RU2616446C1 - Способ приведения автономного необитаемого подводного аппарата - Google Patents

Способ приведения автономного необитаемого подводного аппарата Download PDF

Info

Publication number
RU2616446C1
RU2616446C1 RU2016120754A RU2016120754A RU2616446C1 RU 2616446 C1 RU2616446 C1 RU 2616446C1 RU 2016120754 A RU2016120754 A RU 2016120754A RU 2016120754 A RU2016120754 A RU 2016120754A RU 2616446 C1 RU2616446 C1 RU 2616446C1
Authority
RU
Russia
Prior art keywords
beacon
signals
lighthouse
signal
underwater vehicle
Prior art date
Application number
RU2016120754A
Other languages
English (en)
Inventor
Игорь Николаевич Бурдинский
Семен Александрович Отческий
Андрей Сергеевич Миронов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет"
Priority to RU2016120754A priority Critical patent/RU2616446C1/ru
Application granted granted Critical
Publication of RU2616446C1 publication Critical patent/RU2616446C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/72Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к области гидроакустических навигационных систем, а более конкретно к способам приведения автономных необитаемых подводных аппаратов при помощи гидроакустических средств. Достигаемый технический результат - сокращение до минимума набора регистрируемых параметров, необходимых для приведения подводного аппарата, при отсутствии синхронизации между маяком и подводным аппаратом. Технический результат достигается тем, что для приведения автономного необитаемого подводного аппарата используется один опорный гидроакустический маяк, излучающий сигналы через равные промежутки времени, для аппарата задается постоянная скорость движения
Figure 00000032
, аппарат принимает сигналы от маяка, с помощью системы экстремального регулирования (СЭР) производится поиск оптимального угла пеленга на маяк; производят настройку маяка на периодическое излучение двух типов фазоманипулированных шумоподобных сигналов S1 и S2 с мощностью P(S1)>P(S2) и периодом T(S1)≥T(S2); по ходу движения аппарата регистрируют сигналы с помощью многоканального приемника, каждый из каналов которого настроен на определенное изменение длительности и частоты сигналов S1 и S2, вызванное влиянием эффекта Допплера; путем анализа корреляционной функции в каждом из каналов с помощью селектора максимума идентифицируют сигнал и производят оценку скорости взаимного сближения аппарата и маяка
Figure 00000033
; полученную оценку подают на вход СЭР и производят управление движительно-рулевым комплексом аппарата для поиска и поддержания курса, соответствующего максимальному значению
Figure 00000034
; при регистрации сигнала S2 уменьшают скорость движения аппарата
Figure 00000035
; при получении отрицательной оценки

Description

Изобретение относится к области гидроакустических навигационных систем, а более конкретно к способам приведения автономных необитаемых подводных аппаратов при помощи гидроакустических средств. Предлагаемый способ предназначен для приведения подводного аппарата к источнику опорных сигналов с использованием минимального набора регистрируемых данных.
Известен способ приведения автономного подводного аппарата, описанный в [1], а также в описательной части патента на изобретение РФ 2460043, 2011 г., МПК G01С 23/00, как альтернативное изобретение. Описываемый способ является частью решения по навигации автономных необитаемых подводных аппаратов. В известном способе задача приведения решается при наличии акустического контакта в ближней зоне приведения. При использовании для приведения маяка-излучателя дистанция Lt от маяка до аппарата определяется как произведение времени dt2 распространения сигнала по трассе и скорости звука Vs. В случае применения маяка-ответчика известно только общее время распространения сигнала (dt12=dt1+dt2) от АНПА до маяка dt1 и обратно к АНПА dt2. Поэтому при расчете дистанции до маяка-ответчика берется половина временной задержки dt1,2. Координаты АНПА по счислению пути в случае с маяком-излучателем соответствуют местоположению АНПА в момент приема сигнала от маяка s=[Xt2,Yt2,Zt2], а в случае с маяком-ответчиком - среднему положению аппарата S=([Xt2,Yt2,Zt2]+[X a ,Yt1,Zt1]m)/2 между посылкой t1 и приемом t2 акустического сигнала. Так как глубины аппарата и маяка известны, то требуется определить только местоположение источника сигнала в горизонтальной проекции на эту плоскость вектора между положением АНПА и положением маяка:
Figure 00000001
где Rt - расстояние до маяка в плоскости (X,Y) в момент времени t; Lt - расстояние до маяка в трехмерном пространстве (X,Y,Z) в момент времени t; Zt - глубина АНПА в момент времени t; Zмаяк - глубина постановки маяка.
Определение направления на маяк по дистанции до него и данным системы счисления пути осуществляется в следующем порядке.
При определении направления (пеленга) на маяк предполагается, что отклики от источника сигнала обладают погрешностью, имеющей нормальный закон распределения с математическим ожиданием, равным нулю (2):
Figure 00000002
где p - функция распределения погрешности измерения дистанции; σ - среднеквадратичное отклонение погрешности; r - вектор истинного местоположения маяка относительно АНПА; R - измеренная дистанция до маяка; (R-|r|) - погрешность измерения дистанции. В соответствии с принятой моделью определения пеленга на маяк при использовании трех откликов по положению АНПА (по счислению пути) в моменты определения дистанции до маяка строят «кольца», соответствующие вероятному местоположению источника сигнала для каждого из положений подводного аппарата. Радиусы этих колец равны измеренным согласно (1) дистанциям до маяка в горизонтальной плоскости, ширина соответствует погрешности измерения дальности (при этом «размытость» колец определяется видом функции p), а центры совпадают с координатами АНПА в момент определения дистанции.
Местонахождением маяка считается область пересечения наибольшего числа колец. Поэтому общая оценка вероятности нахождения маяка в любой точке пространства рассчитывается как суперпозиция оценок от каждого отклика, а пеленг на маяк <pt определяется исходя из максимизации этой суперпозиции для некоторого количества откликов N:
Figure 00000003
Поскольку координаты маяка относительно АНПА rn=q-sn, а его местоположение в системе счисления пути определяется выражением q=st+rt (для любого t), то пеленг на маяк может быть найден из:
Figure 00000004
где rt - местоположение маяка относительно АНПА в момент определения пеленга.
В свою очередь, местоположение маяка rt относительно АНПА в любой момент времени определяется исходя из дистанции до него Rt и пеленга <pt:
Figure 00000005
Таким образом, для выбора направления на маяк в момент времени t достаточно определить, при каком <р выражение (4) принимает максимум, используя (5) для расчета
Figure 00000006
. Можно принять, что необходимая точность определения направления на маяк не превышает 1. При этом процедура вычислений выполняется только при получении нового отклика (два раза в минуту). Тогда для нахождения максимума можно ограничиться простым перебором (р от 0° до 360°) с шагом в 1°. Кроме того, значение выражения (4) дает представление о «степени уверенности» в правильности определения пеленга. Чем больше это значение, тем «вероятнее», что пеленг рассчитан точно (многие отклики подтверждают нахождение маяка в данной точке). Малые значения этой оценки говорят о наличии сбойных данных в величине Rt или массиве Rt.
Одним из недостатков способа является то, что объект навигации должен быть оснащен инерциальной навигационной системой определения координат, которая, как известно, обладает мультипликативной ошибкой. Другим недостатком является необходимость предварительного поиска пеленга на маяк при движении аппарата по круговой или иной сложной траектории. К недостаткам описываемого способа приведения также следует отнести необходимость получения трех откликов от маяков.
Известен способ приведения автономного необитаемого подводного аппарата с использованием системы экстремального регулирования (СЭР), описанный в статье [2]. В нем для приведения используется один маяк, внутренняя система отсчета которого синхронизирована с системой отсчета аппарата, либо используется система типа маяк ответчик (двухпроходной способ приема и передачи сигнала). По ходу движения аппарат регистрирует опорные сигналы от маяка и вычисляет время распространения сигнала τ. Приведение аппарата осуществляется путем поддержания СЭР значения угла пеленга на маяк α, при котором разница времени распространения опорного сигнала от маяка δ=Δτ(α) максимальная.
Этот способ приведения автономного необитаемого подводного аппарата с использованием СЭР по своему функциональному назначению, по своей технической сущности и достигаемому результату наиболее близок заявленному и принят за прототип.
Недостатком способа-прототипа являются необходимость синхронизации приемного и принимающего оборудования, а также увеличение ошибки ввиду двухпроходного способа приема и передачи сигнала.
Задачей, на решение которой направлено заявляемое изобретение, является сокращение до минимума набора регистрируемых параметров, необходимых для приведения подводного аппарата, при отсутствии синхронизации между маяком и подводным аппаратом.
Технический результат достигается тем, что для приведения автономного необитаемого подводного аппарата используется один опорный гидроакустический маяк, излучающий сигналы через равные промежутки времени, для аппарата задается постоянная скорость движения
Figure 00000007
, аппарат принимает сигналы от маяка, с помощью СЭР производится поиск оптимального угла пеленга на маяк; согласно изобретению производят настройку маяка на периодическое излучение двух типов фазоманипулированных шумоподобных сигналов S1 и S2 с мощностью P(S1)>P(S2) и периодом T(S1)≥T(S2); по ходу движения аппарата регистрируют сигналы с помощью многоканального приемника, каждый из каналов которого настроен на определенное изменение длительности и частоты сигналов S1 и S2, вызванное влиянием эффекта Допплера; путем анализа корреляционной функции в каждом из каналов с помошью селектора максимума идентифицируют сигнал и производят оценку скорости взаимного сближения аппарата и маяка
Figure 00000008
; полученную оценку подают на вход СЭР, которая производит управление движительно-рулевым комплексом аппрата с целью поиска и поддержания курса, соответствующего максимальному значению
Figure 00000009
; при регистрации сигнала S2 уменьшают скорость движения аппарата
Figure 00000007
; при получении отрицательной оценки
Figure 00000010
на выходе селектора максимума (прохождении аппаратом точки расположения маяка) производят остановку подводного аппарата.
Существенными отличительными от способа-прототипа признаками являются: 1) не производится синхронизация внутренних систем отсчета подводного аппарата и источника опорных сигналов; 2) для приведения используется один входной параметр - оценка скорости взаимного сближения аппарата и маяка; 3) Оценка скорости
Figure 00000010
производится аппаратно многоканальным приемником опорных сигналов с селектором максимума, без нагрузки на бортовой компьютер; 4) Для точного приведения используется два типа сигналов разной мощности и частоты излучения.
Сущность изобретения поясняется чертежом, где на фиг. 1 изображена структурная схема реализации способа приведения автономного необитаемого подводного аппарата.
На схеме показаны: 1 - многоканальный приемник фазоманипулированных шумоподобных сигналов, в состав которого входит два набора каналов для сигналов S1 и S2; 2 - селектор максимума, который производит иденификацию сигнала S1 или S2 и вычисляет оценку скорости взаимного сближения аппарата и маяка
Figure 00000010
; 3 - система экстремального регулирования СЭР, регулирующая измерения
Figure 00000010
и формирующая управляющие воздействия на движительно-рулевой комплекс аппарата - 4.
Способ приведения автономного необитаемого подводного аппарата реализуется следующим образом.
Аппарат находится в точке О на некотором расстоянии от гидроакустического маяка - источника опорных сигналов, расположенного в точке А (Фиг. 2), где α - угол пеленга на маяк. В точке О аппарат принимает ГА сигнал от маяка. Крайние соотношения между вектором скорости
Figure 00000011
и его проекцией на ось OA в зависимости от угла α:
- α=0 - движение прямым курсом на маяк, т.е.
Figure 00000012
;
- α=±π/2 - АНПА движется по окружности вокруг маяка, т.е.
Figure 00000013
;
- α=±π - движение строго от маяка, т.е.
Figure 00000014
.
Статическая характеристика зависимости функции
Figure 00000015
от угла пеленга на маяк α имеет экстремальный характер (Фиг. 3). Задача приведения сводится к тому, чтобы поддерживать значение
Figure 00000016
.
Для вычисления оценки
Figure 00000010
используют многоканальный приемник гидроакустических сигналов 1 имеющий в своем составе две группы каналов, одна для сигнала S1 и другая для S2 и селектор максимума 2. Каждый канал в группе настроен на определенное изменение длительности и частоты сигнала, вызванное влиянием эффекта Допплера.
Согласно явлению эффекта Доплера частота сигнала, регистрируемого в момент движения по направлению к источнику, линейно зависит от скорости приемника:
Figure 00000017
где
Figure 00000018
- скорость распространения ГА сигнала;
Figure 00000019
- частота сигнала, испускаемого источником;
Figure 00000020
- частотный сдвиг, вызванный влиянием эффекта Доплера.
В случае движение в направлении от источника значение
Figure 00000021
станет отрицательным и правая часть выражения (6) будет содержать знак минус. Таким образом, проанализировав величину отклонения частоты сигнала, можно получить оценку скорости
Figure 00000022
, а также однозначно сказать, приближается ли АНПА к опорному маяку или удаляется от него.
Для однозначного определения частотного смещения сигнала при неизвестном значении временного смещения функция неопределенности должна иметь «кнопочный» вид как, например, у сложного фазоманипулированного сигнала. База сигнала подбирается из желаемого разрешения по частоте и скорости сближения.
При реализации дискретной системы выражение для вычисления скорости
Figure 00000022
движения будет иметь следующий вид:
Figure 00000023
где ΔN - это изменение длительности сигнала, выраженное в периодах частоты дискретизации; τ - длительность сигнала;
Figure 00000024
- частота дискретизации.
Многоканальный приемник 1, каждый канал которого настроен на определенное смещение длительности и частоты сигнала, позволяет получить оценку ΔN путем выбора канала с наибольшим значение корреляционной функции. Выборка канала производится селектором максимума 2, который определяет тип сигнала исходя из того, к какой группе S1 или S2 относится канал с наибольшей корреляционной функцией, и преобразует значение ΔN в соответствии с формулой (7) в оценку скорости
Figure 00000025
.
Оценка
Figure 00000026
с селектора 2 поступает на вход СЭР 3. Задача СЭР - нахождение и поддержание оптимального курса движения АНПА, при котором
Figure 00000027
, система формирует управляющие воздействия на движительно-рулевой комплекс аппарата 4.
Принцип работы СЭР АНПА поясняется чертежом, представленным на фиг. 4. Аппарат начинает движение с точки М1 на графике поиска экстремума в системе экстремального регулирования. Аппарат движется с фиксированным шагом угла поворота β и после регистрации сигнала S1(t)/S2(t), получает оценку
Figure 00000026
. Если в ходе поворота скорость
Figure 00000026
уменьшилась, то СЭР меняет направления поворота. Если происходит увеличение скорости сближения, то СЭР продолжает поворот в установленном направлении. Таким образом, АНПА выходит на курс на маяк и
Figure 00000028
(точка М2 на графике), при этом продолжение поворота приведет к уменьшению
Figure 00000026
. При достижении
Figure 00000029
порогового значения δ (точка М3 на графике) СЭР изменит направление поворота. Движение аппарата продолжается до тех пор, пока не будет зафиксировано удаление после сближения с маяком, то есть
Figure 00000030
.
Для приведения используется два сигнала S1(t) и S2(t). Сигнал S2(t) отличается меньшей мощностью и более высокой частотой излучения для точного приведения в ближней зоне источника опорных сигналов. При устойчивом приеме сигнала S2(t) производится уменьшение скорости движения АНПА
Figure 00000031
.
Главным достоинством заявленного способа является его высокая надежность. Способ может быть использован для надежного приведения АНПА даже в ситуации выхода из строя (или отключения в целях энергосбережения) практически всех систем бортового навигационного комплекса, таких как: гидроакустическая навигационная система, инерциальная навигационная система, доплеровский лаг и т.д.
Источники литературы
1. Павин A.M. Автоматическое приведение автономного подводного робота к гидроакустическому маяку // Подводные исследования и роботехника. 2008, №5 (1), с. 32-38.
2. Бурдинский И.Н. Алгоритм приведения автономного подводного аппарата к источнику сигнала с использованием экстремального регулятора / И.Н. Бурдинский, Ф.В. Безручко // Информатика и системы управления. 2011. №1 (27). С. 121-129.

Claims (1)

  1. Способ приведения автономного необитаемого подводного аппарата, при котором используется один опорный гидроакустический маяк, излучающий сигналы через равные промежутки времени, для аппарата задается постоянная скорость движения νдвиж, аппарат принимает сигналы от маяка, с помощью системы экстремального регулирования (СЭР) производится поиск оптимального угла пеленга на маяк; отличающийся тем, что производят настройку маяка на периодическое излучение двух типов фазоманипулированных шумоподобных сигналов S1 и S2 с мощностью P(S1)>P(S2) и периодом T(S1)≥T(S2); по ходу движения аппарата регистрируют сигналы с помощью многоканального приемника, каждый из каналов которого настроен на определенное изменение длительности и частоты сигналов S1 и S2, вызванное влиянием эффекта Допплера; путем анализа корреляционной функции в каждом из каналов с помощью селектора максимума идентифицируют сигнал и производят оценку скорости взаимного сближения аппарата и маяка νдоп; полученную оценку подают на вход СЭР, которая производит управление движительно-рулевым комплексом аппарата с целью поиска и поддержания курса, соответствующего максимальному значению νдоп; при регистрации сигнала S2 уменьшают скорость движения аппарата νдвиж; при получении отрицательной оценки νдоп на выходе селектора максимума (прохождении аппаратом точки расположения маяка) производят остановку подводного аппарата.
RU2016120754A 2016-05-26 2016-05-26 Способ приведения автономного необитаемого подводного аппарата RU2616446C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016120754A RU2616446C1 (ru) 2016-05-26 2016-05-26 Способ приведения автономного необитаемого подводного аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016120754A RU2616446C1 (ru) 2016-05-26 2016-05-26 Способ приведения автономного необитаемого подводного аппарата

Publications (1)

Publication Number Publication Date
RU2616446C1 true RU2616446C1 (ru) 2017-04-17

Family

ID=58642518

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016120754A RU2616446C1 (ru) 2016-05-26 2016-05-26 Способ приведения автономного необитаемого подводного аппарата

Country Status (1)

Country Link
RU (1) RU2616446C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680395C1 (ru) * 2018-05-16 2019-02-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" Способ повышения точности навигации автономного необитаемого подводного аппарата с инерциальной навигационной системой и системой технического зрения
RU2689281C1 (ru) * 2018-09-17 2019-05-24 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Способ навигационно-информационной поддержки глубоководного автономного необитаемого подводного аппарата
RU2785260C1 (ru) * 2022-06-17 2022-12-05 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" Устройство управления движением автономного необитаемого подводного аппарата

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119341A (en) * 1991-07-17 1992-06-02 The United States Of America As Represented By The Secretary Of The Air Force Method for extending GPS to underwater applications
JPH0968575A (ja) * 1995-08-31 1997-03-11 Kaijo Corp 水中データの計測システム
EP1275012A1 (en) * 2000-03-03 2003-01-15 Mikael Bliksted Larsen Methods and systems for navigating under water
EP1891457A2 (en) * 2005-06-13 2008-02-27 Wireless Fibre Systems LTD Underwater navigation
RU2483327C2 (ru) * 2011-08-01 2013-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Интегрированный комплекс навигации и управления движением для автономных необитаемых подводных аппаратов
RU130292U1 (ru) * 2012-09-06 2013-07-20 Открытое акционерное общество "Тетис Про" Комплекс телеуправляемого необитаемого подводного аппарата
RU2563332C2 (ru) * 2013-07-15 2015-09-20 Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") Способ навигации автономного необитаемого подводного аппарата

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119341A (en) * 1991-07-17 1992-06-02 The United States Of America As Represented By The Secretary Of The Air Force Method for extending GPS to underwater applications
JPH0968575A (ja) * 1995-08-31 1997-03-11 Kaijo Corp 水中データの計測システム
EP1275012A1 (en) * 2000-03-03 2003-01-15 Mikael Bliksted Larsen Methods and systems for navigating under water
EP1891457A2 (en) * 2005-06-13 2008-02-27 Wireless Fibre Systems LTD Underwater navigation
RU2483327C2 (ru) * 2011-08-01 2013-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Интегрированный комплекс навигации и управления движением для автономных необитаемых подводных аппаратов
RU130292U1 (ru) * 2012-09-06 2013-07-20 Открытое акционерное общество "Тетис Про" Комплекс телеуправляемого необитаемого подводного аппарата
RU2563332C2 (ru) * 2013-07-15 2015-09-20 Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") Способ навигации автономного необитаемого подводного аппарата

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БУРДИНСКИЙ И.Н. Алгоритм наведения автономного подводного аппарата к источнику сигнала с ипользованием экстремального регулятора. Информатика и системы управления. "011, N1(27), с. 121-129. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680395C1 (ru) * 2018-05-16 2019-02-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" Способ повышения точности навигации автономного необитаемого подводного аппарата с инерциальной навигационной системой и системой технического зрения
RU2689281C1 (ru) * 2018-09-17 2019-05-24 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Способ навигационно-информационной поддержки глубоководного автономного необитаемого подводного аппарата
RU2789714C1 (ru) * 2022-04-11 2023-02-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет телекоммуникаций и информатики" (СибГУТИ) Способ проверки точности навигации автономного необитаемого подводного аппарата
RU2785260C1 (ru) * 2022-06-17 2022-12-05 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" Устройство управления движением автономного необитаемого подводного аппарата
RU2789999C1 (ru) * 2022-07-26 2023-02-14 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Способ навигационного оборудования морского района

Similar Documents

Publication Publication Date Title
RU2624461C1 (ru) Способ определения координат объекта
CN102004244B (zh) 多普勒直接测距法
US10567918B2 (en) Radio-location method for locating a target device contained within a region of space
RU2469346C1 (ru) Способ позиционирования подводных объектов
RU2624457C1 (ru) Способ определения координат объекта
Carroll Underwater localization and tracking of physical systems
RU2616446C1 (ru) Способ приведения автономного необитаемого подводного аппарата
Hammer et al. An acoustic position estimation prototype system for underground mining safety
Kouzoundjian et al. A TDOA underwater localization approach for shallow water environment
RU2649073C1 (ru) Способ определения координат подводного объекта гидроакустической системой подводной навигации с юстировочным маяком
US10914812B2 (en) Method for locating sources emitting electromagnetic pulses
Jiang et al. Improvement of the position estimation for underwater gliders with a passive acoustic method
RU2692841C1 (ru) Гидроакустический способ определения параметров цели при использовании взрывного сигнала с беспроводной системой связи
RU2653956C1 (ru) Способ определения текущих координат цели в бистатическом режиме гидролокации
US7315280B2 (en) Coherent geolocation system
JP7342244B2 (ja) オブジェクトの深度を決定する方法及びシステム
RU2562616C1 (ru) Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
RU2724962C1 (ru) Способ определения координат морской шумящей цели
RU2545068C1 (ru) Способ измерения изменения курсового угла движения источника зондирующих сигналов
JP5277693B2 (ja) レーダ装置
Dubrovin et al. Some algorithms of differential-ranging acoustic positioning system intended for AUV group navigation
RU117018U1 (ru) Навигационная гидроакустическая станция освещения ближней обстановки
RU2196341C1 (ru) Способ определения параметров движения маневрирующего объекта
JP2008304329A (ja) 測定装置
RU2612201C1 (ru) Способ определения дистанции гидролокатором

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180527