полосой пропускания 1.5 ГГц. Измеренная длительность импульса на полувысоте амплитуды равна 0.4 нс. С учетом временного разрешения осциллографа и влияния измерительного шунта длительность импульса тока не превышает 0,3 нс.

Claims (1)

  1. Импульсная ускорительная трубка, содержащая вакуумированную оболочку, включающую в себя металлический корпус и расположенный внутри него полый конический изолятор, на малом основании которого закреплен катододержатель с присоединенными к нему токовводом и взрывоэмиссионным катодом, напротив катода расположено закрепленное на торцевом участке корпуса окно с прострельным анодом, большее основание изолятора закреплено на корпусе, отличающаяся тем, что изолятор выполнен керамическим, со стороны токоввода корпус имеет дополнительный патрубок с торцевым фланцем для присоединения к формирующей линии, внутренние поверхности корпуса и патрубка и соответственно наружные поверхности токоввода, катододержателя и катода образуют единые цилиндрические токопроводящие поверхности, расположенные соосно по отношению друг к другу, взрывоэмиссионный катод выполнен многоострийным, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия.
RU2016114922A 2016-04-18 2016-04-18 Импульсная ускорительная трубка RU2619774C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016114922A RU2619774C1 (ru) 2016-04-18 2016-04-18 Импульсная ускорительная трубка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016114922A RU2619774C1 (ru) 2016-04-18 2016-04-18 Импульсная ускорительная трубка

Publications (1)

Publication Number Publication Date
RU2619774C1 true RU2619774C1 (ru) 2017-05-18

Family

ID=58716179

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016114922A RU2619774C1 (ru) 2016-04-18 2016-04-18 Импульсная ускорительная трубка

Country Status (1)

Country Link
RU (1) RU2619774C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2160480C1 (ru) * 1999-08-02 2000-12-10 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Импульсная рентгеновская трубка
US20060133578A1 (en) * 2004-12-21 2006-06-22 Thomas Saint-Martin Radiation emission device having a bearing and method of manufacture
RU71817U1 (ru) * 2007-10-03 2008-03-20 Евгений Александрович Шиканов Импульсная ускорительная трубка для генерации рентгеновских квантов
RU2467429C1 (ru) * 2011-04-12 2012-11-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Импульсная ускорительная трубка

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2160480C1 (ru) * 1999-08-02 2000-12-10 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Импульсная рентгеновская трубка
US20060133578A1 (en) * 2004-12-21 2006-06-22 Thomas Saint-Martin Radiation emission device having a bearing and method of manufacture
RU71817U1 (ru) * 2007-10-03 2008-03-20 Евгений Александрович Шиканов Импульсная ускорительная трубка для генерации рентгеновских квантов
RU2467429C1 (ru) * 2011-04-12 2012-11-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Импульсная ускорительная трубка

Similar Documents

Publication Publication Date Title
Tarasenko et al. Supershort electron beam from air filled diode at atmospheric pressure
Mesyats et al. High-power picosecond electronics
Kostyrya et al. The amplitude and current pulse duration of a supershort avalanche electron beam in air at atmospheric pressure
Shao et al. Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation
Zhang et al. Effect of cathode materials on the generation of runaway electron beams and X-rays in atmospheric pressure air
Tarasenko et al. On formation of subnanosecond electron beams in air under atmospheric pressure
Mesyats On a source of outgoing electrons in a pulsed gas discharge
Shafir et al. Experimental research of different plasma cathodes for generation of high-current electron beams
Tarasenko et al. Generation of runaway electrons and X rays in an inhomogeneous electric field at high gas pressures
RU2619774C1 (ru) Импульсная ускорительная трубка
Rybka et al. The temporal structure of a runaway electron beam generated in air at atmospheric pressure
Tarasenko et al. Two-component structure of the current pulse of a ranaway electron beam generated during electric breakdown of elevated-pressure nitrogen
Alekseev et al. Generation of runaway electrons in atmospheric pressure air under 30–200 kV voltage pulses of rise time 1.5 ns
Tarasenko et al. On the parameters of runaway electron beams and on electrons with an “anomalous” energy at a subnanosecond breakdown of gases at atmospheric pressure
RU2376731C1 (ru) Устройство для генерации импульсных пучков быстрых электронов в воздушном промежутке атмосферного давления
Bradley et al. Flash x‐ray source for plasma shutter diagnostics
Tarasenko et al. Duration of the runaway electron beam at a subnanosecond leading edge of the voltage pulse
Poloskov et al. Multicapillary carbon-epoxy tubes as a cathode material for a pulsed electron accelerator
Beloplotov et al. Streamers at the subnanosecond breakdown of argon and nitrogen in nonuniform electric field at both polarities
Beloplotov et al. On the influence of a cathode shape on the parameters of current pulses of runaway electron beams in a gas discharge when applying voltage pulses with a rise time of 200 ns
RU2792844C1 (ru) Импульсная рентгеновская трубка
Brussaard et al. A 2.5-MV subnanosecond pulser with laser-triggered spark gap for the generation of high-brightness electron bunches
RU2479883C1 (ru) Острофокусная двухэлектродная импульсная рентгеновская трубка
Baksht et al. Electron flux spatial distribution in an ultrashort avalanche electron beam generated at atmospheric air pressure
Ramler et al. High current pulsed electron source—Van de Graaff