RU2616120C1 - Способ управления автоматической стрельбой ракетно-артиллерийского вооружения, устанавливаемого на подвижном носителе - Google Patents

Способ управления автоматической стрельбой ракетно-артиллерийского вооружения, устанавливаемого на подвижном носителе Download PDF

Info

Publication number
RU2616120C1
RU2616120C1 RU2016107803A RU2016107803A RU2616120C1 RU 2616120 C1 RU2616120 C1 RU 2616120C1 RU 2016107803 A RU2016107803 A RU 2016107803A RU 2016107803 A RU2016107803 A RU 2016107803A RU 2616120 C1 RU2616120 C1 RU 2616120C1
Authority
RU
Russia
Prior art keywords
muzzle
shot
barrel
oscillations
rocket
Prior art date
Application number
RU2016107803A
Other languages
English (en)
Inventor
Александр Васильевич Вагин
Михаил Игоревич Сидоров
Николай Михайлович Ватутин
Валерий Иванович Беляков
Владимир Валентинович Колтунов
Аркадий Викторович Струневич
Original Assignee
Федеральное казенное предприятие "Научно-исследовательский институт "Геодезия" (ФКП "НИИ "Геодезия")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное казенное предприятие "Научно-исследовательский институт "Геодезия" (ФКП "НИИ "Геодезия") filed Critical Федеральное казенное предприятие "Научно-исследовательский институт "Геодезия" (ФКП "НИИ "Геодезия")
Priority to RU2016107803A priority Critical patent/RU2616120C1/ru
Application granted granted Critical
Publication of RU2616120C1 publication Critical patent/RU2616120C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41FAPPARATUS FOR LAUNCHING PROJECTILES OR MISSILES FROM BARRELS, e.g. CANNONS; LAUNCHERS FOR ROCKETS OR TORPEDOES; HARPOON GUNS
    • F41F1/00Launching apparatus for projecting projectiles or missiles from barrels, e.g. cannons; Harpoon guns

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Изобретение относится к области военной техники. Способ управления автоматической стрельбой ракетно-артиллерийского вооружения, устанавливаемого на подвижном носителе, заключается в формировании системой управления команды на разрешение очередного выстрела с учетом колебаний дульного среза пушечного ствола или выходных отверстий стволов пускового блока. Выстрел производят с опережением по времени, равным интервалу между моментом инициирования метательного заряда соответствующего боеприпаса и его полным выходом из дульного среза в момент максимального значения ускорения колебаний. Техническим результатом изобретения является повышение точности стрельбы с одновременным снижением расхода боеприпасов на поражение единичной цели. 2 ил.

Description

Предлагаемое изобретение относится к области военной техники, предназначено для повышения точности стрельбы ракетно-артиллерийских установок и может быть использовано при ведении стрельбы как из существующих, так и перспективных систем вооружения, устанавливаемых на любых подвижных носителях - наземных, плавсредствах и летательных аппаратах, например автоматических пушек типа ГШ-23, 2А42, пусковых устройств (блоков) типа Б-8, Б-13 для запуска неуправляемых авиационных ракет типа С-8, С-13 и т.п.
Известен способ повышения точности стрельбы, заключающийся в стабилизации позиции орудийного ствола артиллерийского оружия, установленного на подвижном носителе, в заданном направлении относительно цели /1/. Способ предложено реализовать посредством системы автоматизированного управления (САУ), включающей наряду с традиционными инерциальными устройствами и датчиками ускорений, передающими показания на компьютерную систему обработки информации, также и датчик, фиксирующий вызванные внешними воздействиями на дульную часть ствола колебания последней в районе дульного среза. Указанные колебания вызываются как за счет разнонаправленной вибрации подвижного носителя при перемещении в окружающей среде, так и за счет явлений, вызываемых непосредственно стрельбой. С учетом зафиксированных датчиками различных кинематических и динамических факторов САУ выдает команды на соответствующие исполнительные механизмы, посредством которых и осуществляется наводка и стабилизация ствола оружия в направлении, оптимальном для стрельбы по цели.
Недостатком указанного способа является то, что он предназначен только для осуществления некой «усредненной» стабилизации ствола оружия в направлении цели. Невзирая на съем информации о колебаниях дульного среза, т.е. фактически координат и поведения точки покидания боеприпасом ствола, в системе управления, судя по описанию патента, команда на разрешение очередного выстрела не предусмотрена. На момент выстрела величина вектора радиальной составляющей колебательной скорости/ускорения дульного среза может быть весьма высокой, что естественно скажется на точности выстрела, осуществляемого членом экипажа.
Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ управления автоматической стрельбой артиллерийской установки /2/, заключающийся в формировании системой управления артиллерийской установки команды на разрешение очередного выстрела, отличающийся тем, что команду на разрешение выстрела формируют с учетом собственных угловых колебаний дульной части ствола, а выстрел производят в момент максимального значения скорости собственных угловых колебаний.
В данном техническом решении предложено после каждого выстрела измерять частоту и амплитуду скорости угловых колебаний дульной части, после чего, с учетом результатов измерений, системой автоматизированного управления дается команда на очередной выстрел.
Описанный способ не лишен некоторых недостатков.
В соответствии с определением /3/: «ВЫСТРЕЛ - 1) явление, совокупность процессов, происходящих в стволе с момента воспламенения порохового заряда до момента окончания истечения газов из канала ствола после вылета снаряда. Явление В. включает в себя следующие основные процессы: воспламенение пороха, горение пороха, образование пороховых газов, расширение пороховых газов, поступательное движение снаряда, вращательное движение снаряда, движение откатных частей, истечение пороховых газов из канала ствола…». Таким образом, процесс выстрела можно условно разделить на несколько стадий - инициирование метательного заряда, последующее движение снаряда в канале ствола артиллерийского орудия под действием давления газообразных продуктов его сгорания и, наконец, комплекс явлений, происходящих после вылета снаряда из ствола.
Исходя из вышеприведенного определения можно сделать вывод, что в патенте - прототипе под командой на разрешение выстрела подразумевается команда именно на разрешение инициирования метательного заряда ввиду того, что конкретная стадия процесса выстрела здесь конкретно не оговорена. Т.е. время движения снаряда по каналу ствола от момента инициирования метательного заряда и вплоть до момента в способе не учитывается.
Но, т.к. команда на выстрел проходит до покидания снарядом канала ствола, то к моменту пересечения днищем снаряда дульного среза орудия предложенное техническим решением /2/ условие максимального значения скорости собственных угловых колебаний ствола - дульного среза не соблюдается. Тем не менее, на выходе из канала ствола снаряд наряду с линейной составляющей скорости приобретает еще и некоторую "радиальную" относительно оси ствола, но уже непредсказуемую по величине и направлению, вследствие его угловых колебаний. Пусть и не максимальную, как указано в описанном техническом решении, но тем не менее влияющую на точность поражения цели.
Технической задачей предлагаемого изобретения является устранение вышеуказанных недостатков способа-прототипа, а именно - повышение точности стрельбы.
Решение поставленной технической задачи достигается тем, что в известном способе управления автоматической стрельбой ракетно-артиллерийского вооружения, устанавливаемого на подвижном носителе, заключающемся в формировании системой управления команды на разрешение очередного выстрела с учетом колебаний дульного среза пушечного ствола или выходных отверстий стволов пускового блока, в соответствии с изобретением выстрел производят с опережением по времени, равным интервалу между моментом инициирования метательного заряда соответствующего боеприпаса и его полным выходом из дульного среза в момент максимального значения ускорения колебаний.
Опережение по времени, равное интервалу между моментом инициирования метательного заряда соответствующего боеприпаса и его полным выходом из дульного среза в момент максимального значения ускорения угловых колебаний, т.е. фактически равное времени движения боеприпаса по каналу ствола (пускового блока), позволит обеспечить предсказуемое минимально возможное наложение на движущийся боеприпас радиальной составляющей скорости, вызванной колебаниями дульного среза, и с ее учетом осуществить коррекцию линии прицеливания, тем самым повысив точность поражения цели. Конкретная величина этого опережения для каждого вида артиллерийско-ракетного вооружения и используемых боеприпасов устанавливается предварительно как расчетным, так и экспериментальным путем.
Как уже отмечалось выше, разнонаправленная вибрация подвижного носителя при перемещении в окружающей среде, вибрации от его двигателя и движителя, внешние воздействия на дульную часть ствола, а также явления, вызываемые непосредственно выстрелом, приводят к возникновению вынужденных колебаний дульного среза, точное позиционирование которого существенно сказывается на точности стрельбы.
Ввиду того, что подвижный носитель находится непосредственно на боевой траектории и стрельба с него осуществляется в короткий промежуток времени, указанные возмущающие воздействия в течение данного временного промежутка можно принять квазистационарными, т.е. практически неизменными, а колебания - гармоническими, причем, как показывает практика, вследствие большой массы носителя совершаемыми и наиболее ощутимыми преимущественно в двух взаимно перпендикулярных направлениях относительно траектории движения.
В общем случае колебания дульного среза могут быть описаны зависимостями:
Figure 00000001
Т.е. колебания дульного среза в условной системе координат, размещенной в плоскости, перпендикулярной оси канала ствола и с началом координат в точке пересечения оси канала с данной плоскостью, принятой для стационарных условий (без колебаний), можно считать, осуществляемыми по некоторому гармоническому закону. Тогда относительно принятого начала координат, вследствие колебаний, центр отверстия дульного среза будет совершать некоторое осциллирующее движение по замкнутой траектории (фигуре Лиссажу). Фигуры Лиссажу вписываются в прямоугольник, центр которого совпадает с началом координат, а стороны параллельны осям координат и расположены по обе стороны от них на расстояниях, равных амплитудам колебаний.
Для упрощения пояснения предлагаемого технического решения рассмотрим случай перемещения центра дульного среза по эллиптической траектории (Фиг. 1).
Приняв систему прямоугольных координат XOY, где О - начало координат, а X и Y - координаты смещения дульного среза в направлении соответственно большой и малой осей эллипса, можно записать параметрические уравнения принятой эллиптической траектории движения центра дульного среза вследствие колебаний в более простой форме (т.к. однонаправленные колебания по осям могут быть просуммированы, а сдвиг фаз разнонаправленных колебаний - «компенсирован» соответствующим поворотом осей):
Figure 00000002
При этом составляющие его скорости по направлению координатных осей составят:
Figure 00000003
И ускорения, соответственно:
Figure 00000004
а и b - соответственно, большая и малая полуоси эллипса, м;
ω - круговая частота колебаний, с-1;
t - текущий момент времени, с.
Абсолютные результирующие величины скорости и ускорения центра дульного среза определяются как
Figure 00000005
и
Figure 00000006
Из курса теории колебаний известно, что для совершающей гармонические колебания материальной точки максимальному значению скорости соответствует минимальное ускорение, и наоборот - максимальному значению ускорения соответствует минимальная скорость. Условию экстремума зависимости (6), необходимого для нахождения максимального ускорения (и соответственно минимальной скорости) колеблющегося центра дульного среза, соответствует равенство нулю первой производной выражения. Дифференцирование (6) и выполнение несложных преобразований в итоге дает упрощенное выражение:
Figure 00000007
Откуда
Figure 00000008
Реально же условию максимального значения ускорения и соответственно минимальной скорости перемещения при движении центра дульного среза по эллиптической траектории под действием наложенных вынужденных колебаний для данного примера соответствуют точки пересечения траектории с осью X, т.е. когда
Figure 00000009
Причем особо следует отметить, что направление вектора скорости в данных точках перпендикулярно оси X в выбранной системе координат, а ее абсолютная величина и направление относительно оси Y легко вычислимы и могут быть учтены при корректировке линии прицеливания и формировании команды на разрешение очередного выстрела.
Изобретение поясняется графическим материалом.
На фиг. 1 (а, б) представлена расчетная схема, на фиг. 2 - вариант учета угловых поправок линии прицеливания при стрельбе.
Дульный срез ствола 1 (фиг. 1, а) под воздействием возмущающих воздействий совершает в параллельной ему плоскости 2 в условно абсолютной системе координат XaOYa колебательное движение по эллиптической траектории 3. Здесь Ха - горизонтальное направление, Ya - вертикальное, О - начало координат (точка пересечения оси канала ствола с плоскостью дульного среза). Ввиду наличия разности фаз колебаний по осям Ха и Ya оси эллиптической траектории с этими осями не совпадают, т.е. имеют некоторое угловое отклонение на угол ϕ.
Для последующего упрощения вычислений система координат путем поворота осей на угол ϕ может быть преобразована к виду, изображенному на фиг. 1б. Здесь направление осей эллиптической траектории совпадают с направлениями координатных осей X и Y. Для примера показано колебательное перемещение оси дульного среза в положительном направлении (против часовой стрелки), и в произвольной точке траектории - скорости его перемещения в направлении осей Vx, Vy, а также их результирующей V, направленной по касательной к траектории перемещения. Точки максимального ускорения (минимальной скорости) выделены на пересечении траектории с осью X.
Фиг. 2 - вариант учета угловых поправок линии прицеливания при стрельбе. При необходимости поражения цели 4 на ней выделяется точка непосредственного прицеливания 5. Поправки в наведении средства используемого средства вооружения вводятся с учетом отклонения центра дульного среза δ (фактически - амплитуды колебаний по оси X) от начала условной системы координат О, а также с учетом скорости его перемещения V на момент выхода боеприпаса из канала ствола.
Для практической реализации способа предварительно расчетным и экспериментальным путем набирается статистическая информация по времени нахождения боеприпаса в канале ствола от момента инициирования метательного заряда до выхода боеприпаса из дульного среза соответствующего вида вооружения.
В районе дульного среза (срезов) системы вооружения устанавливаются датчики-акселерометры с обеспечением информационного канала связи с бортовой компьютерной системой автоматического управления стрельбой (САУС).
При заходе подвижного носителя на боевой курс и предварительном прицеливании с учетом метеорологических и иных внешних факторов по команде стрелка САУС осуществляется сбор, анализ и математическая обработка результатов измерений, полученных с акселерометров.
По имеющимся координатным характеристикам размещения на подвижном носителе конкретного вида вооружения «устанавливается» условная система координат, в которой происходит колебательное движение дульного среза. В данной системе координат определяются амплитудно-частотные и кинематические характеристики колебательного перемещения дульного среза - характер траектории, максимальное ускорение, направление вектора скорости и ее абсолютная величина на момент максимального ускорения, амплитуда (максимальное перемещение относительно начала координат). Указанные характеристики приводятся в соответствие с системой координат прицельного устройства, после чего САУС формирует команды на корректировку линии прицеливания (с учетом величины и направления вектора скорости колебания дульного среза на момент его максимального ускорения и отклонения его центра от начала координат) и разрешение очередного выстрела, с учетом времени нахождения боеприпаса в канале ствола от момента инициирования метательного заряда, таким образом, чтобы боеприпас полностью вышел из дульного среза в момент достижения последним максимального ускорения.
Таким образом, предлагаемый способ позволит повысить точность стрельбы с одновременным снижением расхода боеприпасов на поражение единичной цели и может быть использован при ведении стрельбы как из существующих, так и перспективных систем вооружения, устанавливаемых на любых подвижных носителях.
Источники информации
1) Патент США US 5520085, F41G 5/16. Weapon stabilization system, 28.05.1996 г. – аналог.
2) Патент РФ RU 2287761, F41G 5/14. Способ управления автоматической стрельбой артиллерийской установки (АУ), 28.06.2004 – прототип.
3) Словарь ракетных и артиллерийских терминов. Редактор - генерал-майор Г.Н. Разумов. - М.: Военное издательство, 1988, 256 с.

Claims (1)

  1. Способ управления автоматической стрельбой ракетно-артиллерийского вооружения, устанавливаемого на подвижном носителе, заключающийся в формировании системой управления команды на разрешение очередного выстрела с учетом колебаний дульного среза пушечного ствола или выходных отверстий стволов пускового блока, отличающийся тем, что выстрел производят с опережением по времени, равным интервалу между моментом инициирования метательного заряда соответствующего боеприпаса и его полным выходом из дульного среза в момент максимального значения ускорения колебаний.
RU2016107803A 2016-03-04 2016-03-04 Способ управления автоматической стрельбой ракетно-артиллерийского вооружения, устанавливаемого на подвижном носителе RU2616120C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016107803A RU2616120C1 (ru) 2016-03-04 2016-03-04 Способ управления автоматической стрельбой ракетно-артиллерийского вооружения, устанавливаемого на подвижном носителе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016107803A RU2616120C1 (ru) 2016-03-04 2016-03-04 Способ управления автоматической стрельбой ракетно-артиллерийского вооружения, устанавливаемого на подвижном носителе

Publications (1)

Publication Number Publication Date
RU2616120C1 true RU2616120C1 (ru) 2017-04-12

Family

ID=58642394

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016107803A RU2616120C1 (ru) 2016-03-04 2016-03-04 Способ управления автоматической стрельбой ракетно-артиллерийского вооружения, устанавливаемого на подвижном носителе

Country Status (1)

Country Link
RU (1) RU2616120C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2803099C1 (ru) * 2023-03-22 2023-09-06 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Устройство управления стрельбой неуправляемых авиационных ракет

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632012A (en) * 1983-09-09 1986-12-30 Litef Der Hellige Gmbh Fire control system for moving weapon carriers
US5520085A (en) * 1993-11-12 1996-05-28 Cadillac Gage Textron Inc. Weapon stabilization system
RU2230280C1 (ru) * 2003-03-17 2004-06-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт точного машиностроения" Артиллерийское орудие
RU2287761C2 (ru) * 2004-06-28 2006-11-20 Открытое акционерное общество "Машиностроительный завод" АРСЕНАЛ" (ОАО "МЗ" АРСЕНАЛ") Способ управления автоматической стрельбой артиллерийской установки (ау)
RU2402738C2 (ru) * 2008-12-19 2010-10-27 Пензенский Артиллерийский Инженерный Институт Способ автоматизированного измерения колебаний ствола и управления стрельбой артиллерийского орудия

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632012A (en) * 1983-09-09 1986-12-30 Litef Der Hellige Gmbh Fire control system for moving weapon carriers
US5520085A (en) * 1993-11-12 1996-05-28 Cadillac Gage Textron Inc. Weapon stabilization system
RU2230280C1 (ru) * 2003-03-17 2004-06-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт точного машиностроения" Артиллерийское орудие
RU2287761C2 (ru) * 2004-06-28 2006-11-20 Открытое акционерное общество "Машиностроительный завод" АРСЕНАЛ" (ОАО "МЗ" АРСЕНАЛ") Способ управления автоматической стрельбой артиллерийской установки (ау)
RU2402738C2 (ru) * 2008-12-19 2010-10-27 Пензенский Артиллерийский Инженерный Институт Способ автоматизированного измерения колебаний ствола и управления стрельбой артиллерийского орудия

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2803099C1 (ru) * 2023-03-22 2023-09-06 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Устройство управления стрельбой неуправляемых авиационных ракет

Similar Documents

Publication Publication Date Title
US8563910B2 (en) Systems and methods for targeting a projectile payload
US10942013B2 (en) Guidance, navigation and control for ballistic projectiles
Motyl et al. Theoretical and experimental research of anti-tank kinetic penetrator ballistics
RU2666378C1 (ru) Способ дистанционного подрыва снаряда
US11698244B2 (en) Reduced noise estimator
RU2616120C1 (ru) Способ управления автоматической стрельбой ракетно-артиллерийского вооружения, устанавливаемого на подвижном носителе
Ożóg et al. Modified trajectory tracking guidance for artillery rocket
Szklarski et al. Impact point prediction guidance parametric study for 155 mm rocket assisted artillery projectile with lateral thrusters
RU2590841C2 (ru) Способ решения основной задачи внешней баллистики неуправляемых реактивных снарядов длительных сроков хранения
Hahn et al. Predictive guidance of a projectile for hit-to-kill interception
Konečný et al. Effect of Shot Duration on the Firing Accuracy when Burst Fire of Unguided Rockets
RU2164657C1 (ru) Управляемый реактивный снаряд
Pavic et al. Pulse-frequency modulated guidance laws for a mortar missile with a pulse jet control mechanism
RU2602162C2 (ru) Способ стрельбы реактивными снарядами реактивной системы залпового огня в условиях контрбатарейной борьбы
RU2674037C1 (ru) Способ стрельбы зенитными снарядами по воздушным целям
RU2676301C1 (ru) Способ стрельбы зенитными снарядами
RU2707637C1 (ru) Способ поражения воздушной цели управляемой ракетой
RU2637392C2 (ru) Способ учета отклонений разрыва (центра группы разрывов, центра группы разрывов боевых элементов) высокоточных боеприпасов
RU2763897C1 (ru) Способ подготовки к выполнению задачи стрельбы на поражение из минометов
US11940249B2 (en) Method, computer program and weapons system for calculating a bursting point of a projectile
RU2499218C1 (ru) Способ защиты объекта от средств воздушного нападения и система для его осуществления
Głębocki Guidance impulse algorithms for air bomb control
Fann Development of an artillery accuracy model
KR102489644B1 (ko) 30 mm 개틀링 함포의 실시간 사격 통제 명령 산출 장치 및 방법
RU2687694C1 (ru) Способ определения основных летных характеристик управляемых морских ракет

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190305