RU2613404C1 - Способ водогазового воздействия на пласт в процессе разработки нефтяной залежи - Google Patents

Способ водогазового воздействия на пласт в процессе разработки нефтяной залежи Download PDF

Info

Publication number
RU2613404C1
RU2613404C1 RU2016110152A RU2016110152A RU2613404C1 RU 2613404 C1 RU2613404 C1 RU 2613404C1 RU 2016110152 A RU2016110152 A RU 2016110152A RU 2016110152 A RU2016110152 A RU 2016110152A RU 2613404 C1 RU2613404 C1 RU 2613404C1
Authority
RU
Russia
Prior art keywords
gas
water
injection
formation
injection well
Prior art date
Application number
RU2016110152A
Other languages
English (en)
Inventor
Кирилл Викторович Казаков
Кирилл Арсеньевич Бравичев
Игорь Тихонович Мищенко
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина"
Priority to RU2016110152A priority Critical patent/RU2613404C1/ru
Application granted granted Critical
Publication of RU2613404C1 publication Critical patent/RU2613404C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к нефтедобывающей промышленности, в частности к разработке нефтяных месторождений посредством закачки в пласт вытесняющих агентов. Технический результат - интенсификация добычи нефти. По способу предварительно на гидродинамической модели пласта определяют целевые объемы чередующихся оторочек воды и газа для закачки в пласт, соответствующие максимальному значению коэффициента извлечения нефти. После этого осуществляют закачку целевого объема оторочки газа в нагнетательную скважину. Затем нагнетательную скважину останавливают до момента снижения давления в прискважинной зоне пласта до значения среднего пластового давления на момент прекращения закачки газа в области пласта, охваченной воздействием нагнетательной скважины. Далее в нагнетательную скважину закачивают первую часть целевой оторочки воды с минимальной технологически возможной приемистостью до снижения газонасыщенности прискважинной зоны пласта до значения остаточной газонасыщенности. Достижение этого показателя устанавливают по стабилизации динамики приемистости на пласт. После этого в нагнетательную скважину продолжают закачку оставшейся части целевого объема оторочки воды с максимальной технологически возможной приемистостью до восстановления пластового давления на уровне начального значения или выше него. Вышеописанный цикл закачек повторяют в процессе разработки нефтяной залежи. 3 ил., 3 табл.,1 пр.

Description

Изобретение относится к нефтедобывающей промышленности, в частности, к разработке нефтяных месторождений посредством закачки в пласт вытесняющих агентов.
Известен способ разработки нефтяных залежей, предусматривающих добычу нефти из добывающих скважин и закачку воды в нагнетательные скважины (Желтов Ю.П. Разработка нефтяных месторождений: Учебник для вузов, 2-е изд., перераб. и доп. - М.: ОАО "Издательство "Недра", 1998. - 365 с.).
Недостатком способов разработки нефтяных залежей с заводнением является низкая нефтеотдача.
Известны способы разработки нефтяных залежей с применением водогазового воздействия, которые включает добычу нефти через добывающие скважины и совместную закачку воды и газа (т.е. закачку водогазовой смеси) в нагнетательные скважины (RU 2088752, 1997, RU 2490438, 2013). Указанные способы позволяют значительно повысить нефтеотдачу пластов по сравнению с заводнением.
Недостаток этих способа заключается в том, что водогазовая смесь обладает существенными фильтрационными сопротивлениями, что приводит к очень низкой приемистости нагнетательной скважины по водогазовой смеси и невозможности закачивать требуемые объемы как воды, так и газа при их совместной закачке в пласты с проницаемостью менее 100 мД, что, в свою очередь, приводит к падению пластового давления и снижению уровней добычи нефти (Методические вопросы повышения нефтеотдачи пластов путем закачки углеводородного газа / Латыпов А.Р., Афанасьев И.С., Захаров В.П., Исмагилов Т.А. // Нефтяное хозяйство. - 2007. №11. - С. 28-31).
Более близким к изобретению является способ водогазового воздействия на пласт в процессе разработки нефтяной залежи, включающий чередующуюся (попеременную) закачку оторочек воды и газа в пласт, при которой объем оторочки газа не превышает 10-12% от первоначального насыщенного нефтью объема пор, а соотношение объемов оторочек воды и газа может находиться в диапазоне от 1:1 до 3:1 (Обзор современного состояния экспериментальных исследований технологий водогазового воздействия с раздельной закачкой воды и газа (Зацепин В.В., Максутов Р.А. // Нефтепромысловое дело. - 2009. №6. - С. 16-24).
При этом для чередующегося водогазового воздействия на пласт частично сохраняется недостаток использования совместной закачки воды и газа, связанный со снижением приемистости, но только по воде (на полуцикле закачки воды). После закачки оторочки газа приемистость нагнетательной скважины по воде может быть существенно снижена за счет образования в пласте остаточной газонасыщенности, которая снижает фазовые проницаемости и соответственно суммарную подвижность флюидов, насыщающих пласт. Остаточная газонасыщенность образуется в процессе пропитки смачивающей фазой (водой) области пласта, насыщенной несмачивающей фазой (газом) (Holmgren, С.R., & Morse, R.А. (1951, May 1).
Effect of Free Gas Saturation on Oil Recovery by Water Flooding. Society of Petroleum Engineers, doi: 10.2118/951135-G). Это приводит к невозможности закачки в пласт необходимых для поддержания пластового давления объемов воды, как следствие, к снижению среднего пластового давления и снижению дебитов нефти добывающих скважин на цикле закачки воды, а также выделению из нефти растворенного в ней газа, повышению газового фактора добывающих скважин, повышению вязкости нефти, снижению ее объемного коэффициента, повышению поверхностного натяжения между нефтью и газом и соответствующему снижению коэффициента вытеснения и нефтеотдачи. При этом может также происходить снижение коэффициента приемистости по газу после цикла закачки воды, но, поскольку газ обладает очень высокой подвижностью, последнее, как правило, не приводит к технологическим трудностям.
Целевые объемы оторочек воды и газа в известном способе получают по результатам лабораторных исследований по вытеснению нефти водогазовым воздействием из образцов керна. При этом недостаток указанных исследований заключается в невозможности учета неоднородности пласта, поскольку позволяют определить лишь коэффициент вытеснения, не затрагивая коэффициент охвата.
Задача изобретения заключается в интенсификации добычи нефти.
Поставленная задача достигается описываемым способом водогазового воздействия на пласт в процессе разработки нефтяной залежи, заключающимся в том, что предварительно на гидродинамической модели пласта определяют целевые объемы чередующихся оторочек воды и газа для закачки в пласт, соответствующие максимальному значению коэффициента извлечения нефти, после чего осуществляют закачку целевого объема оторочки газа в нагнетательную скважину, затем нагнетательную скважину останавливают до момента снижения давления в прискважинной зоне пласта до значения среднего пластового давления на момент прекращения закачки газа в области пласта, охваченной воздействием нагнетательной скважины, далее в нагнетательную скважину закачивают первую часть целевой оторочки воды с минимальной технологически возможной приемистостью до снижения газонасыщенности прискважинной зоны пласта до значения остаточной газонасыщенности, достижение которого устанавливают по стабилизации динамики приемистости на пласт, после чего в нагнетательную скважину продолжают закачку оставшейся части целевого объема оторочки воды с максимальной технологически возможной приемистостью до восстановления пластового давления на уровне начального значения или выше него, причем вышеописанный цикл закачек повторяют в процессе разработки нефтяной залежи.
Достигаемый технический результат заключается в предотвращении снижения приемистости нагнетательной скважины по воде после цикла закачки газа при чередующейся закачке воды и газа в нагнетательную скважину.
Способ осуществляют следующим образом.
Вначале определяют целевые объемы оторочек газа и воды на каждом цикле закачки, которые способствуют достижению максимального коэффициента извлечения нефти (КИН). Целевые объемы оторочек воды и газа определяют по результатам многовариантных расчетов на трехмерной численной геолого-гидродинамической модели (ГГДМ) пласта или его участка, адаптированной на историю разработки (если таковая есть), учитывающей все физические процессы, происходящие при движении в пористой среде нефти, воды и газа, и содержащей все известные данные о геологии пласта и его неоднородности. На ГГДМ пласта или его участка проводят серию расчетов по закачке газа и воды в нагнетательную скважину и добыче нефти из добывающих скважин по вариантам, различающимся закачиваемыми объемами оторочек воды и газа. Далее выбирают сочетание объемов оторочек воды и газа, которое соответствует максимальному значению конечной нефтеотдачи.
Далее водогазовое воздействие осуществляют по следующей схеме.
На первом этапе осуществляют закачку газа в нагнетательную скважину. В течение первого этапа в пласт закачивают весь целевой объем оторочки газа. Учитывая высокую подвижность газа и соответственно высокую приемистость по газу, пластовое давление на этом этапе не будет снижаться, а будет поддерживаться на уровне начального значения или выше.
На втором этапе проводят остановку нагнетательной скважины (при этом добычу нефти через добывающие скважины продолжают). Остановка закачки приводит к падению давления в области пласта вокруг нагнетательной скважины и к расширению газа. Расширение газа приводит к уменьшению массы (количества вещества) газа в зоне пласта вокруг нагнетательной скважины, хотя газонасыщенность (объемная доля газа в единице порового объема) в этой области пласта может оставаться практически неизменной. Нагнетательная скважина должна бездействовать до тех пор, пока давление в прискважинной зоне пласта не снизится до значения среднего пластового давления (на момент прекращения закачки газа) в области пласта, охваченного воздействием нагнетательной скважины. Более существенное снижение давления нецелесообразно, поскольку это будет приводить к заметному падению уровней добычи нефти и разгазированию нефти в пласте. Менее существенное падение давления окажет малозаметный эффект на расширение газа в прискважинной зоне пласта, а также будет способствовать появлению затруднений при последующей закачке воды, так как при прочих равных условиях репрессия на пласт окажется ниже. Оценивать давление в пласте и отдельных его участках возможно путем расчета на трехмерной численной геолого-гидродинамической модели пласта, воспроизводя объемы отбора и закачки.
На третьем этапе осуществляют закачку с минимальной технологически возможной приемистостью первой части целевого объема оторочки воды. Закачка воды с пониженной приемистостью и соответственно небольшой репрессией на пласт практически не приводит к сжатию газа, но за счет вытеснения газа закачиваемой водой происходит существенное снижение газонасыщенности коллектора (в достаточной близости к нагнетательной скважине - до величины остаточной газонасыщенности). На этом этапе газ продолжает расширяться, как и на предыдущем этапе, поскольку закачка воды с пониженной приемистостью, как правило, будет недостаточна для полной компенсации отбора закачкой и поддержания пластового давления, и оно продолжит падать, хотя и с меньшими темпами. В результате закачки воды с минимальной приемистостью газонасыщенность в области пласта вокруг нагнетательной скважин снижается до значения остаточной газонасыщенности при минимальном пластовом давлении. Факт снижения газонасыщенности до значения остаточной газонасыщенности может быть установлен по стабилизации динамики приемистости и репрессии на пласт, по данным расчета на ГГДМ пласта или по результатам геофизических исследований в нагнетательной скважине. После этого начинается следующий, четвертый этап.
На четвертом этапе продолжают закачку воды, но уже с максимальной технологически возможной приемистостью. На этом этапе закачивают в пласт оставшуюся часть целевого объема оторочки воды. Закачку воды с максимальной технологически возможной приемистостью осуществляют при забойных давлениях нагнетательной скважины, которые существенно выше, чем при закачке воды на третьем этапе. За счет этого давление в области пласта вокруг нагнетательной скважины существенно возрастает, что приведет к объемному сжатию расположенного в этой области газа. Таким образом, если в конце третьего этапа в зоне пласта вокруг нагнетательной скважины газонасыщенность равна остаточной газонасыщенности, то на данном этапе за счет сжатия газа, газонасыщенность снижается существенно ниже остаточной газонасыщенности. Последнее приводит к увеличению водонасыщенности и фазовой проницаемости воды в области пласта вокруг нагнетательной скважины и соответственно к снижению значений фильтрационных сопротивлений для воды в этой области. За счет этого приемистость нагнетательной скважины по воде достигает существенно более высоких значений, чем в известном способе. Это позволяет восстановить и поддерживать пластовое давление на уровне начального значения (или выше) в течение четвертого этапа, на котором в пласт закачивают основной объем оторочки воды.
После окончания четвертого этапа возможно продолжать водогазовое воздействие, возвращаясь к первому этапу и продолжая его реализацию далее в описанной последовательности.
Пример
Описываемый способ водогазового воздействия (ВГВ) рассчитывают для участка реального пласта ачимовских отложений месторождения Западной Сибири, содержащего одну нагнетательную и восемь добывающих скважин (элемент обращенной девятиточечной системы разработки). Расчет осуществляют с применением трехмерного газогидродинамического моделирования с использованием программного комплекса Roxar Tempest 7.0. Расчетный элемент был "вырезан" из адаптированной на историю разработки полномасштабной численной трехмерной модели пласта.
Для сравнения рассматривают вариант реализации водогазового воздействия известным способом, а также вариант с обычным заводнением пласта.
Для всех трех рассмотренных вариантов расчеты проводят со следующими ограничениями: забойное давление добывающих скважин поддерживают на уровне 10 МПа, максимальное забойное давление нагнетательных скважин (как для закачки воды, так и газа) составляет 45 МПа. Добывающие скважины отключают при обводненности 98% или дебиту нефти менее 1 т/сут, или газонефтяному фактору более 10000 м3/сут. Горизонт прогноза - 50 лет.
Вид участка водогазового воздействия, для которого проводят расчет, показан на фиг. 1.
Геолого-физическая характеристика участка приведена в таблице 1.
Figure 00000001
Вначале определяют целевые объемы оторочек воды и газа. Для этого на ГГДМ участка пласта осуществляются расчеты вариантов ВГВ с разными целевыми объемами оторочек (см. таблицу 2). Рассматривают объемы оторочек воды и газа от 2 до 40% об. от начальных геологических запасов (НГЗ) нефти участка воздействия (в пластовых условиях). В приведенных расчетах закачку газа и воды осуществляют в нагнетательную скважину без ее остановок с максимально возможной приемистостью (исходя из ограничений, заданных в ГГДМ). Для условий рассматриваемого участка наибольший КИН достигают при объеме оторочки воды и газа 10% об. от НГЗ нефти.
В таблице 2 приведены значения КИН при различных целевых объемах оторочек воды и газа.
Figure 00000002
Далее, исходя из полученных целевых объемов оторочек воды и газа, осуществляют расчет варианта ВГВ по описываемому способу, варианта ВГВ по известному способу (в котором целевые объемы оторочек воды и газа составляют также 10% об.) и варианта с применением заводнения (как наиболее простой и часто применяемой технологии).
Значения давлений и насыщенностей флюидов в пласте или в отдельных его частях рассчитывают напрямую в ГГДМ на основе решения уравнений фильтрации флюидов и материального баланса.
Описываемый способ ВГВ осуществляют следующим образом: вначале закачивают газ в объеме 10% от запасов нефти участка или 107 тыс. м3 (в пластовых условиях). Далее нагнетательную скважину останавливают. В процессе ее бездействия давление в прискважинной зоне пласта снижается с 26,9 до 23,7 МПа (которое является средним пластовым давлением на момент окончания закачки газа для участка пласта, охватываемого закачкой в нагнетательную скважину). Затем в нагнетательную скважину осуществляют закачку воды с минимальной приемистостью, которая, исходя из технологических ограничений, составляет 10 м3/сут. В результате этого газонасыщенность в прискважинной зоне пласта снижается с 0,394 до 0,142 д. ед., после чего стабилизируется. Далее начинают закачку воды с максимальной приемистостью (забойное давление нагнетательной скважины составляет 45 МПа). В процессе сжатия газа газонасыщенность в прискважинной зоне снижается до 0,078 д.ед. и в ходе закачки целевого объема оторочки воды держится на этом значении. После того как объем закачки воды достигает целевого значения 107 тыс. м3 (в пластовых условиях), вновь начинают закачку газа. Далее проведение указанных циклов повторяют.
Результаты расчетов по рассмотренным вариантам показаны в таблице 3.
Figure 00000003
Figure 00000004
Динамика приемистости нагнетательной скважины по вариантам показана на фиг. 2.
Динамика накопленной добычи нефти по вышеуказанным вариантам показана на фиг. 3.
Из данных, приведенных в таблицах и чертежах, следует, что темпы добычи нефти при ВГВ по описываемому способу существенно выше по сравнению с ВГВ по известному способу и по сравнению со способом, в котором используют заводнение, причем наибольшая интенсификация добычи нефти по сравнению с известным способом достигается в начальный период разработки. К концу десятого года расчета добыча нефти при ВГВ по описываемому способу на 25% превышает добычу нефти по известному способу, а к концу двадцатого года - на 14%. КИН при ВГВ по описываемому способу за прогнозный период на 0,033 д.ед. выше, чем по известному способу.
При ВГВ по известному способу приемистость по воде в 3 раза ниже, чем в способе, в котором используют заводнение. При ВГВ по описываемому способу на первом цикле закачки воды приемистость сопоставима со способом, в котором используют заводнение, и в 3 раза выше, чем в известном способе. В процессе разработки разница в приемистости между ВГВ по известному способу и ВГВ по описываемому способу снижается, поскольку общая газонасыщенность пласта растет, соответственно остаточная газонасыщенность образуется практически во всем поровом объеме участка пласта, охваченного закачкой газа.
Таким образом, описываемый способ позволяет значительно предотвратить снижение приемистости по воде после закачки газа и обеспечить существенно более высокую годовую и накопленную добычу нефти по сравнению с ВГВ по известному способу и со способом, в котором используют заводнение.
Таким образом, описываемый способ водогазового воздействия обеспечивает существенно большую приемистость по воде после закачки оторочки газа, что позволяет разрабатывать нефтяной пласт при больших уровнях добычи нефти на цикле закачки воды. Кроме того, реализация указанного способа приводит к сокращению срока разработки, позволяет реализовывать водогазовое воздействие при системах разработки с большим количеством добывающих скважин, приходящихся на одну нагнетательную, достигать более высокой нефтеотдачи пласта в сравнении с известным способом за счет определения оптимальных целевых объемов оторочек воды и газа, а также по причине того, что среднее пластовое давление на полуцикле закачки воды оказывается более высоким, чем в известном способе, что улучшает смешиваемость нефти и закачиваемого газа.

Claims (1)

  1. Способ водогазового воздействия на пласт в процессе разработки нефтяной залежи, заключающийся в том, что предварительно на гидродинамической модели пласта определяют целевые объемы чередующихся оторочек воды и газа для закачки в пласт, соответствующие максимальному значению коэффициента извлечения нефти, после чего осуществляют закачку целевого объема оторочки газа в нагнетательную скважину, затем нагнетательную скважину останавливают до момента снижения давления в прискважинной зоне пласта до значения среднего пластового давления на момент прекращения закачки газа в области пласта, охваченной воздействием нагнетательной скважины, далее в нагнетательную скважину закачивают первую часть целевой оторочки воды с минимальной технологически возможной приемистостью до снижения газонасыщенности прискважинной зоны пласта до значения остаточной газонасыщенности, достижение которого устанавливают по стабилизации динамики приемистости на пласт, после чего в нагнетательную скважину продолжают закачку оставшейся части целевого объема оторочки воды с максимальной технологически возможной приемистостью до восстановления пластового давления на уровне начального значения или выше него, причем вышеописанный цикл закачек повторяют в процессе разработки нефтяной залежи.
RU2016110152A 2016-03-21 2016-03-21 Способ водогазового воздействия на пласт в процессе разработки нефтяной залежи RU2613404C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016110152A RU2613404C1 (ru) 2016-03-21 2016-03-21 Способ водогазового воздействия на пласт в процессе разработки нефтяной залежи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016110152A RU2613404C1 (ru) 2016-03-21 2016-03-21 Способ водогазового воздействия на пласт в процессе разработки нефтяной залежи

Publications (1)

Publication Number Publication Date
RU2613404C1 true RU2613404C1 (ru) 2017-03-16

Family

ID=58458347

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016110152A RU2613404C1 (ru) 2016-03-21 2016-03-21 Способ водогазового воздействия на пласт в процессе разработки нефтяной залежи

Country Status (1)

Country Link
RU (1) RU2613404C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6325147B1 (en) * 1999-04-23 2001-12-04 Institut Francais Du Petrole Enhanced oil recovery process with combined injection of an aqueous phase and of at least partially water-miscible gas
RU2297523C2 (ru) * 2005-07-11 2007-04-20 Закрытое акционерное общество "Алойл" Способ разработки нефтяной залежи
RU2326234C1 (ru) * 2007-07-16 2008-06-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки нефтяного месторождения
RU2326235C1 (ru) * 2007-07-16 2008-06-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки нефтяной залежи
RU2498056C2 (ru) * 2009-10-12 2013-11-10 Открытое акционерное общество "Акционерная нефтяная компания "Башнефть" (ОАО "АНК "Башнефть") Способ разработки нефтяной залежи

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6325147B1 (en) * 1999-04-23 2001-12-04 Institut Francais Du Petrole Enhanced oil recovery process with combined injection of an aqueous phase and of at least partially water-miscible gas
RU2297523C2 (ru) * 2005-07-11 2007-04-20 Закрытое акционерное общество "Алойл" Способ разработки нефтяной залежи
RU2326234C1 (ru) * 2007-07-16 2008-06-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки нефтяного месторождения
RU2326235C1 (ru) * 2007-07-16 2008-06-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки нефтяной залежи
RU2498056C2 (ru) * 2009-10-12 2013-11-10 Открытое акционерное общество "Акционерная нефтяная компания "Башнефть" (ОАО "АНК "Башнефть") Способ разработки нефтяной залежи

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЗАЦЕПИН В. В. и др., Обзор современного состояния экспериментальных исследований технологий водогазового воздействия с раздельной закачкой воды и газа, Москва, Нефтепромысловое дело, 6, 2009, с. 16-24. *

Similar Documents

Publication Publication Date Title
CN105626006B (zh) 低渗透油藏co2驱技术极限井距确定方法
CN112392472B (zh) 确定页岩与邻近油层一体化开发方式的方法及装置
CN116306385B (zh) 一种油藏压裂渗吸增能数值模拟方法、系统、设备及介质
CN107975358B (zh) 一种油藏开采方法及装置
CN103628868A (zh) 一种高挥发性油藏注天然气开发产油量预测方法
CN104675371A (zh) 一种聚驱加后续水驱后交替注入凝胶和聚合物溶液的复合驱油实验方法
RU2683453C1 (ru) Способ повышения эффективности разработки слабопроницаемых нефтяных коллекторов
WO2021159148A1 (en) Methods and systems for determining residual fluid saturation of a subsurface formation
Letichevskiy et al. Foam acid treatment-The key to stimulation of carbonate reservoirs in depleted oil fields of the Samara region
Drozdov Filtration studies on cores and sand packed tubes from the Urengoy field for determining the efficiency of simultaneous water and gas injection on formation when extracting condensate from low-pressure reservoirs and oil from oil rims
Nangacovié Application of WAG and SWAG injection Techniques in Norne E-Segment
Al-Obaidi et al. The efficiency of gas injection into low-permeability multilayer hydrocarbon reservoirs
Sennhauser et al. A practical numerical model to optimize the productivity of multistage fractured horizontal wells in the cardium tight oil resource
RU2613404C1 (ru) Способ водогазового воздействия на пласт в процессе разработки нефтяной залежи
RU2750458C1 (ru) Способ разработки залежи углеводородов циклической закачкой газа
CN110067555B (zh) 碳酸盐岩油井的最小动态储量的确定方法和装置
RU2708924C1 (ru) Способ увеличения нефтеотдачи карбонатного нефтяного пласта с восстановлением пластового давления
US3292703A (en) Method for oil production and gas injection
US8146659B2 (en) Method of modelling enhanced recovery by polymer injection
CN111680814B (zh) 一种碳酸盐岩缝洞型油藏弹性驱动合理配产优化方法
Ursegov et al. Thermal Performance Challenges and Prospectives of the Russian Largest Carbonate Reservoir with Heavy Oil
RU2814219C1 (ru) Способ добычи нефти
CN110284860A (zh) 块状厚层砂岩油藏注采交互式人造倾角co2驱油方法
RU2301326C1 (ru) Способ регулирования разработки нефтяного месторождения
RU2729667C1 (ru) Способ регулирования профиля приемистости нагнетательной скважины