RU2613761C2 - Способ получения нанокапсул лекарственных растений, обладающих седативным действием - Google Patents
Способ получения нанокапсул лекарственных растений, обладающих седативным действием Download PDFInfo
- Publication number
- RU2613761C2 RU2613761C2 RU2015128446A RU2015128446A RU2613761C2 RU 2613761 C2 RU2613761 C2 RU 2613761C2 RU 2015128446 A RU2015128446 A RU 2015128446A RU 2015128446 A RU2015128446 A RU 2015128446A RU 2613761 C2 RU2613761 C2 RU 2613761C2
- Authority
- RU
- Russia
- Prior art keywords
- nanocapsules
- tincture
- preparing
- valerian
- motherwort
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/84—Valerianaceae (Valerian family), e.g. valerian
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/53—Lamiaceae or Labiatae (Mint family), e.g. thyme, rosemary or lavender
- A61K36/533—Leonurus (motherwort)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/65—Paeoniaceae (Peony family), e.g. Chinese peony
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J3/00—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
- A61J3/07—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/14—Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
- A61K47/38—Cellulose; Derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
Landscapes
- Health & Medical Sciences (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Biotechnology (AREA)
- Alternative & Traditional Medicine (AREA)
- Botany (AREA)
- Medical Informatics (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Optics & Photonics (AREA)
- Nanotechnology (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения нанокапсул лекарственных растений, обладающих седативным действием, характеризующийся тем, что настойки валерьяны, пустырника или пиона уклоняющегося добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании при 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре, причем соотношение ядро:оболочка в случае получения нанокапсул настойки пустырника составляет 1:3, 1:1, 5:1 или 1:5, в случае получения нанокапсул настойки валерьяны 1:3, 1:1, 5:1, 1:5, в случае получения нанокапсул настойки пиона уклоняющегося 1:3, 1:5. Изобретение позволяет упростить и ускорить процесс получения нанокапсул и увеличить выход по массе. 3 ил., 11 пр.
Description
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.
Ранее были известны способы получения микрокапсул.
В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения нанокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул лекарственных растений, обладающих седативным действием, отличающимся тем, что в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза, а в качестве ядра - настойки пустырника, валерьяны, пиона уклоняющийся.
Отличительной особенностью предлагаемого метода является получение нанокапсул с использованием натрий карбоксиметилцеллюлозы в качестве оболочки частиц и настоек лекарственных растений, обладающих седативным действием - в качестве ядра.
Результатом предлагаемого метода является получение нанокапсул лекарственных растений, обладающих седативным действием.
ПРИМЕР 1. Получение нанокапсул настойки пустырника, соотношение ядро:оболочка 1:3
5 мл настойки пустырника добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 3 г полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул настойки пустырника, соотношение ядро:оболочка 1:1
5 мл настойки пустырника добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул настойки пустырника, соотношение ядро:оболочка 5:1
25 мл настойки пустырника добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4. Получение нанокапсул настойки пустырника, соотношение ядро:оболочка 1:5
5 мл настойки пустырника добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 5 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 5. Получение нанокапсул настойки валерьяны, соотношение ядро:оболочка 1:3
5 мл настойки валерьяны добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 3 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 6. Получение нанокапсул настойки валерьяны, соотношение ядро:оболочка 1:1
5 мл настойки валерьяны добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 7. Получение нанокапсул настойки валерьяны, соотношение ядро:оболочка 5:1
25 мл настойки валерьяны добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 8. Получение нанокапсул настойки валерьяны, соотношение ядро:оболочка 1:5
5 мл настойки валерьяны добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 5 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 9. Получение нанокапсул настойки пиона уклоняющийся, соотношение ядро:оболочка 1:3
10 мл настойки пиона уклоняющегося добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 3 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 10. Получение нанокапсул настойки пиона уклоняющегося, соотношение ядро:оболочка 1:5
10 мл настойки пиона уклоняющегося добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 5 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 11. Определение размеров нанокапсул методом NTA
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834 (Рис. 1-3).
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size: Auto, длительность единичного измерения 215 s, использование шприцевого насоса.
Claims (1)
- Способ получения нанокапсул лекарственных растений, обладающих седативным действием, характеризующийся тем, что настойки валерьяны, пустырника или пиона уклоняющегося добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании при 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре, причем соотношение ядро:оболочка в случае получения нанокапсул настойки пустырника составляет 1:3, 1:1, 5:1 или 1:5, в случае получения нанокапсул настойки валерьяны 1:3, 1:1, 5:1, 1:5, в случае получения нанокапсул настойки пиона уклоняющегося 1:3, 1:5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015128446A RU2613761C2 (ru) | 2015-07-13 | 2015-07-13 | Способ получения нанокапсул лекарственных растений, обладающих седативным действием |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015128446A RU2613761C2 (ru) | 2015-07-13 | 2015-07-13 | Способ получения нанокапсул лекарственных растений, обладающих седативным действием |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015128446A RU2015128446A (ru) | 2017-01-19 |
RU2613761C2 true RU2613761C2 (ru) | 2017-03-21 |
Family
ID=58449428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015128446A RU2613761C2 (ru) | 2015-07-13 | 2015-07-13 | Способ получения нанокапсул лекарственных растений, обладающих седативным действием |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2613761C2 (ru) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2134967C1 (ru) * | 1997-05-30 | 1999-08-27 | Шестаков Константин Алексеевич | Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды |
RU2006108860A (ru) * | 2003-08-22 | 2007-09-27 | Даниско А/С (Dk) | Микрокапсулы |
-
2015
- 2015-07-13 RU RU2015128446A patent/RU2613761C2/ru active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2134967C1 (ru) * | 1997-05-30 | 1999-08-27 | Шестаков Константин Алексеевич | Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды |
RU2006108860A (ru) * | 2003-08-22 | 2007-09-27 | Даниско А/С (Dk) | Микрокапсулы |
Non-Patent Citations (1)
Title |
---|
Мазнев Н.И. Лекарственные растения: 15000 наименований лекарственных растений, сборов и рецептов. Описание, свойства, применение, противопоказания. - М.: ООО ИКТЦ "ЛАДА", ООО ИД "РИПОЛ классик", ООО Издательство "Дом. XXI век", 2006. - 1056 с.. NAGAVARMA B. V. N. " Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, V. 5, suppl 3, 2012, P. 16-23. * |
Also Published As
Publication number | Publication date |
---|---|
RU2015128446A (ru) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2557900C1 (ru) | Способ получения нанокапсул витаминов | |
RU2586612C1 (ru) | Способ получения нанокапсул адаптогенов в ксантановой камеди | |
RU2590666C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием | |
RU2639091C2 (ru) | Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием | |
RU2631479C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих седативным действием | |
RU2642230C1 (ru) | Способ получения нанокапсул кверцетина или дигидрокверцетина в каррагинане | |
RU2599009C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих седативным действием в конжаковой камеди | |
RU2625501C2 (ru) | Способ получения нанокапсул сухого экстракта шиповника | |
RU2565392C1 (ru) | Способ получения нанокапсул витаминов в ксантановой камеди | |
RU2642054C2 (ru) | Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием | |
RU2600441C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием в конжаковой камеди | |
RU2602165C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием, в агар-агаре | |
RU2602168C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием в каррагинане | |
RU2605594C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием | |
RU2609739C1 (ru) | Способ получения нанокапсул резвератрола в геллановой камеди | |
RU2624530C1 (ru) | Способ получения нанокапсул унаби в геллановой камеди | |
RU2613881C1 (ru) | Способ получения нанокапсул сухого экстракта шиповника | |
RU2599842C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием в каррагинане | |
RU2602166C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием, в агар-агаре | |
RU2622750C1 (ru) | Способ получения нанокапсул бетулина в геллановой камеди | |
RU2605847C2 (ru) | Способ получения нанокапсул розувастатина в конжаковой камеди | |
RU2596476C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием | |
RU2613761C2 (ru) | Способ получения нанокапсул лекарственных растений, обладающих седативным действием | |
RU2599481C1 (ru) | Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием | |
RU2573502C1 (ru) | Способ получения нанокапсул резвератрола в альгинате натрия |