RU2613566C1 - Пассивный водородный стандарт частоты - Google Patents

Пассивный водородный стандарт частоты Download PDF

Info

Publication number
RU2613566C1
RU2613566C1 RU2016109120A RU2016109120A RU2613566C1 RU 2613566 C1 RU2613566 C1 RU 2613566C1 RU 2016109120 A RU2016109120 A RU 2016109120A RU 2016109120 A RU2016109120 A RU 2016109120A RU 2613566 C1 RU2613566 C1 RU 2613566C1
Authority
RU
Russia
Prior art keywords
frequency
output
input
resonator
generator
Prior art date
Application number
RU2016109120A
Other languages
English (en)
Inventor
Николай Александрович Демидов
Original Assignee
Николай Александрович Демидов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Александрович Демидов filed Critical Николай Александрович Демидов
Priority to RU2016109120A priority Critical patent/RU2613566C1/ru
Application granted granted Critical
Publication of RU2613566C1 publication Critical patent/RU2613566C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G3/00Producing timing pulses

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

Пассивный водородный стандарт частоты предназначен для использования в качестве источника высокостабильных сигналов. Стандарт частоты включает квантовый дискриминатор 1 с петлей связи 2 перестройки частоты его резонатора, преобразователь частоты 3, амплитудный детектор 4, фазовращатели 5, 13, синхронные детекторы 6, 14, кварцевый генератор 7, модулятор 8, генератор модулирующей частоты 9, умножитель частоты 10, генератор гармоник 11, перестраиваемый синтезатор частоты 12, генератор прямоугольных импульсов 15 и цифро-аналоговый преобразователь 16, выход которого соединен с петлей связи 2 для перестройки частоты резонатора квантового дискриминатора 1, а второй его вход подключен к выходу синхронного детектора 14, выполненного цифровым и вторым входом соединенного со вторым выходом генератора прямоугольных импульсов 15. Техническим результатом заявленного изобретения является уменьшение температурного коэффициента частоты прибора (1÷2×10-15/°С) и соответственно улучшение стабильности частоты на времени усреднения 1 сутки до значений (1.5÷2)×10-15. 3 ил.

Description

Изобретение относится к квантовым водородным стандартам частоты пассивного типа (ПВСЧ), которые могут быть использованы для работы в качестве генератора высокостабильных, высокоточных, спектрально чистых сигналов.
Принцип действия таких приборов основан на автоподстройке частоты кварцевого генератора 5 МГц по частоте линии излучения атомов водорода, как, например, пассивные водородные стандарты частоты и времени типа Ч1-76, типа VCH-1004, 1006.
В качестве ближайшего аналога предлагаемого технического решения принят пассивный водородный стандарт частоты и времени Ч1-76 (фиг. 1).
Квантовое устройство (квантовый дискриминатор) таких стандартов излучает только под действием внешнего частотно-модулированного сигнала возбуждения. Для этого сигнал 5 МГц кварцевого генератора поступает на модулятор, где осуществляется модуляция его фазы синусоидальным сигналом с частотой 12,5 кГц и индексом модуляции ~ 4⋅10-3. Далее сигнал умножается до частоты 100 МГц и вместе с сигналом синтезатора 20,405 МГц поступает на широкополосный генератор гармоник. Окончательно частотно-модулированный (ЧМ) сигнал возбуждения с частотой 1420,405 МГц выделяется непосредственно в резонаторе дискриминатора (при взаимодействии 14-й гармоники сигнала 100 МГц и сигнала синтезатора 20,405 МГц).
Квантовый водородный дискриминатор (КВД) может рассматриваться в данном случае как нелинейная резонансная система из двух связанных контуров - спектральной линии с добротностью ~109 и СВЧ резонатора с добротностью ~104. При прохождении через такую двухрезонаторную колебательную систему ЧМ сигнала (с частотой модуляции много больше ширины спектральной линии, но меньше полосы пропускания резонатора) и взаимодействии его с линией излучения атомов и резонатором дискриминатора ЧМ сигнал возбуждения приобретает амплитудно-модулированную (AM) компоненту. Амплитуда и фаза огибающей этого сигнала несет информацию об отклонении частот как кварцевого генератора от частоты линии излучения атомов водорода, так и резонатора. Сигналы об отклонении частот кварцевого генератора и резонатора сдвинуты по фазе на 90°. С выхода дискриминатора сигнал усиливается, преобразуется супергетеродинным приемником с промежуточной частотой (ПЧ) 19,6 МГц, а затем огибающая AM сигнала выделяется амплитудным детектором и разделяется соответствующими фазовращателями на сигналы расстройки резонатора квантового дискриминатора и кварцевого генератора. Из этих сигналов с помощью синхронных детекторов выделяются постоянные напряжения, пропорциональные расстройке кварцевого генератора относительно частоты спектральной линии и СВЧ резонатора относительно частоты кварцевого генератора. Эти постоянные напряжения поступают на цепи управления частотами кварцевого генератора и СВЧ резонатора КВД.
Технической проблемой квантовых ПВСЧ является то обстоятельство, что частота настроенного резонатора не совпадает с частотой линии излучения атомов водорода, вследствие как несимметричности резонансной характеристики резонатора, так и неравномерности амплитудно-частотной характеристики приемного тракта. Это проявляется в высокой зависимости частоты ПВСЧ от интенсивности атомного пучка (~10-12 - 10-11) и, соответственно, в высокой температурной чувствительности прибора (~ единиц × 10-14/°С). Все это ухудшает метрологические характеристик прибора (низкого значения температурного коэффициента частоты, высокой долговременной стабильности его частоты).
Технической задачей, решение которой достигается изобретением, является повышение метрологических характеристик прибора с целью создания пассивного водородного стандарта частоты с малой относительной нестабильностью его частоты.
Сущность технического решения задачи заключается в том, что в пассивном водородном стандарте частоты, включающем последовательно соединенные в кольцо квантовый дискриминатор с (варакторной) петлей связи перестройки частоты его резонатора, преобразователь частоты, амплитудный детектор, первый фазовращатель, первый синхронный детектор, кварцевый генератор, модулятор, второй вход которого подключен к выходу генератора модулирующей частоты, умножитель частоты и генератор гармоник, второй вход которого через перестраиваемый синтезатор частоты подключен ко второму выходу кварцевого генератора, второй вход синхронного детектора соединен со вторым выходом генератора модулирующей частоты, второй синхронный детектор и второй фазовращатель, включенный между выходом амплитудного детектора и входом второго синхронного детектора, в него введена цепочка из последовательно соединенных генератора прямоугольных импульсов и цифро-аналогового преобразователя, выход которого соединен с петлей связи перестройки частоты резонатора квантового дискриминатора, пошагово изменяя ее значение, а второй его вход подключен к выходу второго синхронного детектора, выполненного цифровым и вторым входом соединенного со вторым выходом генератора прямоугольных импульсов.
На фиг. 2 представлена структурная схема предлагаемого стандарта частоты (на фиг. 3 с наименованием блоков стандарта), который включает последовательно соединенные в кольцо квантовый дискриминатор 1 с петлей связи (с варикапом) 2 перестройки частоты его резонатора, СВЧ преобразователь частоты 3 (супергетеродинный приемник), амплитудный детектор 4, первый фазовращатель 5, первый синхронный детектор 6, кварцевый генератор 7, модулятор 8, второй вход которого подключен к выходу генератора модулирующей частоты 9, умножитель частоты 10 и генератор гармоник 11, второй вход которого через перестраиваемый синтезатор частоты 12 подключен ко второму выходу кварцевого генератора 7, второй вход синхронного детектора 6 соединен со вторым выходом генератора модулирующей частоты 9, второй фазовращатель 13 включен между выходом амплитудного детектора 4 и входом второго синхронного детектора 14, цепочка из последовательно соединенных генератора прямоугольных импульсов 15 и цифро-аналогового преобразователя 16, выход которого соединен с петлей связи 2 для перестройки частоты резонатора квантового дискриминатора 1 варикапом (на который подается управляющее напряжение), а второй его вход подключен к выходу второго синхронного детектора 14, выполненного цифровым (программным) и вторым входом соединенного со вторым выходом генератора прямоугольных импульсов 15.
Работа ПВСЧ в части автоподстройки частоты кварцевого генератора 7 к частоте линии излучения атомов водорода дискриминатора 1, назначения, работы и выполнения блоков (квантовый дискриминатор 1 с варакторной петлей связи 2, преобразователь частоты 3, амплитудный детектор 4, фазовращатель 5, синхронный детектор 6, кварцевый генератор 7, модулятор 8, генератор модулирующей частоты 9, умножитель частоты 10, генератор гармоник 11, синтезатор частоты 12, фазовращатель 13) аналогична прототипу и описана выше.
Автоматическая настройка резонатора КВД осуществляется не путем выделения сигнала расстройки резонатора из фазомодулированного частотой 12,5 кГц сигнала накачки 1420,405 … МГц (как в прототипе), а из сигнала в результате переключения частоты резонатора его варикапом, на который подается управляющее двухуровневое напряжение, формируемого из опорного сигнала прямоугольной формы частотой ~45 Гц, выдаваемого генератором 15 (в качестве его может быть использован процессор типа TMS3205402, работающий от внутреннего сигнала или от сигнала частоты 100 МГц с умножителя частоты 10) на вход ЦАП 16 (который выполнен на микросхеме AD5541) и на вход синхронного детектора 14, на другой вход которого поступает сигнал расстройки СВЧ резонатора относительно частоты кварцевого генератора. Синхронный детектор 14, выполненный цифровым, формирует "+" или "-" счетные импульсы в зависимости от совпадения или несовпадения обоих входных сигналов (опорного сигнала прямоугольной формы частотой ~45 Гц и сигнал расстройки резонатора) и посылает их на цифровой аккумулятор ЦАП 16, выполняющий функцию цифрового интегратора. Интегратор управляет выходным двухуровневым напряжением ЦАП 16, подаваемым на настраивающий частоту резонатора варикап 2, пошагово изменяя значение частоты резонатора. Частота настроенного таким методом резонатора в общем случае может не совпадать с частотой атомного перехода из-за несимметричности резонансной характеристики резонатора, изменений добротности резонатора при переключении частоты варикапом, а также из-за спин-обменного сдвига самого атомного перехода. Это обнаруживается в зависимости выходной частоты ПВСЧ от интенсивности пучка, которая составляет порядка единиц 10-12 (до 5×10-12) при изменении интенсивности атомного пучка в рабочем диапазоне. Генератор 15 имеет функцию уменьшения этой зависимости точной установкой длительности полупериодов частоты переключения (скважности). Шаг установки скважности выбирается из условий смещения частоты стандарта ~10-14÷10-15. В результате такой настройки резонатора КВД выходная частота ПВСЧ практически (в пределах стабильности частоты) не зависит от интенсивности атомного пучка.
Такая система построения ПВСЧ привела к значительному уменьшению температурного коэффициента частоты прибора (1÷2×10-15 /°С) и, соответственно, улучшению стабильности частоты на времени усреднения 1 сутки до значений (1.5÷2)×10-15.

Claims (1)

  1. Пассивный водородный стандарт частоты, включающий последовательно соединенные в кольцо квантовый дискриминатор с петлей связи перестройки частоты его резонатора, преобразователь частоты, амплитудный детектор, первый фазовращатель, первый синхронный детектор, кварцевый генератор, модулятор, второй вход которого подключен к выходу генератора модулирующей частоты, умножитель частоты и генератор гармоник, второй вход которого через перестраиваемый синтезатор частоты подключен ко второму выходу кварцевого генератора, второй вход синхронного детектора соединен со вторым выходом генератора модулирующей частоты, второй синхронный детектор и второй фазовращатель, включенный между выходом амплитудного детектора и входом второго синхронного детектора, отличающийся тем, что в него введена цепочка из последовательно соединенных генератора прямоугольных импульсов и цифро-аналогового преобразователя, выход которого соединен с петлей связи перестройки частоты резонатора квантового дискриминатора, а второй его вход подключен к выходу второго синхронного детектора, выполненного цифровым и вторым входом соединенного со вторым выходом генератора прямоугольных импульсов.
RU2016109120A 2016-03-14 2016-03-14 Пассивный водородный стандарт частоты RU2613566C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016109120A RU2613566C1 (ru) 2016-03-14 2016-03-14 Пассивный водородный стандарт частоты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016109120A RU2613566C1 (ru) 2016-03-14 2016-03-14 Пассивный водородный стандарт частоты

Publications (1)

Publication Number Publication Date
RU2613566C1 true RU2613566C1 (ru) 2017-03-17

Family

ID=58458392

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016109120A RU2613566C1 (ru) 2016-03-14 2016-03-14 Пассивный водородный стандарт частоты

Country Status (1)

Country Link
RU (1) RU2613566C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947137A (en) * 1988-02-29 1990-08-07 Oscilloquartz S.A. Passive frequency standard
SU1258212A1 (ru) * 1984-10-10 1996-05-10 Н.А. Демидов Пассивный водородный стандарт частоты (его варианты)
RU2071173C1 (ru) * 1992-07-10 1996-12-27 Нижегородский научно-исследовательский приборостроительный институт "Кварц" Квантовый стандарт частоты
RU2177194C2 (ru) * 1995-09-29 2001-12-20 Обсерватуар Кантональ Де Нойшатель Атомный стандарт частоты

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1258212A1 (ru) * 1984-10-10 1996-05-10 Н.А. Демидов Пассивный водородный стандарт частоты (его варианты)
US4947137A (en) * 1988-02-29 1990-08-07 Oscilloquartz S.A. Passive frequency standard
RU2071173C1 (ru) * 1992-07-10 1996-12-27 Нижегородский научно-исследовательский приборостроительный институт "Кварц" Квантовый стандарт частоты
RU2177194C2 (ru) * 1995-09-29 2001-12-20 Обсерватуар Кантональ Де Нойшатель Атомный стандарт частоты

Similar Documents

Publication Publication Date Title
CN103151696B (zh) 激光频率和功率的稳定方法及稳定装置
CN108768539B (zh) 光子型微波二分频方法及光子型微波二分频器
CN102270986B (zh) 优化的被动型铷原子频标伺服控制电路
CN203218703U (zh) 激光频率和功率的稳定装置
US2714663A (en) Stabilization of microwave oscillations
US7098744B2 (en) Method and apparatus for generating two frequencies having a frequency separation equal to the atomic frequency of an atomic species
CN111147073B (zh) 一种微波频率锁定装置
RU2613566C1 (ru) Пассивный водородный стандарт частоты
CN110061406B (zh) 具有多分频模式的光子型微波分频器及其分频方法
US3388339A (en) Atomic clocks with spin exchange collision
US3363193A (en) Adjustable frequency atomic frequency standard
US2591258A (en) Frequency stabilization by molecularly resonant gases
RU143081U1 (ru) Квантовый стандарт частоты оптического и свч диапазонов
Buckmaster et al. The application of phase-lock microwave frequency stabilizers to electron paramagnetic resonance spectrometers
US4692716A (en) Method and a device for the frequency control of an atomic or molecular beam frequency standard
RU90587U1 (ru) Квантовый водородный стандарт частоты
Zhu et al. A novel scheme of microwave generation based on heterodyne phase locking of an OEO
RU2378756C1 (ru) Квантовый стандарт частоты
RU2148881C1 (ru) Водородный стандарт частоты
RU2579766C1 (ru) Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса
SU1720159A1 (ru) Стандарт частоты
US3408591A (en) Time scale changer for atomic stabilized frequency sources
CN109474275B (zh) 一种氢原子频标微波腔频率控制方法及装置
JPH0748661B2 (ja) ガスセル形原子発振器
RU152736U1 (ru) Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса