RU2612287C1 - Способ получения гипсового вяжущего - Google Patents

Способ получения гипсового вяжущего Download PDF

Info

Publication number
RU2612287C1
RU2612287C1 RU2016107886A RU2016107886A RU2612287C1 RU 2612287 C1 RU2612287 C1 RU 2612287C1 RU 2016107886 A RU2016107886 A RU 2016107886A RU 2016107886 A RU2016107886 A RU 2016107886A RU 2612287 C1 RU2612287 C1 RU 2612287C1
Authority
RU
Russia
Prior art keywords
nepheline
gypsum
binder
mechanical activation
mixture
Prior art date
Application number
RU2016107886A
Other languages
English (en)
Inventor
Бася Израильевна Гуревич
Александр Михайлович Калинкин
Елена Владимировна Калинкина
Вера Владимировна Тюкавкина
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН)
Priority to RU2016107886A priority Critical patent/RU2612287C1/ru
Application granted granted Critical
Publication of RU2612287C1 publication Critical patent/RU2612287C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/28Mixtures thereof with other inorganic cementitious materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Изобретение относится к производству композиционных вяжущих на основе гипса и минеральных добавок и может быть использовано при изготовлении строительных материалов для внутренней отделки помещений. Технический результат заключается в повышении прочности при сжатии, удешевлении и экологичности. Способ получения гипсового вяжущего включает совместную механоактивацию двуводного гипса и нефелинсодержащей добавки при массовом соотношении двуводного гипса и добавки 1:0,43-4,0. В качестве нефелинсодержащей добавки используют нефелиновый концентрат или отходы обогащения апатито-нефелиновых руд при массовом содержании нефелина соответственно 75-80 и 50-55%. Механоактивацию ведут в планетарной мельнице в течение 2-5 минут при интенсивности энергоподвода не менее 5 кДж/с на 1 кг смеси до обеспечения величины удельной поверхности частиц вяжущего 900-1300 м2/кг. 2 з.п. ф-лы.

Description

Изобретение относится к производству композиционных вяжущих на основе гипса и минеральных добавок и может быть использовано при изготовлении строительных материалов для внутренней отделки помещений.
В последние годы большое внимание уделяется разработке композиционных вяжущих, содержащих гипс, известь и минеральные добавки в виде различных техногенных продуктов, включая хвосты обогащения руд, шлаки, золы, отходы производства стройматериалов и др. Это позволяет осуществить экономию ресурсов и снизить экологическую нагрузку на окружающую среду. Использование в составе композиционных вяжущих двуводного гипса позволяет снизить затраты энергии по сравнению с применением полуводного гипса, для получения которого необходима операция обжига исходного сырья. Однако при использовании двуводного гипса возникает проблема подбора компонентов композиционных вяжущих и соответствующих технологических операций, обеспечивающих необходимые физико-технические свойства строительных материалов.
Известен способ получения вяжущего (см. Макаров В.Н. Экологические проблемы хранения и утилизации горнопромышленных отходов. Часть 1. - Апатиты: Изд-во КНЦ РАН, 1998. 125 с.), включающий приготовление сырьевой смеси из нефелина или нефелинсодержащих хвостов и гашеной извести (портландита) при содержании портландита 20%, совместный помол смеси до обеспечения величины удельной поверхности 450 м2/кг, формование смеси и ее автоклавную обработку при температуре 175°C в течение 4-8 часов. Прочность полученного цементного камня составляет 10-12 МПа.
Недостатком данного способа является необходимость автоклавной обработки, что снижает его технологичность, а также невысокая прочность изделий.
Известен способ получения гипсового вяжущего (см. Гуревич Б.И., Тюкавкина В.В., Калинкин A.M., Калинкина Е.В. Смешанные цементы на основе гранулированного медно-никелевого шлака, извести и гипса // Строительные материалы. 2009. №2. С. 46-48), включающий совместный сухой помол гранулированного медно-никелевого шлака, негашеной извести и двуводного гипса. Предпочтительное содержание извести и гипса составляет 10-15% и 7%. После выдержки во влажных условиях в течение 7 и 28 суток полученный цементный камень имел прочность при сжатии 4,9 и 10,7 МПа соответственно.
Данный способ включает использование извести в составе композиции, без добавки которой смесь компонентов не проявляет необходимых вяжущих свойств. Это ведет к усложнению и удорожанию получения вяжущего и, соответственно, к понижению технологичности способа. Кроме того, прочность при сжатии полученного цементного камня относительно невысока.
Известен также принятый в качестве прототипа способ получения гипсового вяжущего (см. пат. 2058955 РФ, МПК6 С04В 11/28, 1996), включающий механоактивацию смеси двуводного гипса с негашеной известью, взятых в соотношении 1:0,01-0,43, в течение 1-3 минут в условиях саморазогрева смеси от комнатной температуры до 40°C при отсутствии реакции дегидратации двуводного гипса. В качестве негашеной извести используют комовую известь или известковую пыль. Для определения вяжущих свойств смеси ее увлажняют, изготавливают образцы прессованием при давлении 20 МПа и выдерживают их на воздухе при комнатной температуре. Прочность при сжатии полученных прессованных изделий после 7 суток выдержки составляет 17-22 МПа.
Недостатком известного способа является относительно невысокая прочность полученных прессованных изделий, а также использование в составе вяжущего негашеной извести, являющейся техническим продуктом. Все это удорожает способ и снижает его технологичность.
Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении технологичности способа при обеспечении высокой прочности изделий при сжатии. Технический результат заключается также в удешевлении способа.
Технический результат достигается тем, что в способе получения гипсового вяжущего, включающем механоактивацию смеси двуводного гипса и минеральной добавки, согласно изобретению в качестве минеральной добавки используют нефелинсодержащую добавку при массовом соотношении двуводного гипса и добавки 1:0,43-4,0, а механоактивацию смеси ведут в планетарной мельнице при интенсивности энергоподвода не менее 5 кДж/с на 1 кг смеси до обеспечения величины удельной поверхности частиц вяжущего 900-1300 м2/кг.
Достижению технического результата способствует то, что в качестве нефелинсодержащей добавки используют нефелиновый концентрат или отходы обогащения апатито-нефелиновых руд при массовом содержании в них нефелина соответственно 75-80 и 50-55%.
Достижению технического результата способствует также то, что механоактивацию ведут в течение 2-5 минут.
Сущность изобретения состоит в получении композиционного вяжущего на основе двуводного гипса с использованием нефелинсодержащей добавки. Механоактивация двуводного гипса с нефелином в планетарной мельнице приводит к появлению тонких фракций частиц компонентов и их аморфизации, что повышает растворимость компонентов композиции. При последующем затворении механоактивированной смеси водой создается пересыщение и инициируются процессы перекристаллизации с формированием цементной структуры по механизму безгидратационного твердения. Частичное растворение тонкоизмельченного нефелина создает щелочную среду, которая повышает растворимость гипса и способствует твердению смеси.
Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.
Использование в составе вяжущего нефелинсодержащей минеральной добавки обеспечивает повышение щелочности среды и увеличение растворимости двуводного гипса, что благоприятствует процессам твердения и повышению прочности изделия.
Массовое соотношение двуводного гипса и добавки 1:0,43-4,0 позволяет обеспечить необходимую прочность. При соотношении двуводного гипса и добавки более 1:0,43 происходит цементация гипса в мельнице, а при соотношении менее 1:4,0 понижается прочность изделий.
Проведение механоактивации смеси в планетарной мельнице при интенсивности энергоподвода не менее 5 кДж/с на 1 кг смеси обусловлено тем, что при механоактивации происходит увеличение содержания тонких фракций частиц двуводного гипса, обладающих повышенной растворимостью по сравнению с крупными частицами. Кроме того, в ходе механоактивации происходит возрастание свободной энергии двуводного гипса за счет роста числа структурных дефектов минерала, что также способствует росту растворимости гипса, созданию пересыщения и последующему интенсивному протеканию процессов перекристаллизации. Все это обеспечивает высокую прочность изделий без использования прессования, что повышает технологичность способа. Использование планетарной мельницы позволяет обеспечить высокую интенсивность энергоподвода для достижения необходимой степени механоактивации и сократить время обработки. При интенсивности энергоподвода менее 5 кДж/с на 1 кг смеси степень пересыщения будет низка, что не обеспечит необходимую прочность. Верхняя величина интенсивности энергоподвода обусловлена заданной величиной удельной поверхности частиц вяжущего и предпочтительным временем обработки компонентов вяжущего.
Проведение механоактивации смеси до обеспечения величины удельной поверхности частиц вяжущего 900-1300 м2/кг позволяет достигнуть необходимой скорости растворения компонентов вяжущего для создания требуемой степени пересыщения. При обеспечении величины удельной поверхности частиц менее 900 м2/кг скорость растворения компонентов недостаточна, а величина удельной поверхности более 1300 м2/кг нежелательна по причине повышенных энергозатрат без существенного увеличения прочностных характеристик.
Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в обеспечении высокой прочности изделий при повышении технологичности способа и его удешевлении.
В частных случаях осуществления изобретения предпочтительны следующие уточняющие признаки.
Использование в качестве нефелинсодержащей добавки нефелинового концентрата или отходов обогащения апатито-нефелиновых руд при массовом содержании в них нефелина соответственно 75-80 и 50-55% позволяет применить конкретные виды техногенного минерального сырья в составе композиционного вяжущего, обеспечивающего высокую прочность изделий, при удешевлении способа и повышении его экологичности.
Проведение механоактивации компонентов вяжущего в течение 2-5 минут позволяет достигнуть необходимой величины удельной поверхности частиц вяжущего при заданной интенсивности энергоподвода.
Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения обеспечения высокой прочности изделий при использовании менее дорогих компонентов вяжущего.
В общем случае способ получения гипсового вяжущего согласно изобретению осуществляют следующим образом.
Берут двуводный гипс и нефелинсодержащую добавку в виде нефелинового концентрата или отходов обогащения апатито-нефелиновых руд с крупностью частиц каждого компонента менее 1 мм при массовом соотношении двуводного гипса и добавки 1:0,43-4,0.
В качестве двуводного гипса используют гипсовый камень месторождения Архангельской области, имеющий химический состав, мас. %: СаО - 35,96, SO3 - 43,37, H2O - 18,9%, прочие - 1,77. Нефелиновый концентрат имеет минеральный состав, мас. %: нефелин 75-80, полевые шпаты 8-16, вторичные минералы по нефелину 1,5-10, эгирин 1,5-5, титаномагнетит 0,4-0,6, апатит 0,2-0,8, сфен 0,5-1,0. Отходы обогащения апатито-нефелиновых руд имеют минеральный состав, мас. %: нефелин 50-55, полевые шпаты 2,5-4, вторичные минералы по нефелину 0,5-2, эгирин 23-27, титаномагнетит 4-5, апатит 2-3,5, сфен 4-5.
Исходные компоненты загружают в планетарную мельницу и подвергают механоактивации при интенсивности энергоподвода не менее 5 кДж/с на 1 кг смеси до обеспечения величины удельной поверхности частиц вяжущего 900-1300 м2/кг. Предпочтительное время механоактивации составляет 2-5 минут. В полученную механоактивированную смесь добавляют воду до образования теста пластичной консистенции при водотвердом отношении В:Т=0,25 и укладывают в формы без применения прессования. Твердение образцов проводят в термостатированной камере при температуре 18-22°C и относительной влажности воздуха 60-65%. Прочность при сжатии образцов кубической формы определяют на гидравлическом прессе ПГМ-100МГ4-А при сроках выдержки 7 и 28 суток.
Сущность и преимущества предлагаемого изобретения могут быть пояснены следующими примерами конкретного выполнения изобретения.
Пример 1. Берут 100 г двуводного гипса и 43 г нефелинового концентрата указанного выше состава (массовое соотношение 1:0,43) и подвергают механоактивации в планетарной мельнице в течение 4,5 минут при интенсивности энергоподвода 9 кДж/с на 1 кг смеси до обеспечения величины удельной поверхности частиц вяжущего 1300 м2/кг. Из механоактивированной смеси компонентов приготавливают пластичное тесто при водотвердом отношении В:Т=0,25, которое укладывают в формы без прессования. Образцы твердеют на воздухе при относительной влажности 60-65% и температуре 18-20°C. Прочность при сжатии образцов после их выдержки в течение 7 и 28 суток составила 32 и 35 МПа соответственно.
Пример 2. Берут 50 г двуводного гипса и 200 г нефелинового концентрата указанного выше состава (массовое соотношение 1:4) и подвергают механоактивации в планетарной мельнице в течение 2 минут при интенсивности энергоподвода 6 кДж/с на 1 кг смеси до обеспечения величины удельной поверхности частиц вяжущего 900 м2/кг. Из механоактивированной смеси компонентов приготавливают пластичное тесто при водотвердом отношении В:Т=0,25, которое укладывают в формы без прессования. Образцы твердеют на воздухе при относительной влажности 60-65% и температуре 20-22°C. Прочность при сжатии образцов после их выдержки в течение 7 и 28 суток составила 24 и 26 МПа соответственно.
Пример 3. Берут 100 г двуводного гипса и 100 г нефелинового концентрата указанного выше состава (массовое соотношение 1:1) и подвергают механоактивации в планетарной мельнице в течение 5 минут при интенсивности энергоподвода 5 кДж/с на 1 кг смеси до обеспечения величины удельной поверхности частиц вяжущего 1050 м2/кг. Из механоактивированной смеси компонентов приготавливают пластичное тесто при водотвердом отношении В:Т=0,25, которое укладывают в формы без прессования. Образцы твердеют на воздухе при относительной влажности 60-65% и температуре 18-20°C. Прочность при сжатии образцов после их выдержки в течение 7 и 28 суток составила 30 и 33 МПа соответственно.
Пример 4. Берут 100 г двуводного гипса и 233 г отходов обогащения апатито-нефелиновых руд указанного выше состава (массовое соотношение 1:2,33) и подвергают механоактивации в планетарной мельнице в течение 4 минут при интенсивности энергоподвода 5 кДж/с на 1 кг смеси до обеспечения величины удельной поверхности частиц вяжущего 1010 м2/кг. Из механоактивированной смеси компонентов приготавливают пластичное тесто при водотвердом отношении В:Т=0,25, которое укладывают в формы без прессования. Образцы твердеют на воздухе при относительной влажности 60-65% и температуре 20-22°C. Прочность при сжатии образцов после их выдержки в течение 7 и 28 суток составила 23 и 24 МПа соответственно.
Пример 5. Берут 100 г двуводного гипса и 43 г отходов обогащения апатито-нефелиновых руд указанного выше состава (массовое соотношение 1:0,43) и подвергают механоактивации в планетарной мельнице в течение 5 минут при интенсивности энергоподвода 8 кДж/с на 1 кг смеси до обеспечения величины удельной поверхности частиц вяжущего 1250 м2/кг. Из механоактивированной смеси компонентов приготавливают пластичное тесто при водотвердом отношении В:Т=0,25, которое укладывают в формы без прессования. Образцы твердеют на воздухе при относительной влажности 60-65% и температуре 18-20°C. Прочность при сжатии образцов после их выдержки в течение 7 и 28 суток составила 29 и 32 МПа соответственно.
Из вышеприведенных примеров видно, что по сравнению с прототипом способ получения гипсового вяжущего согласно изобретению является более технологичным. Он позволяет получать более прочные изделия без применения прессования. Так, прочность при сжатии образцов для сроков выдержки 7 и 28 суток достигает 32 и 35 МПа соответственно. В составе композиции согласно изобретению используются техногенные отходы, содержащие нефелин, что удешевляет способ и повышает его экологичность.

Claims (3)

1. Способ получения гипсового вяжущего, включающий совместную механоактивацию двуводного гипса и минеральной добавки, отличающийся тем, что в качестве минеральной добавки используют нефелинсодержащую добавку при массовом соотношении двуводного гипса и добавки 1:0,43-4,0, а механоактивацию ведут в планетарной мельнице при интенсивности энергоподвода не менее 5 кДж/с на 1 кг смеси до обеспечения величины удельной поверхности частиц вяжущего 900-1300 м2/кг.
2. Способ по п. 1, отличающийся тем, что в качестве нефелинсодержащей добавки используют нефелиновый концентрат или отходы обогащения апатито-нефелиновых руд при массовом содержании нефелина соответственно 75-80 и 50-55%.
3. Способ по п. 1, отличающийся тем, что механоактивацию ведут в течение 2-5 минут.
RU2016107886A 2016-03-03 2016-03-03 Способ получения гипсового вяжущего RU2612287C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016107886A RU2612287C1 (ru) 2016-03-03 2016-03-03 Способ получения гипсового вяжущего

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016107886A RU2612287C1 (ru) 2016-03-03 2016-03-03 Способ получения гипсового вяжущего

Publications (1)

Publication Number Publication Date
RU2612287C1 true RU2612287C1 (ru) 2017-03-06

Family

ID=58459381

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016107886A RU2612287C1 (ru) 2016-03-03 2016-03-03 Способ получения гипсового вяжущего

Country Status (1)

Country Link
RU (1) RU2612287C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU557072A1 (ru) * 1975-10-30 1977-05-05 Государственный Всесоюзный Научно-Исследовательский Институт Строительных Материалов И Конструкций Им. П.П.Будникова Сырьева смесь дл получени в жущего
FR2484399A1 (fr) * 1980-06-11 1981-12-18 Viazzi Pierre Procede de traitement de phosphogypse ou d'autres residus mineraux analogues et nouveaux produits obtenus
RU2058955C1 (ru) * 1993-07-15 1996-04-27 Белгородский технологический институт строительных материалов Способ получения гипсового вяжущего
UA52269A (ru) * 2002-04-02 2002-12-16 Харківський Державний Технічний Університет Будівництва Та Архітектури Способ получения гипсового вяжущего

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU557072A1 (ru) * 1975-10-30 1977-05-05 Государственный Всесоюзный Научно-Исследовательский Институт Строительных Материалов И Конструкций Им. П.П.Будникова Сырьева смесь дл получени в жущего
FR2484399A1 (fr) * 1980-06-11 1981-12-18 Viazzi Pierre Procede de traitement de phosphogypse ou d'autres residus mineraux analogues et nouveaux produits obtenus
RU2058955C1 (ru) * 1993-07-15 1996-04-27 Белгородский технологический институт строительных материалов Способ получения гипсового вяжущего
UA52269A (ru) * 2002-04-02 2002-12-16 Харківський Державний Технічний Університет Будівництва Та Архітектури Способ получения гипсового вяжущего

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БУТТ Ю.М. Химическая технология вяжущих веществ. - М.: Высшая школа, 1980, с.46. *

Similar Documents

Publication Publication Date Title
Mallikarjuna Rao et al. Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar
Rakhimova et al. Influence of limestone content, fineness, and composition on the properties and microstructure of alkali-activated slag cement
Gharieb et al. An initial study of using sugar-beet waste as a cementitious material
JPH0742156B2 (ja) ビルデイングエレメントの製造方法
CN113795470B (zh) 蒸压水泥组合物
AU2014363056B2 (en) Improved alkaline-activated slag (AAS) composition
KR101198741B1 (ko) 자연토를 이용한 흙벽돌 제조방법
JPS6081051A (ja) 石炭灰硬化体製ボードの製造方法
RU2413688C2 (ru) Сырьевая смесь для получения гипсового вяжущего и изделий на его основе
RU2612287C1 (ru) Способ получения гипсового вяжущего
RU2288899C1 (ru) Дунитовый цемент
WO2009083333A1 (de) Verfahren zur herstellung von hydraulischem kalk
RU2472735C1 (ru) Способ получения композиционного вяжущего, композиционное вяжущее для производства прессованных изделий автоклавного твердения, прессованное изделие
RU2811516C1 (ru) Способ получения вяжущего
RU2653214C1 (ru) Известково-кремнезёмистое вяжущее для изготовления пустотелых прессованных изделий
RU2454381C2 (ru) Способ приготовления комплексного органо-минерального модификатора бетона
JP2001122653A (ja) 炭酸硬化体の製造方法
RU2371405C2 (ru) Способ производства цемента
RU2393129C1 (ru) Тяжелый бетон
RU2658416C1 (ru) Композиционное вяжущее
RU2694653C1 (ru) Способ получения расширяющейся цементной смеси
RU2308429C1 (ru) Комплексная добавка для бетонных и растворных смесей
US1371762A (en) Mortar-forming material
US800606A (en) Process of making plaster or mortar.
RU2371404C2 (ru) Цемент

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190304