RU2376731C1 - Устройство для генерации импульсных пучков быстрых электронов в воздушном промежутке атмосферного давления - Google Patents

Устройство для генерации импульсных пучков быстрых электронов в воздушном промежутке атмосферного давления Download PDF

Info

Publication number
RU2376731C1
RU2376731C1 RU2008112458/06A RU2008112458A RU2376731C1 RU 2376731 C1 RU2376731 C1 RU 2376731C1 RU 2008112458/06 A RU2008112458/06 A RU 2008112458/06A RU 2008112458 A RU2008112458 A RU 2008112458A RU 2376731 C1 RU2376731 C1 RU 2376731C1
Authority
RU
Russia
Prior art keywords
cathode
electrons
anode
pulsed
atmospheric pressure
Prior art date
Application number
RU2008112458/06A
Other languages
English (en)
Other versions
RU2008112458A (ru
Inventor
Владимир Иванович Соломонов (RU)
Владимир Иванович Соломонов
Дмитрий Сергеевич Мастюгин (RU)
Дмитрий Сергеевич Мастюгин
Original Assignee
Институт электрофизики Уральского отделения РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт электрофизики Уральского отделения РАН filed Critical Институт электрофизики Уральского отделения РАН
Priority to RU2008112458/06A priority Critical patent/RU2376731C1/ru
Publication of RU2008112458A publication Critical patent/RU2008112458A/ru
Application granted granted Critical
Publication of RU2376731C1 publication Critical patent/RU2376731C1/ru

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Abstract

Устройство для генерации импульсных пучков быстрых электронов (электронов с энергиями от нескольких десятков кэВ до нескольких сотен кэВ) с большой плотностью (до нескольких десятков А/см2) в газонаполненном промежутке атмосферного давления. Устройство представляет собой газонаполненный диод атмосферного давления. Анод в виде тонкой металлической фольги, закрепленной на заземленном металлическом цилиндре, который является корпусом разрядной камеры, катод в виде сплошного цилиндра с плоской поверхностью эмиссии. Вокруг всей боковой поверхности катода, а также перекрывая часть разрядного промежутка, расположена цилиндрическая кварцевая трубка, имеющая с катодом жесткий механический контакт. На катод подается импульсный потенциал с источника импульсного напряжения. Под действием напряжения между катодом и анодом начинается эмиссия электронов с катода. Часть электронов приобретает энергию, достаточную для перехода в режим непрерывного ускорения, и формирует импульсный электронный пучок, который выводится из разрядной камеры через анод. Цилиндрическая кварцевая трубка при этом препятствует уходу электронов на стенки разрядной камеры, а также выравнивает силовые линии электрического поля вдоль оси катод-анод, что уменьшает расходимость электронного пучка, увеличивая его плотность. 2 ил.

Description

Изобретение относится к области сильноточной электроники и может быть использовано для генерации импульсных пучков быстрых электронов (электронов с энергиями от нескольких десятков кэВ до нескольких сотен кэВ) с большой плотностью (до нескольких десятков А/см2) в газонаполненных промежутках атмосферного давления.
Существуют несколько устройств для получения пучков быстрых электронов. Одно из них представляет собой вакуумный диод, в котором импульсное электрическое напряжение создается между острийным металлическим катодом и анодом в виде тонкой металлической фольги, через которую осуществляется вывод электронов (М.И.Яландин, В.Г.Шпак. Мощные малогабаритные импульсно-периодические генераторы субнаносекундного диапазона.//ПТЭ, 2001, №3, с.5-31 - аналог). Плотности тока импульсных пучков быстрых электронов, создаваемых с помощью этого устройства, достигают нескольких сотен А/см2. Недостаток данного устройства состоит в ограниченном сроке службы. Он составляет 105-106 импульсов, после чего целостность анодной фольги нарушается и диод теряет герметичность. Вследствие большой расходимости пучка плотность тока на его оси сильно снижается с расстоянием (В.Г.Шпак. Измерение энергетических характеристик наносекундного электронного пучка, выведенного в воздух через фольгу.//ЛПТЭ, 1980, №3, с.165-167), что также является недостатком.
Другое устройство представляет собой газонаполненный диод атмосферного давления, что автоматически устраняет недостаток малого срока службы, как в предыдущем случае. Принцип генерации импульсных электронных пучков остается тем же самым (Г.А.Месяц, В.Г.Шпак, С.А.Шунайлов, М.И.Яландин. Источник электронов и режим ускорения пикосекундного пучка в газовом диоде с неоднородным полем.// Письма в ЖТФ, т.34, №4, с.71-81 - прототип). В этом случае плотность электронного тока в импульсе, фиксируемая за анодом, на два порядка меньше тока, получаемого с помощью вакуумного диода, что существенно суживает область применения такого пучка. При этом расходимость пучка остается той же.
Задачей предложенного изобретения является частичная компенсация недостатков прототипа и значительное увеличение плотности тока импульсного пучка быстрых электронов. Для решения этой задачи предлагается следующее устройство: газонаполненный диод атмосферного давления, имеющий цилиндрический, сплошной катод с плоской поверхностью эмиссии и анод в виде тонкой металлической фольги, закрепленный на металлическом цилиндре, который служит корпусом разрядной камеры и является обратным токопроводом. Вокруг всей боковой поверхности катода, а также перекрывая часть межэлектродного промежутка, расположена цилиндрическая кварцевая трубка, имеющая с катодом жесткий механический контакт. Кварцевая трубка препятствует уходу электронов на стенки разрядной камеры, а также выравнивает силовые линии электрического поля вдоль оси катод-анод в газоразрядном промежутке, что уменьшает расходимость электронного пучка. Межэлектродное расстояние L определяется величиной приведенной напряженности электрического поля Е/р-[В/(см·атм)] (Е - напряженность электрического поля, р - давление газовой среды), которая должна быть достаточной, чтобы некоторая часть электронов, эмитированных с катода, перешла в режим непрерывного ускорения. Электроны, перешедшие в режим непрерывного ускорения, создают импульсный пучок. Расстояние h от эмитирующей поверхности катода до основания цилиндрической кварцевой трубки, находящегося в межэлектродном промежутке, ограничено неравенством 0<h<A, где А - расстояние, при котором между основанием цилиндрической кварцевой трубки, находящимся в межэлектродном промежутке, и анодом происходит искровой разряд - в этом случае электрическая проводимость межэлектродного промежутка резко возрастает и перехода электронов в режим непрерывного ускорения не наблюдается.
Главным отличием предлагаемого устройства является использование при импульсном разряде в газе атмосферного давления цилиндрической кварцевой трубки, имеющей механически жесткий контакт с катодом и перекрывающей всю его боковую поверхность и часть разрядного промежутка. На фиг.1 приведена схема разрядной камеры, где 1 - анод из тонкой фольги, 2 - цилиндрический катод, 3 - цилиндрическая кварцевая трубка, 4 - металлический цилиндр, который служит корпусом разрядной камеры и является обратным токопроводом. На цилиндрический катод 2 подается импульсный потенциал. Далее под действием напряжения между катодом и заземленным анодом 1, закрепленным на металлическом цилиндре 4, начинается эмиссия электронов с катода. Часть электронов эмитированных с катода приобретает энергию, достаточную для перехода в режим непрерывного ускорения, и формирует электронный пучок. Кварцевая трубка 3 препятствует уходу электронов на стенки разрядной камеры, а также выравнивает силовые линии электрического поля вдоль оси катод-анод в газоразрядном промежутке, что уменьшает расходимость электронного пучка. Полученный пучок выводится через анод. Оптимальное межэлектродное расстояние L (фиг.1), т.е. такое, при котором наблюдается наибольшая плотность импульсного пучка быстрых электронов, определяется величиной приведенной напряженности электрического поля E/N, где Е - напряженность электрического поля, N - концентрация молекул газа. Приведенная напряженность электрического поля должна быть достаточной, чтобы некоторая часть электронов, эмитированных с катода, перешла в режим непрерывного ускорения. Расстояние h (фиг.1) ограничивается неравенством 0<h<A, где А - расстояние, при котором между основанием цилиндрической трубки, находящимся в межэлектродном промежутке, и анодом происходит искровой разряд, что недопустимо, т.к. в этом случае перехода части электронов в режим непрерывного ускорения не наблюдается.
Плотность тока пучка быстрых электронов в проведенных экспериментах определялась по яркости свечения люминофора ZnSCdS:Ag под действием этого пучка. Люминофор был нанесен на подложку из плотной белой бумаги и расположен непосредственно на аноде. Яркость свечения люминофора измерялась с помощью ФЭУ-100, показания которого фиксировались осциллографом Tektronics TDS 360. На катод подавались импульсы амплитудой - 220 кВ длительностью 2 нс и фронтом 0,7 нс с источника импульсного напряжения РАДАН 220. Анод представлял собой алюминиевую фольгу толщиной 20 мкм. Разрядная камера закрепляется непосредственно на источнике импульсного напряжения РАДАН-220.
В частности, были получены зависимости плотности тока импульсного пучка быстрых электронов от комбинации расстояний h и L, а также найдены оптимальные диаметр и материал цилиндрического катода для наибольшей плотности тока импульсного пучка быстрых электронов. Наибольшая плотность импульсного пучка наблюдалась в случае стального (сталь 3) катода (в эксперименте использовалось 4 материала катода: медь, графит, свинец, сталь 3) диаметром 10,5 мм (в эксперименте использовались цилиндрические катоды девяти диаметров: 4,5; 6,5; 8,5; 10,5; 12,5; 14,5; 16,5; 18,5 и 20,5 мм), в конфигурации h=16 мм, L=28 мм. В данном случае оптимальные расстояния L и h определялись экспериментально. Графики зависимостей плотности тока пучка от расстояния L для h=16 мм и диаметра катода d=10,5 мм для четырех использованных материалов приведены на фиг.2. При анализе результатов эксперимента было обнаружено небольшое увеличение оптимального L при увеличении h.
Также была получена зависимость плотности импульсного пучка быстрых электронов от величины межэлектродного расстояния L в конфигурации без кварцевой трубки. Сравнение наилучших результатов, т.е. яркости свечения люминофора в конфигурациях h=20 мм, L=36 мм для графитового катода диаметром 18,5 мм; h=20 мм, L=28 мм для свинцового катода диаметром 14,5 мм; н=16 мм, L=28 мм для медного катода диаметром 12,5 мм; h=12, L=24 мм для стального катода диаметром 8,5 мм с наилучшими результатами в случае без кварцевой трубки для графитового катода диаметром 18,5 мм при L=36 мм, для свинцового катода диаметром 14,5 мм при L=28 мм, для медного катода диаметром 12,5 мм при L=40 мм и для стального катода диаметром 8,5 мм при L=32 мм показало увеличение плотности тока пучка быстрых электронов в 23,53; 3,95; 2,43 и 1,83 раза соответственно.

Claims (1)

  1. Устройство для генерации импульсных пучков быстрых электронов в воздушном промежутке атмосферного давления, включающее в себя сплошной цилиндрический катод, на который подается импульсный потенциал и заземленный анод в виде тонкой металлической фольги, сквозь который выводится пучок, отличающееся тем, что вокруг всей боковой поверхности катода, а также перекрывая часть межэлектродного промежутка, расположена цилиндрическая кварцевая трубка, имеющая с катодом жесткий механический контакт, при этом межэлектродное расстояние определяют величиной приведенной напряженности электрического поля Е/р, [В/см·атм], где Е - напряженность электрического поля, р - давление газовой среды, достаточной для перехода части электронов, эмитированных с катода, в режим непрерывного ускорения, а расстояние h от эмитирующей поверхности катода до основания цилиндрической кварцевой трубки, находящегося в межэлектродном промежутке, ограничено неравенством 0<h<A, где А - расстояние, при котором между основанием цилиндрической кварцевой трубки, находящимся в межэлектродном промежутке, и анодом происходит искровой разряд.
RU2008112458/06A 2008-03-31 2008-03-31 Устройство для генерации импульсных пучков быстрых электронов в воздушном промежутке атмосферного давления RU2376731C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008112458/06A RU2376731C1 (ru) 2008-03-31 2008-03-31 Устройство для генерации импульсных пучков быстрых электронов в воздушном промежутке атмосферного давления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008112458/06A RU2376731C1 (ru) 2008-03-31 2008-03-31 Устройство для генерации импульсных пучков быстрых электронов в воздушном промежутке атмосферного давления

Publications (2)

Publication Number Publication Date
RU2008112458A RU2008112458A (ru) 2009-10-10
RU2376731C1 true RU2376731C1 (ru) 2009-12-20

Family

ID=41260328

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008112458/06A RU2376731C1 (ru) 2008-03-31 2008-03-31 Устройство для генерации импульсных пучков быстрых электронов в воздушном промежутке атмосферного давления

Country Status (1)

Country Link
RU (1) RU2376731C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2499321C1 (ru) * 2012-05-22 2013-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет" (СПбГУ) Устройство для получения стабильного микроразряда атмосферного давления
RU2538386C1 (ru) * 2013-08-07 2015-01-10 Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук, (ИСЭ СО РАН) Вакуумный диод
RU2581618C1 (ru) * 2014-10-02 2016-04-20 Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН) Способ генерации пучков быстрых электронов в газонаполненном промежутке и устройство для его реализации (варианты)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МЕСЯЦ Г.А. и др. Источник электронов и режим ускорения пикосекундного пучка в газовом диоде с неоднородным полем, письма в ЖТФ, т.34, №4, с.71-81. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2499321C1 (ru) * 2012-05-22 2013-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет" (СПбГУ) Устройство для получения стабильного микроразряда атмосферного давления
RU2538386C1 (ru) * 2013-08-07 2015-01-10 Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук, (ИСЭ СО РАН) Вакуумный диод
RU2581618C1 (ru) * 2014-10-02 2016-04-20 Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН) Способ генерации пучков быстрых электронов в газонаполненном промежутке и устройство для его реализации (варианты)

Also Published As

Publication number Publication date
RU2008112458A (ru) 2009-10-10

Similar Documents

Publication Publication Date Title
Tarasenko et al. Supershort electron beam from air filled diode at atmospheric pressure
Shao et al. Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation
Tarasenko et al. On formation of subnanosecond electron beams in air under atmospheric pressure
Tarasenko et al. SLEP-150M compact supershort avalanche electron beam accelerator
Mesyats On a source of outgoing electrons in a pulsed gas discharge
RU2376731C1 (ru) Устройство для генерации импульсных пучков быстрых электронов в воздушном промежутке атмосферного давления
Krasik et al. Plasma sources for high-current electron beam generation
US8081734B2 (en) Miniature, low-power X-ray tube using a microchannel electron generator electron source
Krasik et al. Intense electron emission from carbon fiber cathodes
Burdovitsin et al. A plasma-cathode electron source for focused-beam generation in the fore-pump pressure range
Alekseev et al. Electron beam formation in helium at elevated pressures
Krasik Plasma cathode research in plasma physics and pulsed power laboratory
RU98633U1 (ru) Генератор импульсного рентгеновского излучения
TWI339402B (en) Gas discharge lamp
Gleizer et al. Investigation of a hollow anode with an incorporated ferroelectric plasma source for generation of high-current electron beams
US20150345021A1 (en) Pulsed plasma deposition device
Zhu et al. An improved pulse-line accelerator-driven, intense current-density, and high-brightness pseudospark electron beam
Tarasenko et al. Different modes of runaway electron beams generated in high-pressure gases
Krokhmal et al. Low-pressure, high-current hollow cathode with a ferroelectric plasma source
Bollanti et al. Parametric study of an x‐ray preionizer with plasma cathode
Inada et al. Strong X-ray emission from electrified insulators
Gleizer et al. Multicapillary cathode controlled by a ferroelectric plasma source
Zhu et al. Design of high-voltage and high-brightness pseudospark-produced electron beam source for a Raman free-electron laser
US20230128736A1 (en) Method for testing light-emitting diode, and a plasma generating device for implementing the method
RU2619774C1 (ru) Импульсная ускорительная трубка

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180401