RU2613880C2 - Способ определения аминов в безводных средах - Google Patents
Способ определения аминов в безводных средах Download PDFInfo
- Publication number
- RU2613880C2 RU2613880C2 RU2015139243A RU2015139243A RU2613880C2 RU 2613880 C2 RU2613880 C2 RU 2613880C2 RU 2015139243 A RU2015139243 A RU 2015139243A RU 2015139243 A RU2015139243 A RU 2015139243A RU 2613880 C2 RU2613880 C2 RU 2613880C2
- Authority
- RU
- Russia
- Prior art keywords
- amines
- concentration
- solution
- amine
- electrode
- Prior art date
Links
- 150000001412 amines Chemical class 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 30
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims abstract description 48
- 238000001075 voltammogram Methods 0.000 claims abstract description 17
- 229920000642 polymer Polymers 0.000 claims abstract description 14
- -1 Tetraethylammonium tetrafluoroborate Chemical compound 0.000 claims abstract description 8
- 150000003839 salts Chemical class 0.000 claims abstract description 7
- 238000011088 calibration curve Methods 0.000 claims abstract description 6
- 239000002262 Schiff base Substances 0.000 claims abstract description 4
- 150000004753 Schiff bases Chemical class 0.000 claims abstract description 4
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 4
- 239000011248 coating agent Substances 0.000 claims abstract description 3
- 238000000576 coating method Methods 0.000 claims abstract description 3
- 150000003624 transition metals Chemical class 0.000 claims abstract description 3
- 239000000523 sample Substances 0.000 claims abstract 5
- 239000013074 reference sample Substances 0.000 claims abstract 2
- 125000003277 amino group Chemical group 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 238000004451 qualitative analysis Methods 0.000 abstract 1
- 238000004445 quantitative analysis Methods 0.000 abstract 1
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 54
- 239000000243 solution Substances 0.000 description 37
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 30
- 238000004458 analytical method Methods 0.000 description 13
- 238000007792 addition Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 9
- 238000002484 cyclic voltammetry Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 4
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 4
- 229910052794 bromium Inorganic materials 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000012085 test solution Substances 0.000 description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910021397 glassy carbon Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001448 anilines Chemical class 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012457 nonaqueous media Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- WPWWHXPRJFDTTJ-UHFFFAOYSA-N 2,3,4,5,6-pentafluorobenzamide Chemical class NC(=O)C1=C(F)C(F)=C(F)C(F)=C1F WPWWHXPRJFDTTJ-UHFFFAOYSA-N 0.000 description 1
- 101710134784 Agnoprotein Proteins 0.000 description 1
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 231100000925 very toxic Toxicity 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Изобретение относится к области аналитической химии для определения аминов в безводных средах. Для этого анализируемую пробу, содержащую амины, растворяют в ацетонитриле с добавкой от 0,01 до 1 моль/л инертной соли, погружают электрод с предварительно нанесенным на него покрытием толщиной от 10 нм до 10 мкм, состоящим из полимерных комплексов переходных металлов с основаниями Шиффа, и регистрируют вольтамперограмму в диапазоне потенциалов, включающем потенциалы от -0,2 до 1,2 В, со скоростью развертки в пределах 5-1000 мВ/с, которую сравнивают с эталонными вольтамперограммами известных аминов и по ним идентифицируют аналогичные эталонному образцу амины в анализируемой пробе хроноамперометрическим методом с использованием калибровочных кривых. В качестве инертной соли применяют тетрафторборат тетраэтиламмония или тетрафторборат аммония. Изобретение может применяться в химической, фармакологической, медицинской и пищевой промышленности для качественного и количественного анализа аминов. 2 з.п. ф-лы, 9 ил., 4 пр.
Description
Изобретение относится к области аналитической химии и может применяться в химической, фармакологической, медицинской и пищевой промышленности. Различные амины могут определяться в растворах, содержащих только один амин, и в смесях без разделения.
Известен способ определения аминов путем подготовки водного раствора аминопроизводных, обработки полученного водного раствора экстракционно-ацилирующей смесью в присутствии карбоната щелочного металла и газохроматографирования полученного экстракта аминопроизводных [1].
Известен способ, включающий газохроматографическое определение первичных и вторичных аминов в виде пентафторбензамидных производных [2], в котором осуществляется превращение аминов в их производные с одновременной экстракцией получаемых аминопроизводных путем обработки водного раствора анализируемой пробы в течение 10 мин экстракционно-ацилирующей смесью с последующим проведением газохроматографического экстракта аминопроизводных.
Недостатками способов [1-2] является низкая производительность анализа, использование дорогостоящего хроматографического оборудования и сложной пробоподготовки.
Известен способ определения аминов [3], который включает введение анализируемой пробы в раствор, содержащий бром, полученный путем генерирования из бромида калия, и количественное определение пробы, отличающийся тем, что генерирование проводят в буферном растворе с рН 6-7 в присутствии сенсибилизатора бенгальского розового и персульфата калия под действием излучения лампы накаливания, избыток брома определяют амперометрически, а о количестве определяемой пробы судят по калибровочному графику. В данном способе процедура анализа включает несколько стадий и занимает продолжительное время, при этом требуется высокая квалификация оператора. Кроме того, определяется не концентрация аминов напрямую, а остаточная концентрация брома. Данный способ не обладает селективностью к отдельным аминам. Кроме того, значительным недостатком является использование брома, который очень токсичен и представляет серьезную опасность для людей и окружающей среды.
Известен также способ количественного определения алифатических аминов [4] путем экстракции хлороформом в смеси со спиртом их комплекса с метилоранжем из слабокислого водного раствора с последующим фотометрированием экстракта и определением концентрации аминов по калибровочнову графику. Однако данный способ не обладает селективностью к отдельным аминам и требует значительного времени на проведение анализа.
Наиболее близким к заявляемому изобретению является способ определения аминогрупп [5], заключающийся в том, что проба обрабатывается п-бензохиноном, а затем концентрации аминов определяются хроноамперометрически.
Недостатками известного способа являются низкая информативность о качественном составе аминов в исследуемом растворе за счет отсутствия селективности по отношению к входящим в исследуемый раствор различных аминов, что не позволяет проводить экспрессный анализ для идентификации содержащегося в растворе амина, а также сложность технологии и длительность анализа за счет его многостадийности, высокие трудозатраты, что влияет на снижение точности всего анализа.
Техническим результатом заявленного изобретения является существенное повышение информативности о качественном составе аминов в исследуемом растворе, упрощение технологии, сокращение времени анализа и снижение трудозатрат за счет сокращения числа проводимых процедур для пробоподготовки и непосредственно самого анализа.
Указанный технический результат заявленного способа качественного обеспечения идентификации амина, находящегося в растворе, снижения времени анализа, трудозатрат и потребности в дорогостоящем оборудовании, а также упрощения реализации и снижение достигается, прежде всего, определение качественного состава раствора, идентификации находящихся в них аминов и непосредственно прямого определения их концентрации амперометрически.
Заявленный способ определения аминов заключается в определении компонентов анализируемой пробы, содержащих аминогруппы, и концентрации аминов. Способ применяется в безводных растворителях, например в ацетонитриле. Для идентификации аминов и определения их концентрации используется рабочий электрод, модифицирований покрытием толщиной от 10 нм до 10 мкм, состоящим из полимерных комплексов переходных металлов с основаниями Шиффа общей формулы поли[М(Schiff)] (М - переходный металл, Schiff - четырехдентатное N2O2 основание Шиффа). Для приготовления такого электрода полимер синтезируется на проводящей поверхности путем циклирования в потенциодинамическом режиме при сканировании потенциала от -0,2 В до 1,2 В в растворе, содержащем 1*10-3 М [M(Schiff)], и 0,1 М тетрафторбората тетраэтиламмония N(Et)4BF4 в ацетонитриле. Все эксперименты проводятся в стандартной трехэлектродной ячейке [6], при использовании безводного электрода сравнения Ag/AgNO3 и платины в качестве вспомогательного электрода. Электрод погружается в раствор, содержащий растворитель (ацетонитрил) с добавкой от 0,01 до 1 моль/л инертной соли, например, N(Et)4BF4, которая обеспечивает проводимость раствора, и исследуемый амин. В раствор также погружается электрод сравнения (например, хлорсеребряный электрод) и инертный вспомогательный электрод. Регистрируется циклическая вольтамперограмма рабочего электрода в диапазоне потенциалов, включающем потенциалы от -0,2 до 1,2 В, со скоростью развертки в пределах 5-1000 мВ/с. Из-за координации амина к полимерному комплексу и его последующего окисления происходит рост токов вольтамперограммы по сравнению с кривой, полученной в фоновом электролите. В результате координации амина к полимерному комплексу происходит перенос электронной плотности с амина на полимер, величина которого определяется координирующей способностью амина, его основностью и склонностью к окислению. Для каждого амина наблюдается уникальный вольтамперный отклик, характеризующийся определенной формой вольтамперограммы. Идентификация аминов проводится вольтамперометрически путем регистрации вольтамперограммы модифицированного электрода, погруженного в раствор амина в диапазоне потенциалов -0.2-1.2 В или более узком со скоростью развертки в пределах 5-1000 мВ/с, и сравнения ее с предварительно зарегистрированной эталонной вольтамперограммой известных аминов. Определение концентрации может проводиться двумя способами. В первом способе концентрация определяется путем вычисления разности значений тока максимумов вольтамперных кривых для растворов, содержащих амины и без их присутствия и расчетом концентрации по калибровочному графику. Во втором способе концентрация определяется амперометрически путем измерения тока при фиксированном потенциале в диапазоне от -0.4 В до 1.2 В и расчета концентрации по калибровочному графику.
Заявленный способ апробирован в лабораторных условиях Санкт-Петербургского Государственного Университета, в реальных условиях и в реальных режимах. Согласно данным представленных примеров, можно указать существенные признаки нового материала, по сравнению с известными аналогами и прототипом, а именно: возможность прямого хроноамперометрического определения концентрации аминов в неводных растворах; возможность идентификации различных отдельных аминов в неводных растворах. Сущность заявляемого изобретения и результаты проведенных исследований, подтверждающих достижение указанного технического результата заявляемого изобретения, иллюстрируются Фиг. 1-9:
На Фиг. 1 представлены циклические вольтамперограммы электрода из стеклоуглерода, покрытого полимером poly[Ni(CH3OSalEn)], зарегистрированные в растворе 0.1 М N(C2H5)4BF4 в ацетонитриле при скорости развертки 50 мВ/с с добавками аминов 10-3 М.
На Фиг. 2. представлены циклические вольтамперограммы электрода из стеклоуглерода, покрытого полимером poly[Ni(CH3OSalEn)], зарегистрированные в растворе 0.1 М N(C2H5)4BF4 в ацетонитриле при скорости развертки 50 мВ/с с добавкой амина 10-4 М.
На Фиг. 3 представлен калибровочный график зависимости разности силы тока вольтамперограмм в растворе 0.1 М N(C2H5)4BF4 в ацетонитриле с добавкой бензиламина и без нее, зарегистрированной при 750 мВ, от количества бензиламина, содержащегося в растворе.
На Фиг. 4 показана хроноамперограмма, зарегистрированная в растворе 0.1 М N(C2H5)4BF4 в ацетонитриле при последовательных добавках бензиламина.
На Фиг. 5 представлен калибровочный график зависимости силы тока на хроноамперограммах от концентрации бензиламина в растворе.
На Фиг. 6 представлены циклические вольтамперограммы электрода из стеклоуглерода, покрытого полимером poly[Ni(CH3OSalEn)], зарегистрированные в растворе 0.1 М NH4BF4 в ацетонитриле при скорости развертки 50 мВ/с с добавками аминов 10-3 М.
На Фиг. 7. представлены циклические вольтамперограммы, электрода из стеклоуглерода, покрытого полимером poly[Ni(CH3OSalEn)], зарегистрированные в растворе 0.1 М NH4BF4 в ацетонитриле при скорости развертки 50 мВ/с с добавкой амина 7,5*10-4 М.
На Фиг. 8 показана хроноамперограмма, зарегистрированная в растворе 0.1 М NH4BF4 в ацетонитриле при последовательных добавках анилина.
На Фиг. 9 представлен калибровочный график зависимости силы тока на хроноамперограммах от концентрации анилина в растворе.
Пример 1
Для идентификации аминов электрод из стеклоуглерода, покрытый пленкой полимера поли[N,N'-фенилен-1,2-диил-бис(салицилидениминато)никель(II)] (далее poly[Ni(CH3OSalEn)]) толщиной 150 нм, погружается в ячейку, содержащую раствор инертной соли - 0,1 М (C2H5)4NBF4 в ацетонитриле, вспомогательный платиновый электрод и хлорсеребряный электрод сравнения. Сначала регистрируется циклическая вольтамперограмма модифицированного электрода в фоновом электролите в диапазоне от 0 до 1.2 В при скорости развертки 50 мВ/с. Затем в раствор вводится проба, содержащая известный амин, и регистрируется вольтамперограмма в том же диапазоне потенциалов с той же скоростью развертки. В данном примере были сделаны добавки анилина, бензиламина и диметиланилина с концентрацией 10-3 М. (Фиг. 1).
Идентификация неизвестного амина осуществляется по сопоставлению полученной кривой с образцами вольтамперограмм, зарегистрированных в присутствии известных аминов. В примере к раствору фонового электролита был добавлен бензиламин, представленный экспериментатору как неизвестный амин из ряда анилин, бензиламин и диметиланилин в концентрации 10-4 М. Форма зарегистрированной вольтамперограммы (Фиг. 2), а именно количество пиков и их потенциалы, соответствуют кривой для бензиламина на Фиг. 1. Таким образом, неизвестный амин был идентифицирован как бензиламин, что соответствовало реальной добавке.
Для определения концентрации бензиламина были зарегистрированы вольтамперограммы модифицированных электродов в описанном выше электролите с содержанием бензиламина от 1*10-5 до 4.5*10-4 М.
Аналитическим сигналом являлось увеличение тока анодной волны при 750 мВ на каждой кривой. По разностям значений между силами тока в районе потенциала этой волны для кривых, зарегистрированных в растворах, содержащих бензиламин и не содержащих амин, для каждой пленки была построена калибровочная кривая (Фиг. 3). Она представляет собой линейную зависимость разности сил токов от концентрации бензиламина. В данной конфигурации предел обнаружения составляет 50 мкмоль/л с диапазоном линейности 50-450 микромоль/л. В примере прирост тока вольтамперограммы при потенциале 750 мВ при добавке бензиламина составил составил 9 мкА (Фиг. 2). По калибровочному графику (Фиг. 3) рассчитана концентрация бензиламина в пробе. Полученное значение концентрации 105 микромоль/л, погрешность определения концентрации составила 5%.
Пример 2
Для определения концентрации амина вращающийся дисковый электрод, покрытый полимером, указанным выше, помещается в ячейку, аналогичную описанной выше, включается вращение. К электроду, погруженному в раствор, содержащий амин, подается напряжение, специфичное для конкретного детектируемого амина (пример: бензиламин, 0.75 В). Амперометрический анализ заключается в регистрации тока при подаче напряжения на раствор. Определение концентрации амина производится путем расчета с использованием коэффициента пропорциональности между измеренным током и концентрацией, полученного путем предварительной калибровки сенсора в стандартных растворах. Пример: определение концентрации бензиламина в растворах на базе ацетонитрила. Калибровка электрода проводилась методом добавок на вращающемся дисковом электроде (1000 об/мин): через равные промежутки времени 20 сек добавлялось определенное количество раствора бензиламина, а затем измерялось изменение силы тока. Значения силы тока снимались при потенциостатическом режиме с заданным потенциалом 0.75 В (Фиг. 4). Для первых 5-6 точек каждой калибровочной кривой была получена линейная зависимость (Фиг. 5). Таким образом, была показана возможность создания амперометрических сенсоров на присутствие бензиламина в растворе. Наименьший предел обнаружения бензиламина в данной конфигурации составляет 10 микромоль/л (1 мг/л), диапазоны линейности отклика 10-60 микромоль/л.
Для проверки применимости метода был приготовлен раствор бензиламина с коцентрацией 40 микромоль/л. Ток, зарегистрированный на электроде, составил 2,1 мкА. По калибровочному графику (Фиг. 5) рассчитана концентрация бензиламина в пробе. Полученное значение концентрации 37 микромоль/л, погрешность определения концентрации составила 7,5%.
Для проверки возможности определения аминов в смеси был приготовлен раствор, содержащий 200 микромоль/л триэтиламина и 30 микромоль/л бензиламина. Определение бензиламина проводили в условиях, описанных выше. Ток, зарегистрированный на электроде, составил 1,6 мкА. По калибровочному графику (Фиг. 5) рассчитана концентрация бензиламина в пробе. Полученное значение концентрации 29 микромоль/л, погрешность определения концентрации составила 3%.
Пример 3
Для идентификации аминов электрод из стеклоуглерода, покрытый пленкой полимера poly[Ni(CH3OSalEn)] толщиной 120 нм, погружается в ячейку, содержащую раствор инертной соли - 0,1 М NH4BF4 в ацетонитриле, вспомогательный платиновый электрод и хлорсеребряный электрод сравнения. Сначала регистрируется циклическая вольтамперограмма модифицированного электрода в фоновом электролите в диапазоне от 0 до 1.2 В со скоростью развертки 50 мВ/с. Затем в раствор вводится проба, содержащая известный амин, и регистрируется вольтамперограмма в том же диапазоне потенциалов с той же скоростью развертки. В данном примере были сделаны добавки анилина, бензиламина и диметиланилина с концентрацией 10-3 М. (Фиг. 6).
Идентификация неизвестного амина осуществляется по сопоставлению полученной кривой с образцами вольтамперограмм, зарегистрированных в присутствии известных аминов. В примере к раствору фонового электролита был добавлен анилин, представленный экспериментатору как неизвестный амин из ряда анилин, бензиламин и диметиланилин в концентрации 0,75*10-3 М. Форма зарегистрированной вольтамперограммы (Фиг. 7), а именно количество пиков и их потенциалы, соответствуют кривой для анилина на Фиг. 6. Таким образом, неизвестный амин был идентифицирован как анилин, что соответствовало реальной добавке.
Пример 4
Для определения концентрации амина вращающийся дисковый электрод, покрытый полимером, указанным выше, помещается в ячейку, аналогичную описанной выше, включается вращение. К электроду, погруженному в раствор, содержащий амин, подается напряжение, специфичное для конкретного детектируемого амина (пример: анилин, 0.6 В). Амперометрический анализ заключается в регистрации тока при подаче напряжения на раствор. Определение концентрации амина производится путем расчета с использованием коэффициента пропорциональности между измеренным током и концентрацией, полученного путем калибровки сенсора в стандартных растворах. Пример: определение концентрации анилина в растворах на базе ацетонитрила. Калибровка полимера проводилась методом добавок на вращающемся дисковом электроде (1000 об/мин): через равные промежутки времени (20 сек) добавлялось определенное количество раствора анилина, а затем измерялось изменение силы тока. Значения силы тока снимались при потенциостатическом режиме с заданным потенциалом 0.6 В (Фиг. 8). Для первых 5-6 точек каждой калибровочной кривой была получена линейная зависимость (Фиг. 9). Таким образом, была показана возможность создания амперометрических сенсоров на присутствие анилина в растворе. Наименьший предел обнаружения анилина в данной конфигурации составляет 10 микромоль/л (1 мг/л), диапазоны линейности отклика 10-60 микромоль/л.
Для проверки применимости метода был приготовлен раствор фонового электролита, произведена выдержка пленки при поданном потенциале 0.6 В, после чего произведена добавка анилина, после которой концентрация амина составила 55 микромоль/л. Прирост тока после добавки амина, зарегистрированный на электроде, составил 2,08 мкА. По калибровочному графику (Фиг. 9) рассчитана концентрация анилина в пробе. Полученное значение концентрации 58 микромоль/л, погрешность определения концентрации составила 5,5%.
Технико-экономическая эффективность заявленного способа, как подтвердили результаты апробации (примеры 1-4), состоит в существенном повышении информативности о качественном составе аминов в исследуемом растворе, упрощении технологии, сокращении времени анализа и снижении трудозатрат за счет сокращения числа проводимых процедур для пробоподготовки и непосредственно самого анализа.
Список использованной литературы
1. Патент РФ 2006858.
2. Ripley В.D. et al. Gas chromatographic determination of Primary and Secundary Amines as Pentafloorbenzamide Derivates. - J. Assoc. off. Anal. Chem. 1982, v. 65, N 2, p. 1066-1072.
3. Патент РФ 2183324.
4. Патент SU 446812.
5. Патент SU 972384 (прототип).
6. Zocki C.N. Handbook of Electrochemistry / Amsterdam, Elsivier, 2007 - 24 c.
Claims (3)
1. Способ определения аминов и их концентрации в безводных средах, заключающийся в определении компонентов анализируемой пробы, содержащих аминогруппы, и концентрации аминов хроноамперометрическим методом с использованием калибровочных кривых, отличающийся тем, что анализируемую пробу, содержащую амины, растворяют в ацетонитриле с добавкой от 0,01 до 1 моль/л инертной соли, погружают электрод с предварительно нанесенным на него покрытием толщиной от 10 нм до 10 мкм, состоящим из полимерных комплексов переходных металлов с основаниями Шиффа, и регистрируют вольтамперограмму в диапазоне потенциалов, включающем потенциалы от -0,2 до 1,2 В, со скоростью развертки в пределах 5-1000 мВ/с, которую сравнивают с эталонными вольтамперограммами известных аминов и по ним идентифицируют аналогичные эталонному образцу амины в анализируемой пробе.
2. Способ по п. 1, в качестве инертной соли применяют тетрафторборат тетраэтиламмония.
3. Способ по п. 1, в качестве инертной соли применяют тетрафторборат аммония.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015139243A RU2613880C2 (ru) | 2015-09-15 | 2015-09-15 | Способ определения аминов в безводных средах |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015139243A RU2613880C2 (ru) | 2015-09-15 | 2015-09-15 | Способ определения аминов в безводных средах |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015139243A RU2015139243A (ru) | 2017-03-21 |
RU2613880C2 true RU2613880C2 (ru) | 2017-03-21 |
Family
ID=58453318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015139243A RU2613880C2 (ru) | 2015-09-15 | 2015-09-15 | Способ определения аминов в безводных средах |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2613880C2 (ru) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU446812A1 (ru) * | 1971-10-26 | 1974-10-15 | Предприятие П/Я Р-6913 | Способ количественного определени аминов |
SU972384A1 (ru) * | 1981-04-24 | 1982-11-07 | Научно-Исследовательский Институт Биологии При Игу Им.А.А.Жданова | Способ определени меркаптанов и аминов в смеси |
RU2301997C2 (ru) * | 2001-08-24 | 2007-06-27 | Сенсор-Тек Лимитед | Способ получения высокочувствительных потенциометрических датчиков |
-
2015
- 2015-09-15 RU RU2015139243A patent/RU2613880C2/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU446812A1 (ru) * | 1971-10-26 | 1974-10-15 | Предприятие П/Я Р-6913 | Способ количественного определени аминов |
SU972384A1 (ru) * | 1981-04-24 | 1982-11-07 | Научно-Исследовательский Институт Биологии При Игу Им.А.А.Жданова | Способ определени меркаптанов и аминов в смеси |
RU2301997C2 (ru) * | 2001-08-24 | 2007-06-27 | Сенсор-Тек Лимитед | Способ получения высокочувствительных потенциометрических датчиков |
Non-Patent Citations (1)
Title |
---|
КРЕШКОВ А.П. и др., Кислотно-основное титрование в неводных средах, М., Мир, 1971, стр. 429-430, найдено 06.12.2016 в Интернете [on-line] на сайте http://alnam.ru/book_a_chem3.php?id=228. ДЕВИС С. и др., Электрохимический словарь. Мир, 1979, стр. 205-206, найдено 06.12.2016 в Интернете [on-line] на сайте http://stu.alnam.ru/book_els-159. * |
Also Published As
Publication number | Publication date |
---|---|
RU2015139243A (ru) | 2017-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ensafi et al. | A novel sensitive DNA–biosensor for detection of a carcinogen, Sudan II, using electrochemically treated pencil graphite electrode by voltammetric methods | |
Brunetti et al. | Determination of Caffeine at a Nafion‐Covered Glassy Carbon Electrode | |
Hutton et al. | Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP–MS | |
Lubert et al. | History of electroanalytical methods | |
CN102507686A (zh) | 电聚合磺基水杨酸修饰玻碳电极的制备方法及在测定色氨酸中的应用 | |
Levent et al. | Application of a pencil graphite electrode for voltammetric simultaneous determination of ascorbic acid, norepinephrine, and uric acid in real samples | |
Filik et al. | Simultaneous electrochemical preconcentration and determination of dopamine and uric acid by square-wave adsorptive stripping voltammetry using a poly (Safranine O)-modified glassy carbon electrode | |
Ali et al. | In situ polymerization and FT-IR characterization of poly-glycine on pencil graphite electrode for sensitive determination of anti-emetic drug, granisetron in injections and human plasma | |
CN106596666B (zh) | 一种固定三联吡啶钌及电化学发光检测诱惑红的方法 | |
Piech et al. | Sensitive and fast determination of papaverine by adsorptive stripping voltammetry on renewable mercury film electrode | |
Liu | A novel sensor based on electropolymerization poly (safranine) film electrode for voltammetric determination of 4-nitrophenol | |
RU2613880C2 (ru) | Способ определения аминов в безводных средах | |
Jain et al. | Voltammetric behaviour of drotaverine hydrochloride in surfactant media and its enhancement determination in Tween-20 | |
María‐Hormigos et al. | Rapid and Easy Detection of Deoxynivalenol on a Bismuth Oxide Screen‐printed Electrode | |
Peña et al. | Determination of Fe (III) in wine samples using a ruthenium oxide hexacyanoferrate modified microelectrode | |
CN107121484A (zh) | 一种灵敏检测草甘膦的电化学方法 | |
CN115575470B (zh) | 一种快速原位活体检测烟叶中尼古丁的方法 | |
Ozcelikay et al. | Electrochemical characteristics of tenofovir and its determination in dosage form by electroanalytical methods | |
Saini et al. | A simple membrane with the electroactive [Sulfapyridine-H]+[Co (C2B9H11) 2]-for the easy potentiometric detection of sulfonamides | |
CN107688044B (zh) | 一种同时检测对乙酰氨基酚和4-氨基苯酚浓度的方法 | |
Attia et al. | Electroanalytical Determination of Escitalopram Oxalate Using Nickel Nanoparticles Modified Carbon Paste Sensor. | |
Dou et al. | Electrochimical determination of uric acid, xanthine and hypoxanthine by poly (xylitol) modified glassy carbon electrode | |
RU2614022C1 (ru) | Способ количественного определения триазавирина методом вольтамперометрии (варианты) | |
Desimoni et al. | Determination of Patent Blue V (E131) at a nafion‐modified glassy carbon electrode | |
Ensafi et al. | PVC membrane selective electrode for determination of isoproterenol based on naphthylethylenediamine dihydrochloride-tetraphenyl boranuide |