RU2611979C1 - Устройство для определения свойств материала тонкостенных полусферических сегментов - Google Patents
Устройство для определения свойств материала тонкостенных полусферических сегментов Download PDFInfo
- Publication number
- RU2611979C1 RU2611979C1 RU2015154164A RU2015154164A RU2611979C1 RU 2611979 C1 RU2611979 C1 RU 2611979C1 RU 2015154164 A RU2015154164 A RU 2015154164A RU 2015154164 A RU2015154164 A RU 2015154164A RU 2611979 C1 RU2611979 C1 RU 2611979C1
- Authority
- RU
- Russia
- Prior art keywords
- possibility
- lower clamping
- clamping part
- segment
- base
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
- G01N3/10—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Изобретение относится к исследованию механических свойств материалов, а именно к определению технологических параметров процессов (усилий, напряжений, деформаций и перемещений), в том числе и неразрушающим способом. Устройство содержит силовую раму, в состав которой входит нижнее основание, на котором закреплена нижняя зажимная часть, имеющая соответствующую внутренней поверхности полусферического сегмента опорную поверхность с отверстием в центре, и верхнее основание, содержащее верхний упор с ответной поверхностью, имеющую такое же отверстие в центре, перекрываемое сегментом, размещенным между опорными сферическими поверхностями нижней зажимной чисти и верхним упором и герметично замыкающей внутреннюю полость, находящуюся в нижней зажимной части, в которой организована возможность создания нарастающего гидравлического давления на сегмент. На основании равномерно установлены исполнительные гидроцилиндры, удерживающие нижнюю зажимную часть, при этом гидравлические полости в нижней зажимной части и исполнительных гидроцилиндров являются независимыми друг от друга, нижняя зажимная часть помимо осевого перемещения имеет возможность отклонения относительно оси симметрии устройства, верхний упор имеет возможность поперечного перемещения и также отклонения относительно оси симметрии устройства опорной поверхности. Технический результат: расширение спектра испытаний оболочек методом гидростатического нагружения вследствие осуществления возможности вариации зависимости усилия закрепления от величины давления рабочей жидкости, действующей на оболочку, реализация возможности проведения неразрушающих испытаний тонкостенных сферических оболочек с целью оценки их конструкционной прочности, повышение надежности закрепления разнотолщинных оболочек вследствие исключения их локального пластического пережатия в месте защемления. 4 з.п. ф-лы, 1 ил.
Description
Изобретение относится к исследованию механических свойств материалов, а именно к определению технологических параметров процессов (усилий, напряжений, деформаций и перемещений), в том числе и неразрушающим способом.
Во многих отраслях промышленности используются различного назначения сосуды, представляющие собой тонкостенные оболочки разнообразных форм, работающие под высокими давлениями жидкости или газа. Разрушение их в процессе эксплуатации недопустимо и связано с причинением значительного ущерба. С целью предотвращения таких аварийных ситуаций необходим своевременный мониторинг механических характеристик таких сосудов, зависящих не только от исходных свойств материала, но и от продолжительности и условий эксплуатации. Такой мониторинг обеспечивается периодическими испытаниями самих оболочек или вырезанных из них фрагментов. Однако при изготовлении специфических и наиболее ответственных сосудов возникает необходимость в проведении неразрушающих испытаний для оценки конструкционной прочности каждого изготовленного изделия, с целью выявления брака еще на этапе производства. При этом подобным испытаниям должны подвергаться уже изготовленные оболочки, так как на параметры конструкционной прочности значительное влияние оказывает технология их изготовления. Наибольшую сложность представляют такие испытания на сферических оболочках, особенно с переменным радиусом кривизны поверхностей и разнотолщинностью.
Известны устройства для определения свойств материалов при испытании образцов, имеющих форму тонкостенных сферических оболочек (шаровых сегментов), путем нагружения их односторонним гидравлическим давлением со стороны вогнутой поверхности, т.е. при выдавливании их через окно, обычно имеющее круглую форму [Писаренко Г.П., Лебедев А.А. Деформирование и прочность материалов при сложном напряженном состоянии. Киев, изд-во «Наукова думка», 1976, 415 с.]. Перед испытанием оболочка жестко закрепляется по краю окна выдавливания (рисунок 1). В центральной части оболочки напряженно-деформированное состояние близко к однородному, что позволяет, в зависимости от задачи испытаний, исследовать зависимость от гидравлического давления напряженно-деформированного состояния материала образца.
Одним из недостатков таких устройств является невозможность обеспечить оптимальное усилие закрепления оболочки, а именно при недостаточной закрепляющей нагрузке происходит вытяжка оболочки из-под зажима. Это обстоятельство препятствует ее глубокому деформированию и соответственно определению свойств материала во всем диапазоне его прочности. При этом чрезмерное увеличение усилия прижима приводит к поперечному пластическому пережатию оболочки, что исключает возможность проведения дальнейшего ее испытания. Другим недостатком является отсутствие возможности проведения неразрушающих испытаний с целью оценки конструкционной прочности оболочек.
Таким образом, для испытаний оболочек требуется универсальное устройство с возможностью широкой вариации усилия прижатия, исключающего ее поперечную пластическую деформацию, но обеспечивающее при этом силы трения, достаточные для предотвращения вытяжки оболочки из-под зажима, в случае определения механических свойств ее материала и при этом в случае проведения неразрушающих испытаний обеспечить достаточное поджатое оболочек без деформирования ее поверхности в зоне зажима.
Наиболее близким к предлагаемому является устройство, в котором развиваемое прижимающее усилие пропорционально гидравлическому давлению, которое воспринимает оболочка при выдавливании [патент РФ №2410666, опубл. 27.01.2011]. Это достигается путем определенного соотношения геометрических размеров поршня, обеспечивающего защемление оболочки, и окна выпучивания. Таким образом, указанное устройство позволяет проводить испытания тонкостенных сферических оболочек только с целью определения механических свойств ее материала, исключая ее вытяжку при глубоком деформировании. Однако данное устройство обладает и существенными недостатками. К ним относится отсутствие возможности изменения соотношения поджимающего усилия и гидравлического давления, действующего на оболочку, без изменения конструкции, что ограничивает сферу применения указанного устройства, а именно исключена возможность применения его для проведения неразрушающих испытаний с целью оценки конструкционной прочности тонкостенных оболочек. Помимо этого определенные трудности вызывают испытания тонкостенных сферических оболочек с переменным радиусом кривизны и разнотолщинностью. Это связано с отсутствием в данном устройстве возможности изменения взаимного расположения зажимающих поверхностей. По этой причине в процессе защемления таких оболочек происходит неравномерное распределение усилия поджатая по поверхности оболочки, что приводит к появлению локальной пластической деформации оболочки в местах концентрации нагрузки. Тем самым в зависимости от геометрических размеров оболочки возникает вероятность ее передавливания.
Техническим результатом предлагаемого технического решения является расширение спектра испытаний оболочек методом гидростатического нагружения вследствие осуществления возможности вариации зависимости усилия закрепления от величины давления рабочей жидкости, действующей на оболочку, реализация возможности проведения неразрушающих испытаний тонкостенных сферических оболочек с целью оценки их конструкционной прочности, повышение надежности закрепления разнотолщинных оболочек вследствие исключения их локального пластического пережатия в месте защемления.
В данном изобретении предлагается устройство для определения механических свойств материала тонкостенных оболочек в виде полых шаровых сегментов, содержащее силовую раму, в состав которой входит нижнее основание, на котором закреплена нижняя зажимная часть, имеющая соответствующую внутренней поверхности полусферического сегмента опорную поверхность с отверстием в центре, и верхнее основание, содержащее верхний упор с ответной опорной поверхностью, имеющую такое же отверстие в центре, перекрываемое сегментом, размещенным между опорными сферическими поверхностями нижней зажимной части и верхнего упора и герметично замыкающей внутреннюю полость, находящуюся в нижней зажимной части. В этой полости организована возможность создания нарастающего гидравлического давления на сегмент. На нижнем основании равномерно установлены исполнительные гидроцилиндры, удерживающие нижнюю зажимную часть. Нижняя зажимная часть помимо осевого перемещения имеет возможность отклонения относительно оси симметрии устройства. Верхний упор имеет возможность поперечного перемещения и отклонения опорной поверхности относительно оси симметрии устройства. В местах зажима тонкостенного полусферического сегмента установлены прокладки из упругого материала.
Возможность осуществления вариации усилия закрепления испытываемых тонкостенных полусферических сегментов от величины давления, действующего на них в ходе нагружения, достигается путем использования в конструкции устройства исполнительных гидроцилиндров, удерживающих нижнюю зажимную часть, полости которых объединены между собой, являются в совокупности конструктивно независимыми от гидравлической полости нижней зажимной части устройства, однако связанны с ней посредством регулируемого редуцирующего устройства, определяющего величину отношения давлений в этих полостях.
Проведение неразрушающих испытаний тонкостенных полусферических сегментов, с целью оценки их конструкционной прочности, становится возможным благодаря возможности вариации усилий закрепления сегментов в предлагаемом устройстве и использования в конструкции устройства кольцевых прокладок из упругого материала, обладающего заведомо меньшей твердостью, чем материал испытываемого сегмента.
Повышение надежности закрепления разнотолщинных оболочек вследствие исключения их локального пластического пережатия обеспечивается автоустановкой по внутренней и наружной поверхностям испытываемой оболочки опорных поверхностей кольцевых прокладок нижней зажимной части и верхнего упора, что является необходимым для равномерного распределения усилия закрепления. Это достигается, с одной стороны, поворотом относительно оси симметрии свободно установленной на исполнительных гидроцилиндрах с сообщающимися полостями нижней зажимной части за счет перераспределения рабочей жидкости по гидроцилиндрам до достижения равномерного распределения давления в их полостях, и, с другой стороны, поворотом опорной поверхности кольцевой прокладки верхнего упора за счет наличия демпферного кольца из упругого материала.
На фиг. 1 показана конструкция устройства для определения свойств материала тонкостенных полусферических сегментов.
В состав устройства входят верхнее основание 1 и нижнее основание 2, соединенные между собой стяжками, образуя силовую раму устройства. На нижнем основании 2 равномерно по поверхности установлены исполнительные гидроцилиндры 3, удерживающие нижнюю зажимную часть 4 в нескольких точках. Нижняя зажимная часть 4 снабжена кольцевой прокладкой 5 из упругого материала, имеющей опорную сферическую поверхность с радиусом, равным радиусу внутренней поверхности испытываемой оболочки 6. На верхнем основании 1 установлен верхний упор 7, имеющий возможность поперечного перемещения, и состоящий из демпферного кольца 8 из упругого материала, поршня 9 и кольцевой прокладки 10 из упругого материала, имеющей опорную сферическую поверхность с радиусом, равным радиусу наружной сферической поверхности испытываемой оболочки. Нижняя зажимная часть 4 и верхний упор 7 имеют в центре совпадающие одинаковые по диаметру и форме отверстия, которые при испытании герметично перекрываются сферической оболочкой 6, устанавливаемой между верхней и нижней зажимными частями устройства.
Со стороны внутренней поверхности испытываемой оболочки 6, установленной в устройстве, в нижней зажимной части 4 образуется герметичная полость, в которой с помощью внешних устройств может создаваться гидравлическое давление.
Устройство отличается тем, что для закрепления оболочки 6 в процессе проведения испытаний используются подвижные нижняя зажимная часть 4 и верхний упор 7. При этом нижняя зажимная часть 4, установленная свободно на нескольких равномерно расположенных исполнительных гидроцилиндрах, объединенных в единую гидравлическую систему, помимо осевого перемещения имеет возможность отклонения на некоторый угол относительно оси симметрии устройства за счет свободного перераспределения рабочей жидкости между полостями гидроцилиндров 3, а опорная поверхность верхнего упора 7 за счет использования демпферного кольца 8 имеет возможность перекоса, что позволяет равномерно распределять усилие закрепления по внутренней и наружной поверхностям испытываемой оболочки 6, компенсируя ее возможную разнотолщинность. Полости нижней зажимной части 4 и исполнительных гидроцилиндров 3 являются фактически независимыми и объединены между собой посредством регулируемого редуцирующего устройства 11 с целью обеспечения возможности вариации зависимости усилия зажима от гидравлического давления, действующего на испытываемую оболочку 6.
Работа устройства происходит следующим образом. Перед испытанием оболочка 6 устанавливается на кольцевую прокладку 5 и предварительно поджимается к верхнему упору 7 для автоустановки опорных поверхностей прокладок 5 и 10 по наружной и внутренней поверхностям оболочки 6. В зависимости от материала испытываемой оболочки 6 и вида испытаний производится регулировка редуцирующего устройства для установки необходимого коэффициента редукции, то есть величины отношения между давлениями в полостях нижней зажимной части 4 и исполнительных гидроцилиндров 3. Во внутренней полости нижней зажимной части 4 создается нарастающее гидростатическое давление, под действием которого в оболочке 6 образуются пропорциональные ему напряжения, и производится выдавливание оболочки 6 через центральное отверстие в упоре 7. За счет воздействия гидростатического давления на поршни исполнительных гидроцилиндров 3 создается соответствующее виду испытания усилие, закрепляющее оболочку 6. Причем за счет первоначальной самоустановки опорных поверхностей прокладок 5 и 10 усилие закрепления по поверхности оболочки 6 распределяется равномерно, даже при условии испытания оболочек имеющих разнотолщинность и различный радиус кривизны поверхностей.
К преимуществам предложенного устройства относятся простота проведения эксперимента вследствие отсутствия необходимости формоизменения поверхностей оболочки для проведения испытаний, полная надежность закрепления оболочки при любых заранее неизвестных свойствах материала, возможность испытывать разнотолщинные оболочки, вариация усилий закрепления оболочки в зависимости от вида испытаний, возможность проведения как испытаний для определения механических свойств материала оболочек, так и неразрушающих (без остаточной деформации) испытаний с целью оценки их конструкционной прочности.
Claims (5)
1. Устройство для определения механических свойств материала тонкостенных полусферических сегментов, содержащее силовую раму, в состав которой входит нижнее основание, на котором закреплена нижняя зажимная часть, имеющая соответствующую внутренней поверхности полусферического сегмента опорную поверхность с отверстием в центре, и верхнее основание, содержащее верхний упор с ответной поверхностью, имеющую такое же отверстие в центре, перекрываемое сегментом, размещенным между опорными сферическими поверхностями нижней зажимной чисти и верхним упором и герметично замыкающей внутреннюю полость, находящуюся в нижней зажимной части, в которой организована возможность создания нарастающего гидравлического давления на сегмент, отличающееся тем, что на основании равномерно установлены исполнительные гидроцилиндры, удерживающие нижнюю зажимную часть, при этом гидравлические полости в нижней зажимной части и исполнительных гидроцилиндров являются независимыми друг от друга, нижняя зажимная часть помимо осевого перемещения имеет возможность отклонения относительно оси симметрии устройства, верхний упор имеет возможность поперечного перемещения и также отклонения относительно оси симметрии устройства опорной поверхности.
2. Устройство по п. 1, отличающееся тем, что в местах зажима тонкостенного полусферического сегмента установлены прокладки из упругого материала.
3. Устройство по п. 1, отличающееся тем, что на раме установлено верхнее основание, на котором закреплен подвижный верхний упор.
4. Устройство по п. 3, отличающееся тем, что верхнее и нижнее основание соединены стяжками.
5. Устройство по п. 1, отличающееся тем, что гидравлические полости нижней зажимной части и исполнительных гидроцилиндров объединены посредством регулируемого редуцирующего устройства.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015154164A RU2611979C1 (ru) | 2015-12-16 | 2015-12-16 | Устройство для определения свойств материала тонкостенных полусферических сегментов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015154164A RU2611979C1 (ru) | 2015-12-16 | 2015-12-16 | Устройство для определения свойств материала тонкостенных полусферических сегментов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2611979C1 true RU2611979C1 (ru) | 2017-03-01 |
Family
ID=58459139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015154164A RU2611979C1 (ru) | 2015-12-16 | 2015-12-16 | Устройство для определения свойств материала тонкостенных полусферических сегментов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2611979C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114798471A (zh) * | 2022-06-30 | 2022-07-29 | 深圳益实科技有限公司 | 一种液晶屏抗压性能自动测试装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6247370B1 (en) * | 1999-01-25 | 2001-06-19 | Council Of Scientific And Industrial Research | Two dimensional stress relaxation testing device |
RU2310184C2 (ru) * | 2005-07-27 | 2007-11-10 | Институт механики и машиностроения Казанского научного центра РАН | Способ определения прочностных свойств тонкослойных материалов |
RU2387973C2 (ru) * | 2007-12-25 | 2010-04-27 | Учреждение Российской Академии Наук Институт Механики И Машиностроения Казанского Научного Центра Ран | Способ определения прочностных свойств тончайших пленок и нанопленок и устройство для его осуществления |
RU2410666C1 (ru) * | 2009-09-15 | 2011-01-27 | Российская Федерация, от имени которой выступает государственный заказчик - Государственная корпорация по атомной энергии "Росатом" | Устройство для определения свойств материала при гидростатическом нагружении тонкостенных оболочек |
-
2015
- 2015-12-16 RU RU2015154164A patent/RU2611979C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6247370B1 (en) * | 1999-01-25 | 2001-06-19 | Council Of Scientific And Industrial Research | Two dimensional stress relaxation testing device |
RU2310184C2 (ru) * | 2005-07-27 | 2007-11-10 | Институт механики и машиностроения Казанского научного центра РАН | Способ определения прочностных свойств тонкослойных материалов |
RU2387973C2 (ru) * | 2007-12-25 | 2010-04-27 | Учреждение Российской Академии Наук Институт Механики И Машиностроения Казанского Научного Центра Ран | Способ определения прочностных свойств тончайших пленок и нанопленок и устройство для его осуществления |
RU2410666C1 (ru) * | 2009-09-15 | 2011-01-27 | Российская Федерация, от имени которой выступает государственный заказчик - Государственная корпорация по атомной энергии "Росатом" | Устройство для определения свойств материала при гидростатическом нагружении тонкостенных оболочек |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114798471A (zh) * | 2022-06-30 | 2022-07-29 | 深圳益实科技有限公司 | 一种液晶屏抗压性能自动测试装置 |
CN114798471B (zh) * | 2022-06-30 | 2022-09-09 | 深圳益实科技有限公司 | 一种液晶屏抗压性能自动测试装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105910909B (zh) | 多直径岩芯双圆环直接拉伸岩石抗拉强度试验机 | |
US8353217B2 (en) | Test machine to apply a uniform internal pressure to a tube | |
RU2611979C1 (ru) | Устройство для определения свойств материала тонкостенных полусферических сегментов | |
US20140069203A1 (en) | Multiple specimen testing | |
CN107941609B (zh) | 一种建立薄壁管材成形极限图的方法和装置 | |
CN110044730A (zh) | 一种岩石三轴直接剪切实验装置和方法 | |
Vil’deman et al. | Material testing by plotting total deformation curves | |
WO2017062433A3 (en) | Apparatus and methods of mechanical testing materials | |
CN104155182A (zh) | 一种金属薄板m(t)试样压-压裂纹扩展防失稳夹具 | |
EA007192B1 (ru) | Способ закрытия гидравлического, пневматического и/или гидропневматического цилиндра и средства для изготовления этого цилиндра | |
RU2410666C1 (ru) | Устройство для определения свойств материала при гидростатическом нагружении тонкостенных оболочек | |
RU2319944C1 (ru) | Способ определения максимальных истинных напряжений и деформаций | |
RU2488090C1 (ru) | Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб | |
KR101902901B1 (ko) | 원통형 미사일 바디 확관장치 | |
CN108106933A (zh) | 建材抗压强度的斜压检测夹具及斜压检测方法 | |
RU2402009C1 (ru) | Устройство для определения упруго - пластичных свойств материала при одноосном растяжении дугообразных образцов | |
CN104132845A (zh) | 一种测量各向异性材料切口角部应力强度因子的试验方法 | |
KR102025799B1 (ko) | 밸브 시험 장치 | |
Wang et al. | Comparative study between small punch test and hydraulic bulge test | |
RU208299U1 (ru) | Устройство для испытания кольцевых образцов на растяжение | |
RU2708909C1 (ru) | Установка для испытания образцов на одноосное сжатие материалов преимущественно растительного происхождения | |
RU2556312C1 (ru) | Способ испытания материалов на фреттинг-усталость | |
RU2344407C1 (ru) | Способ испытания листовых материалов на двухосное растяжение | |
CN111781061B (zh) | 一种板带试样拉伸试验装置及其设计和使用方法 | |
RU2784407C1 (ru) | Устройство для испытания на сжатие длинномерных образцов |