RU2616106C2 - Способ определения посадочных траекторий летательных аппаратов, соответствующих одной взлетно-посадочной полосе - Google Patents

Способ определения посадочных траекторий летательных аппаратов, соответствующих одной взлетно-посадочной полосе Download PDF

Info

Publication number
RU2616106C2
RU2616106C2 RU2015139739A RU2015139739A RU2616106C2 RU 2616106 C2 RU2616106 C2 RU 2616106C2 RU 2015139739 A RU2015139739 A RU 2015139739A RU 2015139739 A RU2015139739 A RU 2015139739A RU 2616106 C2 RU2616106 C2 RU 2616106C2
Authority
RU
Russia
Prior art keywords
trajectories
landing
aircraft
sample
points
Prior art date
Application number
RU2015139739A
Other languages
English (en)
Other versions
RU2015139739A (ru
Inventor
Борис Георгиевич Кухаренко
Мария Олеговна Солнцева-Чалей
Original Assignee
Борис Георгиевич Кухаренко
Мария Олеговна Солнцева-Чалей
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Борис Георгиевич Кухаренко, Мария Олеговна Солнцева-Чалей filed Critical Борис Георгиевич Кухаренко
Priority to RU2015139739A priority Critical patent/RU2616106C2/ru
Priority to US15/258,736 priority patent/US20170084180A1/en
Publication of RU2015139739A publication Critical patent/RU2015139739A/ru
Application granted granted Critical
Publication of RU2616106C2 publication Critical patent/RU2616106C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0043Traffic management of multiple aircrafts from the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к способу определения посадочных траекторий летательных аппаратов (ЛА) в ограниченной области пространства. Для определения посадочной траектории на заданную взлетно-посадочную полосу (ВПП) вычисляют в определенные моменты времени на основании регистрируемых пространственных координат ЛА многомерные пространственные посадочные траектории движения ЛА, выравнивают во времени при необходимости, формируют выборку зарегистрированных траекторий определенным образом, выделяют в сформированной выборке асимптотически сходящийся пучок многомерных пространственных посадочных траекторий ЛА, удаляют траектории выделенного пучка из сформированной выборки, используют выделенные пучки траекторий, соответствующие посадкам ЛА на заданные ВПП, для посадки ЛА. Обеспечивается посадка ЛА в аэропортах, находящихся в зоне сложного географического ландшафта или без сопровождения диспетчерских служб. 1 з.п. ф-лы, 5 ил.

Description

Изобретение относится к области анализа данных, в частности, многомерных траекторий движения объектов - летательных аппаратов (ЛА), и может быть использовано при обнаружении скрытых целей движущихся объектов, для решения задачи секторизации пространства в трехмерном случае и идентификации установившихся потоков движения, при проектировании воздушных коридоров, моделировании захода ЛА на посадку (в том числе при посадке в условиях сложного географического ландшафта, плохой видимости, на палубу корабля) и определении оптимальных (опорных) траекторий движения ЛА в пространстве.
В настоящее время в различных областях все более актуальной становится задача идентификации в потоке групп объектов со сходными характеристиками движения и определения типичных маршрутов (характерных паттернов движения). Для решения этой задачи применяется обширный ряд методов. Например, в работе [1] предлагается подход к определению типичных паттернов, основанный на кластеризации схожих траекторий, а в патенте US 7688349 В2 группы социально-взаимосвязанных людей (groups of socially interrelated people) определяются с помощью анализа траекторий движения, выполняемого на основании данных, полученных с камер видеослежения.
Однако наибольший интерес представляют задачи, связанные с анализом многомерных пространственных траекторий движения. В частности, эти задачи приобретают все большее значение в авиации в связи постоянным увеличением воздушного трафика, необходимостью оптимизации загруженности взлетно-посадочных полос (ВПП) и совершенствования существующих систем управления воздушным движением (СУВД).
Из патента US 6393358 В1 известна автоматическая радиолокационная система TRACON (Terminal Radar Approach Control) [2, 3], использование которой направлено на упрощение работы диспетчерских служб, обеспечение безопасности полетов и более эффективной загруженности воздушного пространства в расширенной зоне вокруг аэропорта. Подобные системы позволяют обеспечивать безопасность движения в воздушном пространстве и улучшать пропускную способность аэропорта. С помощью радара TRACON фиксируются мета-данные, содержащие информацию о пространственных координатах положения центра масс ЛА, на основании которых вычисляются траектории их движения.
Особенность задачи управления воздушным движением состоит в том, что в связи с разделительными ограничениями (separation constraints), различные по весу самолеты не могут следовать в караване к одной ВПП. Из заявки US 20140019033 А1 известен способ планирования воздушного движения, включающий определение сети, состоящей из узловых точек и основных направлений посадки (an arrival network of nodes and legs), который применяется для оптимизации расписания прибывающих самолетов.
Важно также заметить, что траектории посадки самолетов представляют собой данные высокой размерности (high dimensional data), но учитывая отмеченные недостатки методов обработки, в настоящее время их анализ осуществляется в двумерном пространстве - проекции на плоскость посадки. Такое сокращение размерности данных зачастую приводит к существенной потере информации и искажению результата.
Задача, решаемая в рамках настоящего изобретения, связана с дальнейшим совершенствованием методов управления и контроля движения объектов в заданных направлениях в случае захода летательных аппаратов (ЛА) на посадку. Технический результат, достигаемый при решении такой задачи, заключается в определении числа целей движения ЛА - посадочных полос и выделении областей пространства, соответствующих траекториям движения ЛА к таким целям. Практический аспект такого результата может быть связан с повышением безопасности полетов ЛА, например, предотвращением конфликтных ситуаций при задании траекторий движения объектов в ограниченной области пространства при заходе на посадку и снижением числа внештатных (аварийных) ситуаций.
Поставленный результат в общем виде достигается заявленным способом определения числа асимптотически сходящихся пучков многомерных пространственных посадочных траекторий движения летательных аппаратов (ЛА) при заданном параметре порога, включающем регистрацию упомянутых многомерных пространственных посадочных траекторий движения ЛА, определение необходимости выравнивания зарегистрированных траекторий во времени и, при необходимости, выравнивание, формирование выборки зарегистрированных траекторий, представление выборки траекторий в виде набора точек, составлявших каждую траекторию, формирование двумерной ортогональной проекции набора точек, по меньшей мере, однократное упорядочение точек сформированной проекции в направлении возрастания или убывания значения одной из координат, анализ для упорядоченных точек сформированной проекции наиболее правдоподобной модели ортогональной линейной регрессии с определением геометрической асимптоты при заданном параметре порога, не превышающем ширины взлетно-посадочной полосы, и выделение в сформированной выборке пучка траекторий на основании меры близости траекторий выборки к определенной выше геометрической асимптоте, при этом мера близости определяется по мере косинуса при заданном параметре порога, не превышающем ширины взлетно-посадочной полосы, и вычисляется в диапазоне значений от 0 до +1, при этом, по результатам каждого предыдущего упорядочения последующие упорядочение и анализ проводят, удаляя траектории выделенного пучка из сформированной выборки траекторий.
Предпочтительный, но не обязательный вариант реализации способа предполагает, что первоначально определенный пучок содержит наибольшее число посадочных траекторий.
Изобретение иллюстрируется принципиальной блок-схемой, отображающей этапы реализации способа (фиг. 1), и фиг. 2-5, иллюстрирующими практическую осуществимость заявленного способа. В частности, на фиг. 2а показан общий вид пучков многомерных пространственных траекторий посадки самолетов на полосы аэродрома, на фиг. 2б - пучки посадочных траекторий, соответствующие различным взлетно-посадочным полосам (ВПП). Трехмерное представление посадочных траекторий, регистрируемых радаром, представлено на фиг. 3а, на фиг. 3б - разбиение этих траекторий на пять кластеров, выполняемое по методу полиномиальных регрессий [4, 5]. Далее траектории каждого кластера считаются выборкой траекторий, в которой возможно выделение пучков. На фиг. 4 рассматриваются проекции на координатные оси траекторий выборки, соответствующей розовому кластеру на фиг. 3б. Фиг. 5 иллюстрирует последовательные этапы выделения пучков многомерных пространственных траекторий в выборке, представленной на фиг. 4.
Раскрывая возможность реализации заявленного назначения и практической осуществимости заявленного решения, в настоящем описании устанавливается, что многомерные траектории движения летательных аппаратов (ЛА), представляемые многомерными векторами, вычисляются на основании регистрируемых в соответствующие моменты времени мета-данных, содержащих, в частности, пространственные координаты (например, координаты положения центра масс). Последовательность регистрируемых метаданных определяет многомерные пространственные траектории движения объекта (которые далее кратко называются траекториями движения). Многомерность определяется длинной траектории и числом используемых параметров мета-данных.
Необходимо отметить, что настоящее изобретение применяется при анализе данных о движении объектов к определенным (одинаковым, заданным) целям. Примером такого движения являются посадки ЛА на заданные взлетно-посадочные полосы (ВПП). В общем случае, если объекты движутся к общей цели, то траектории их движения образуют пучок многомерных пространственных траекторий движения (который далее кратко называется пучок траекторий), при этом в пучке траектории движения могут пересекаться. Для целей раскрытия осуществимости настоящего изобретения устанавливается, что пучок траекторий считается сходящимся (и кратко называется сходящимся пучком траекторий), если траектории движения в пучке имеют общую цель и близки по конечным координатам (например, при анализе посадочных траекторий ЛА - на плоскости посадки), при этом схождение пучка траекторий определяется параметром порога. При анализе траекторий посадок ЛА в зоне аэропорта (см. фиг 2а) возможно выделение сходящихся пучков траекторий - посадок на заданные ВПП (см. фиг. 2б), при этом, в общем случае, параметр порога не превышает ширины ВПП.
Достижение поставленного результата связано с вышеупомянутыми особенностями анализируемых данных и обусловлено последовательным определением геометрических асимптот соответствующих пучков траекторий посредством определения наиболее правдоподобных ортогональных линейных регрессий, которое, в свою очередь, выполняется при переходе к рассмотрению двумерной проекции точек траекторий движения. В результате такого перехода происходит существенное сокращение размерности исходных данных. Следует отметить, что такое сокращение размерности данных не приводит к потере информации, поскольку после определения геометрической асимптоты происходит обратный переход в исходное пространство, где при ограничении параметра порога и в соответствии с мерой косинуса между траекториями выборки и определенной в пространстве меньшей размерности геометрической асимптотой выделяется соответствующий ей пучок траекторий.
Сложность решаемой задачи связана с особенностями пространственной геометрии траекторий движения (их потенциальными пересечениями, кривизной и кручением) и возможными пространственными пересечениями пучков многомерных траекторий между собой. В этой связи, использование меры косинуса в качестве экспериментальной меры сходства траекторий движения позволяет учитывать особенности пространственной геометрии многомерных траекторий и разделять пересекающиеся, но различные по геометрии траектории движения, и, таким образом, точно выделять пучки траекторий.
Формально пучок траекторий Nk,
Figure 00000001
(K0 - эмпирический параметр), считается асимптотически сходящимся с параметром порога, если для векторов {х[i]∈R3xL, i∈Nk}, представляющих пучок траекторий Nk,
Figure 00000002
, выполняется условие асимптотического схождения пучка
Figure 00000003
где
Figure 00000004
- координаты точек траекторий, которые почти совпадают, т.е. параметры Li, i∈Nk подлежат определению,
Figure 00000005
- евклидова мера расстояния в трехмерном пространстве R3, ε - порог (который при рассмотрении сходящихся пучков, образуемых траекториями посадки ЛА, не превосходит ширины ВПП).
Рассматривая заявленный подход к определению числа сходящихся пучков многомерных траекторий, первоначально следует принять во внимание, что траектории в асимптотически сходящихся пучках имеют типичную форму (профиль) и характерную геометрическую асимптоту в области сходимости траекторий (1) [6]. Геометрической асимптотой сходящегося пучка многомерных посадочных траекторий самолетов является линия в R3 (трехмерное пространство координат), удовлетворяющая условию (1). Траектории в асимптотически сходящихся пучках имеют касательную в окрестности конечных точек
Figure 00000006
всех траекторий пучка с порогом ε (1)) [6], так что асимптотически сходящиеся пучки траекторий могут быть идентифицированы посредством определения касательных им геометрических асимптот в точках их фокусов.
Поскольку дискретные точки траекторий пучка плотно лежат в окрестности асимптоты, основа предлагаемого способа определения числа пучков сходящихся многомерных пространственных траекторий движения объектов состоит в том, что набор векторов выборки многомерных траекторий
Figure 00000007
рассеивается во множество точек этих траекторий
Figure 00000008
Множество точек (2) должно быть упорядочено по значениям одной из координат (в направлении возрастания - ascend или убывания - descend). При этом происходит упорядочение по остальным координатам всех точек, представляющих сходящийся пучок траекторий по определенному профилю. После этого для рассеянных трехмерных данных
Figure 00000009
например, с помощью алгоритма RANSAC (Random Sample and Consensus - случайная выборка и консенсус) [7, 8], анализируются модели ортогональной линейной регрессии
Figure 00000010
где
Figure 00000011
- конъюнкция, θ={al, bl, cl, d1, a2, b2, c2,d 2} - вектор параметров этих моделей при заданном пороге евклидового расстояния
Figure 00000012
, вычисляемого по ортогональной проекции точки z=(x, y, z) из (2) на линию
Figure 00000013
. Таким образом, модель (3) симметрична относительно координат x, y, z. Для выдвижения гипотезы относительно модели ортогональной линейной регрессии (3) достаточно любой пары точек из (2). Окончательная модель (3) подтверждается наибольшим относительным количеством (процентом) рассеянных данных
Figure 00000014
(2). Для данных целей может быть использован алгоритм MLESAC (Maximum Likelihood Estimation Sample Consensus - консенсус выборок с оценкой по максимуму правдоподобия) [9, 10] - вероятностная версия алгоритма RANSAC. Этот алгоритм оценивает правдоподобие модели (3), представляя распределение расстояния рассеянных данных
Figure 00000015
от модели
Figure 00000016
(3), как смесь распределения данных, подтверждающих модель (3) (inliers), и распределения данных, отклоняющих эту модель (outliers). Считая, что рассеянные данные Z (2) независимые, получаем выражение для логарифма правдоподобия в виде
Figure 00000017
где γ - параметр смешивания. Распределение расстояний до данных, подтверждающих модель (3), представляется гауссовым распределением
Figure 00000018
где σ - стандартное отклонение. Распределения расстояний до данных, отклоняющих модель (3), описывается равномерным распределением
Figure 00000019
где ρmax - наибольшее расстояние до данных (определяется контекстом). Минимизация логарифма правдоподобия (4) позволяет оценить вектор параметров θ и параметр смешивания γ, что обеспечивается итерациями алгоритма ожидания-максимизации правдоподобия.
Для специалиста очевидно, что при определении геометрической асимптоты
Figure 00000020
(3) одного из пучков при условии (1), помимо рассматриваемых в настоящей заявке алгоритмов могут быть использованы и другие методы.
Наиболее правдоподобная линейная регрессия рассеянных данных выборки траекторий определяет геометрическую асимптоту
Figure 00000021
(3) одного из его пучков при условии (1). Полученная таким образом геометрическая асимптота удовлетворяет условию
Figure 00000022
Касательный ей пучок траекторий определяется в результате нахождения минимума целевой функции
Figure 00000023
где
Figure 00000024
- набор бинарных индикаторных переменных (т.е. если вектор x[i] назначен пучку k, то r[i; k]=1 и r[i; k]=0 в противном случае). Расстояние между геометрической асимптотой и траекториями выборки вычисляется по мере косинуса
Figure 00000025
После удаления из рассеянных данных (2) тех точек, которые представляют траектории выделенного пучка, процедура определения геометрической асимптоты повторяется и выделяется следующий пучок траекторий. Поскольку определение модели (3) должно быть симметричным относительно координат x, y, z, при формировании рассеянных данных оставшихся траекторий в (2) производится сортировка по очередной пространственной координате по сравнению с использованной в (2) при определении предыдущей асимптоты (3). Возможная зависимость результата (3) от направления координат устраняется изменением направления сортировки в (2) с возрастания на убывание или наоборот. Анализ траекторий кластера завершается определением всех пучков в кластере.
Возможность практической реализации заявленного способа рассматривается на примере анализа данных 116 посадочных траекторий ЛА, зарегистрированных радаром TRACON 1 января 2006 г над заливом Сан-Франциско (находятся в свободном доступе https://c3.nasa.gov/dashlink/resources/132/). Начало координат совпадает с положением радара, интервал времени между точками регистрации составляет порядка 5c. В работе учитываются только 160 последних точек каждой траектории, что исключает случайные маневры самолетов перед заходом на посадку.
На фиг. 3а представлено исходное трехмерное представление анализируемых данных. Далее эти данные разбиваются на кластеры (см. фиг. 3б) по методу полиномиальных регрессий [4, 5] в соответствии со сходством формы и скоростных режимов. Распределение траекторий по кластерам следующее: 16 траекторий в розовом кластере, 13 - в зеленом, в синем, черном и красном кластерах - 3, 37 и 38, соответственно. Траектории каждого кластера соответствуют определенной выборке траекторий, в которой возможно выделение пучков траекторий, соответствующих определенным профилям посадки.
В качестве примера определим пучки траекторий выборки, определяемой розовым кластером (см. фиг. 4). Следует отметить, что пучки траекторий анализируемой выборки существенно пересекаются. Другой их особенностью является присутствие практически линейных участков в их хвостах вдали от фокуса. Поскольку все траектории в выборке имеют одинаковое направление времени, то при анализе этих траекторий используются рассеянные данные сокращенных траекторий с частью точек quotum ≈0.4, считая от фокусов пучков.
На фиг. 5а показаны выравненные во времени рассеянные данные двумерных проекций сокращенных траекторий выборки. На фиг. 5б - результат их линейной регрессии с использованием алгоритма MLESAC. На фиг. 5в определена асимптота первого пучка (голубая линия). Следует отметить, что в этом случае результаты ортогональной линейной регрессии рассеянных данных сокращенных и полных траекторий совпадают. Траектории первого (голубого) пучка (см. фиг. 5г) удаляются из выборки на основании близости траекторий к голубой асимптоте (рис. 5в) по мере косинуса. После удаления из выборки траекторий первого выделенного пучка, в оставшейся части выборки аналогично определяется следующая асимптота (см. фиг. 5д-з) и соответствующий ей пучок траекторий. Далее траектории второго (зеленого) пучка удаляются из рассматриваемой выборки на основе близости траекторий движения к зеленой асимптоте по мере косинуса. На фиг 5з представлены выделенные в рассматриваемой выборке в результате последовательных итераций три пучка траекторий движения (голубой, зеленый и синий). Толстая красная линия в центре каждого пучка соответствует центральной траектории в пучке.
Таким образом, использование заявленного способа позволяет точно выделять на основании реальных данных посадочных траекторий самолетов пучки траекторий, соответствующие заданным взлетно-посадочным полосам (выполнять секторизацию пространства в трехмерном случае), определять на основании данных радара об успешных посадках на заданную взлетно-посадочную полосу характерную (опорную) траекторию посадки. Особое значение использование способа приобретает для посадки самолетов в аэропортах, находящихся в зоне сложного географического ландшафта (в горах или на побережье) или без сопровождения диспетчерских служб («малые» аэропорты и/или несанкционированные приземления).
Литература
1. Hung С.С., Peng W.С., Lee W.С. Clustering and aggregating clues of trajectories for mining trajectory patterns and routes //The VLDB Journal-The International Journal on Very Large Data Bases. - 2015. - V. 24. - №. 2. - P. 169-192.
2. Erzberger H., Davis T.J., Green S. Design of center-TRACON automation system //In AGARD, Machine Intelligence in Air Traffic Management - 1993.
3. Williams D.H., Green S.M. Flight evaluation of Center-TRACON Automation System trajectory prediction process. - National Aeronautics and Space Administration, Langley Research Center, 1998.
4. Gaffhey S., Smyth P. Joint probabilistic curve clustering and alignment / Saul L., Weiss Y., Bottou L., eds. Proceedings of Neural Information Processing Systems (NIPS 2004). December 13-18, 2004, Vancouver, British Columbia, Canada. Advances in Neural Information Processing Systems. V. 17. Cambridge, MA: MIT Press. 2005. P. 473-180.
5. Кухаренко Б.Г., Солнцева M.O. Кластеризация управляемых объектов на основе сходства их многомерных траекторий // Информационные технологии. 2014. №5. С. 3-7.
6. Погорелов А. И. Дифференциальная геометрия. 6-ое изд. М.: Наука. 1974.
7. Fischler М.A., Bolles R.С.Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography //Communications of the ACM. - 1981. - T. 24. - №. 6. - C. 381-395.
8. Zuliani M. RANSAC for Dummies //Vision Research Lab, University of California, Santa Barbara. - 2009.
9. Torr P.H.S., Zisserman A. MLESAC: A new robust estimator with application to estimating image geometry // Journal of Computer Vision and Image Understanding. 2000. V.78, No. 1. P. 138-156.
10. Кухаренко Б.Г. Алгоритмы анализа изображений для определения локальных особенностей и распознавания объектов и панорам. Информационные технологии. 2011. №7. Приложение. С. 1-32.

Claims (2)

1. Способ определения посадочных траекторий летательных аппаратов (ЛА) в ограниченной области пространства при заданном параметре порога, соответствующих посадкам на заданные взлетно-посадочные полосы (ВПП), при котором вычисляют на основании регистрируемых в соответствующие моменты времени пространственных координат ЛА многомерные пространственные посадочные траектории движения ЛА, определяют необходимость выравнивания вычисленных посадочных траекторий во времени и, при необходимости, выравнивают, формируют выборку зарегистрированных посадочных траекторий, представляют выборку траекторий в виде набора точек, составлявших каждую траекторию, формируют двумерную ортогональную проекцию набора точек сформированной выборки траекторий, по меньшей мере однократно упорядочивают точки сформированной проекции в направлении возрастания или убывания значений одной из координат, определяют для набора упорядоченных точек сформированной проекции наиболее правдоподобную модель ортогональной линейной регрессии данных с определением геометрической асимптоты при заданном параметре порога, не превышающем ширины ВПП, и выделяют в сформированной выборке асимптотически сходящийся пучок многомерных пространственных посадочных траекторий движения ЛА на основании меры близости траекторий выборки к определенной выше геометрической асимптоте, при этом мера близости определяется по мере косинуса при заданном параметре порога и вычисляется в диапазоне значений от 0 до +1, после чего удаляют траектории выделенного пучка из сформированной выборки траекторий и производят последующее упорядочение и анализ точек сформированной проекции, а выделенные пучки траекторий, соответствующие посадкам ЛА на заданные ВПП, используют для посадки ЛА в аэропортах, находящихся в зоне сложного географического ландшафта или без сопровождения диспетчерских служб.
2. Способ по п. 1, при котором первоначально определенный пучок содержит наибольшее количество посадочных траекторий.
RU2015139739A 2015-09-18 2015-09-18 Способ определения посадочных траекторий летательных аппаратов, соответствующих одной взлетно-посадочной полосе RU2616106C2 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2015139739A RU2616106C2 (ru) 2015-09-18 2015-09-18 Способ определения посадочных траекторий летательных аппаратов, соответствующих одной взлетно-посадочной полосе
US15/258,736 US20170084180A1 (en) 2015-09-18 2016-09-07 Stable partition of trajectories set into asymptotically converged beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015139739A RU2616106C2 (ru) 2015-09-18 2015-09-18 Способ определения посадочных траекторий летательных аппаратов, соответствующих одной взлетно-посадочной полосе

Publications (2)

Publication Number Publication Date
RU2015139739A RU2015139739A (ru) 2017-03-21
RU2616106C2 true RU2616106C2 (ru) 2017-04-12

Family

ID=58282902

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015139739A RU2616106C2 (ru) 2015-09-18 2015-09-18 Способ определения посадочных траекторий летательных аппаратов, соответствующих одной взлетно-посадочной полосе

Country Status (2)

Country Link
US (1) US20170084180A1 (ru)
RU (1) RU2616106C2 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107194434B (zh) * 2017-06-16 2020-06-30 中国矿业大学 一种基于时空数据的移动对象相似度计算方法及系统
CN108334897B (zh) * 2018-01-22 2023-04-07 上海海事大学 一种基于自适应高斯混合模型的海上漂浮物轨迹预测方法
CN108389431B (zh) * 2018-04-16 2020-08-11 山东职业学院 一种空域扇区划分方法
CN109858517B (zh) * 2018-12-25 2021-03-30 中国石油大学(华东) 一种以运动方向为主导的轨迹相似性度量方法
CN109857312B (zh) * 2019-02-28 2021-04-20 北京瓴域航空技术研究院有限公司 一种二三维融合空域可视化编辑方法
CN110456781B (zh) * 2019-09-16 2021-08-24 桂林航天工业学院 一种飞行器控制系统的空间稳定性分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2108613C1 (ru) * 1995-05-03 1998-04-10 Багдалов Закир Хадыевич Радионавигационная система для контроля полета и посадки летательных аппаратов "багис-с"
US20140019033A1 (en) * 2012-07-13 2014-01-16 The Boeing Company Generalized Arrival Planning
US20140188378A1 (en) * 2011-01-25 2014-07-03 Bruce K. Sawhill Method and apparatus for dynamic aircraft trajectory management
US9020662B2 (en) * 2007-09-21 2015-04-28 The Boeing Company Predicting aircraft trajectory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2108613C1 (ru) * 1995-05-03 1998-04-10 Багдалов Закир Хадыевич Радионавигационная система для контроля полета и посадки летательных аппаратов "багис-с"
US9020662B2 (en) * 2007-09-21 2015-04-28 The Boeing Company Predicting aircraft trajectory
US20140188378A1 (en) * 2011-01-25 2014-07-03 Bruce K. Sawhill Method and apparatus for dynamic aircraft trajectory management
US20140019033A1 (en) * 2012-07-13 2014-01-16 The Boeing Company Generalized Arrival Planning

Also Published As

Publication number Publication date
US20170084180A1 (en) 2017-03-23
RU2015139739A (ru) 2017-03-21

Similar Documents

Publication Publication Date Title
RU2616106C2 (ru) Способ определения посадочных траекторий летательных аппаратов, соответствующих одной взлетно-посадочной полосе
US11454988B2 (en) Systems and methods for automated landing of a drone
Wirges et al. Object detection and classification in occupancy grid maps using deep convolutional networks
Ren et al. Bubble planner: Planning high-speed smooth quadrotor trajectories using receding corridors
Huang et al. An online multi-lidar dynamic occupancy mapping method
Cobano et al. 4D trajectory planning in ATM with an anytime stochastic approach
Zhou et al. Roi-cloud: A key region extraction method for lidar odometry and localization
Patil et al. A survey on joint object detection and pose estimation using monocular vision
CN114859368A (zh) 一种使用激光雷达对电力线锁线跟踪处理的方法和系统
RU2651342C1 (ru) Способ последовательного определения усредненных траекторий движения материальных объектов в трехмерном пространстве
GB2520243A (en) Image processor
Koo et al. Unsupervised object individuation from rgb-d image sequences
Tran et al. Taxi-speed prediction by spatio-temporal graph-based trajectory representation and its applications
US10345106B1 (en) Trajectory analysis with geometric features
Kakaletsis et al. Multiview vision-based human crowd localization for UAV fleet flight safety
CN107220987A (zh) 一种基于主成分分析的建筑物屋顶边缘快速检测方法
Naujoks et al. The Greedy Dirichlet Process Filter-An Online Clustering Multi-Target Tracker
Liu et al. Spatiotemporal image-based flight trajectory clustering model with deep convolutional autoencoder network
Castellano et al. Crowd flow detection from drones with fully convolutional networks and clustering
RU2616107C2 (ru) Способ определения посадочной траектории летательного аппарата на основании данных о зарегистрировнных траекториях с применением в качестве меры сходства траекторий меры косинуса (варианты)
Mann et al. Four-dimensional aircraft taxiway conformance monitoring with constrained stochastic linear hybrid systems
Kovacs et al. Edge detection in discretized range images
US10801841B1 (en) Trajectory prediction via a feature vector approach
Dästner et al. Realtime multitarget tracking with airborne GMTI sensors
Bajaj et al. Competitive perimeter defense with a turret and a mobile vehicle

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20190429

MM4A The patent is invalid due to non-payment of fees

Effective date: 20190919