RU2611125C2 - Статоры для забойных двигателей, способы их изготовления и забойные двигатели с ними - Google Patents

Статоры для забойных двигателей, способы их изготовления и забойные двигатели с ними Download PDF

Info

Publication number
RU2611125C2
RU2611125C2 RU2012124076A RU2012124076A RU2611125C2 RU 2611125 C2 RU2611125 C2 RU 2611125C2 RU 2012124076 A RU2012124076 A RU 2012124076A RU 2012124076 A RU2012124076 A RU 2012124076A RU 2611125 C2 RU2611125 C2 RU 2611125C2
Authority
RU
Russia
Prior art keywords
stator
reinforcing material
spindle
tube
binder
Prior art date
Application number
RU2012124076A
Other languages
English (en)
Other versions
RU2012124076A (ru
Inventor
Хусейн АКБАРИ
Жульен РАМЬЕ
Оливье СИНДТ
Original Assignee
Прэд Рисерч Энд Дивелопмент Лимитед
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Прэд Рисерч Энд Дивелопмент Лимитед, Шлюмбергер Текнолоджи Б.В. filed Critical Прэд Рисерч Энд Дивелопмент Лимитед
Publication of RU2012124076A publication Critical patent/RU2012124076A/ru
Application granted granted Critical
Publication of RU2611125C2 publication Critical patent/RU2611125C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/74Moulding material on a relatively small portion of the preformed part, e.g. outsert moulding
    • B29C70/745Filling cavities in the preformed part
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/02Fluid rotary type drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/10Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F01C1/101Moineau-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/008Pumps for submersible use, i.e. down-hole pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • F04C2/1075Construction of the stationary member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2905/00Use of metals, their alloys or their compounds, as mould material
    • B29K2905/08Transition metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0469Other heavy metals
    • F05C2201/0475Copper or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/02Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/10Polyimides, e.g. Aurum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/12Polyetheretherketones, e.g. PEEK
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/12Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/18Filler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/22Reinforcements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Группа изобретений относится к области бурения. Способ изготовления статора для забойного двигателя, содержащего трубу статора, включающую в себя внутреннюю поверхность и имеющую совокупность шлицев, проходящих внутрь от внутренней поверхности; вставку статора, выполненную из отвержденного армирующего материала, имеющего высокую степень кристаллизации, которая расположена во внутренней поверхности и расположена вдоль совокупности шлицев, причем вставка статора имеет внутреннюю поверхность, образующую внутреннюю винтообразную полость, включающую в себя совокупность внутренних винтовых зубьев; и ротор, размещенный в статоре, при этом способ включает в себя: обеспечение трубы статора; нанесение разделительного состава на наружную поверхность шпинделя; размещение шпинделя в трубе статора, причем шпиндель имеет наружную геометрию, комплементарную с необходимой внутренней геометрией статора; ввод армирующего материала в трубу статора для заполнения пространства между шпинделем и внутренней поверхностью трубы статора; отверждение армирующего материала; и удаление по меньшей мере части шпинделя из трубы статора и отвержденного армирующего материала; таким образом, получая статор. Обеспечивается улучшение механических свойств статора. 3 н. и 16 з.п. ф-лы, 22 ил.

Description

Забойные двигатели (в разговорной речи называемые «гидравлическими забойными двигателями») являются мощными источниками энергии, используемыми в операциях бурения для вращения бурового долота, выработки электроэнергии и т.п. Как следует из термина «гидравлический забойный двигатель», такие забойные двигатели часто приводятся в действие буровым раствором (например, промывочным раствором). Такой буровой раствор также используется для смазки бурильной колонны и выноса шлама и, соответственно, часто содержит твердые частицы, такие как выбуренная порода ствола скважины, которые могут уменьшать жизненный цикл забойных двигателей. Соответственно, существует необходимость создания новых подходов для экономически эффективного изготовления забойных двигателей и компонентов забойного двигателя, являющихся экономически эффективными и облегчающими быструю замену в полевых условиях.
Настоящее изобретение, в общем, относится к способу изготовления статора для забойного двигателя, при этом способ содержит этапы создания трубы статора, имеющей внутреннюю поверхность, нанесения связывающего вещества на внутреннюю поверхность трубы статора, установки шпинделя в трубу статора, причем шпинделя, имеющего наружную геометрию, комплементарную с необходимой внутренней геометрией статора, и ввода армирующего материала в трубу статора для заполнения пространства между шпинделем и внутренней поверхностью трубы статора. Кроме того, армирующий материал отверждается для связывания армирующего материала с внутренней поверхностью трубы статора, и затем шпиндель удаляют из связанных трубы статора и армирующего материала так, чтобы изготовить статор.
Согласно одному аспекту настоящего изобретения труба статора содержит материал, выбранный из группы, состоящей из следующего: железа, стали, инструментальной стали, углеродистой стали, вольфрамовой стали, латуни и меди.
Кроме того, связывающее вещество, использующееся в изготовлении статора, может быть однослойным связывающим веществом или многослойным связывающим веществом.
Согласно одному аспекту настоящего изобретения шпиндель может содержать материал, выбранный из группы, состоящей из следующего: железа, стали, инструментальной стали, углеродистой стали, вольфрамовой стали, латуни и меди. Кроме того, шпиндель может быть снабжен покрытием с разделительным составом, имеющим многочисленные формы, включающие в себя твердые, полутвердые или жидкие.
Армирующий материал настоящего изобретения может иметь различные формы, что понятно специалисту в данной области техники. Например, армирующий материал может представлять собой композит. Согласно другому аспекту настоящего изобретения армирующий материал может являться полимером. Согласно дополнительному аспекту настоящего изобретения армирующий материал может представлять собой термореактивный пластик и/или термопласт.
Как понятно специалисту в данной области техники, армирующий материал одного аспекта настоящего изобретения может быть выбран из группы, состоящей из следующего: эпоксидные смолы, полиимиды, поликетоны, полиэфирэфиркетоны (PEEK), фенолоальдегидные смолы и полифениленсульфиды (PPS).
Кроме того, армирующий материал может иметь различные формы, включающие в себя жидкости, пасты, суспензию, порошок и/или гранулированный материал. Кроме того, армирующий материал может быть сшитым и/или может иметь высокую степень кристаллизации. Согласно аспектам настоящего изобретения при отверждении армирующего материала для связывания армирующего материала с внутренней поверхностью трубы статора можно использовать различные методики. Данные методики могут включать в себя, без ограничения этим, использование затвердевания при нагреве, затвердевания при облучении, затвердевания при обработке паром и охлаждении.
Настоящим изобретением дополнительно предложен статор для забойного двигателя, содержащий трубу статора, включающую в себя внутреннюю поверхность, и отвержденный армирующий материал, связанный с внутренней поверхностью, причем отвержденный армирующий материал, имеющий внутреннюю поверхность, образующую внутреннюю винтообразную полость, включающую в себя совокупность внутренних винтовых зубьев. Кроме того, настоящее изобретение описывает забойный двигатель, содержащий статор, который содержит трубу статора, включающую в себя внутреннюю поверхность, и отвержденный армирующий материал, связанный с внутренней поверхностью, причем отвержденный армирующий материал, имеющий внутреннюю поверхность, образующую внутреннюю винтообразную полость, включающую в себя совокупность внутренних винтовых зубьев, и ротор, размещенный в статоре. Согласно настоящему изобретению ротор может иметь покрытие из эластомера, при этом эластомер может содержать один или несколько материалов, выбранных из группы, состоящей из следующего: резины, натурального каучука (NR), синтетического полиизопрена (IR), бутилкаучука, галогенированного бутилкаучука, полибутадиена (BR), нитрилового каучука, бутадиен-нитрильного каучука (NBR), гидрогенизированного бутадиен-нитрильного каучука (HNBR), карбоксилированного гидрогенизированного бутадиен-нитрильного каучука (XHNBR), хлоропренового каучука (CR), фторуглеродного каучука (FKM) и перфторэластомеров (FFKM).
Для более полного понимания характера и задач настоящего изобретения ниже приведено подробное описание с прилагаемыми чертежами, на которых одинаковыми позициями указаны соответствующие части на нескольких фигурах и на которых показано следующее.
На фиг.1 показана система буровой, на которой настоящее изобретение можно использовать.
На фиг.2A-2C показан винтовой (объемный) забойный двигатель типа обращенного одновинтового насоса Муано, имеющий профиль винтовых зубьев 1:2 согласно одному варианту осуществления изобретения.
На фиг.3A-3F показан винтовой (объемный) забойный двигатель типа обращенного одновинтового насоса Муано, имеющий профиль винтовых зубьев 3:4 согласно одному варианту осуществления изобретения.
На фиг.4 и 5A-5D показан способ изготовления статора согласно одному варианту осуществления изобретения.
На фиг.6 и 7A-7D показан способ изготовления вставки статора согласно одному варианту осуществления изобретения.
На фиг.8 показана труба статора и вставки статора, имеющие геометрию со шлицами согласно одному варианту осуществления изобретения.
На фиг.9 показан альтернативный способ изготовления статора согласно одному варианту осуществления изобретения.
В вариантах осуществления изобретения созданы статоры и вставки статора для забойных двигателей, способы их изготовления и забойные двигатели с ними. Различные варианты осуществления изобретения можно использовать в системах буровой.
На фиг.1 показана система буровой, на которой настоящее изобретение можно использовать. Буровая может быть сухопутной или морской. В данном примере системы ствол 11 скважины выполняют в подземных пластах с помощью роторного бурения хорошо известным способом. В вариантах осуществления изобретения можно также использовать наклонно-направленное бурение, как описано ниже в данном документе.
Бурильная колонна 12 подвешена в стволе 11 скважины и имеет компоновку низа бурильной колонны (КНБК) 100, которая включает в себя буровое долото 105 на своем нижнем конце. Наземная часть системы включает в себя компоновку 10 основания и вышки, установленные над стволом 11 скважины, причем компоновку 10, включающую в себя ротор 16, ведущую бурильную трубу 17, крюк 18 и вертлюг 19. Бурильную колонну 12 вращает ротор 16, приводимый в действие средством, которое не показано, соединяющийся с ведущей бурильной трубой 17 на верхнем конце бурильной колонны. Бурильная колонна 12 подвешена на крюке 18, прикрепленном к талевому блоку (также не показано) через ведущую бурильную трубу 17 и вертлюг 19, что обеспечивает вращение бурильной колонны относительно крюка. Как хорошо известно, можно альтернативно использовать систему верхнего привода.
В примере данного варианта осуществления наземная система дополнительно включает в себя буровой раствор или промывочный раствор 26, находящийся в емкости 27 на буровой площадке. Насос 29 подает буровой раствор 26 внутрь бурильной колонны 12 через окно в вертлюге 19, обуславливая перемещение бурового раствора вниз через бурильную колонну 12, как показано стрелкой 8. Буровой раствор выходит из бурильной колонны 12 через окна в буровом долоте 105 и затем циркулирует вверх через зону кольцевого пространства между наружной поверхностью бурильной колонны и стенкой ствола скважины, в направлении, показанном стрелками 9. В данном хорошо известном способе буровой раствор смазывает буровое долото 105 и уносит на поверхность выбуренную породу при возврате в емкость 27 для повторной циркуляции.
Компоновка 100 низа бурильной колонны показанного варианта осуществления включает в себя модуль 120 (LWD) каротажа во время бурения, модуль 130 (MWD) измерений во время бурения, роторную управляемую систему и двигатель и буровое долото 105.
Модуль 120 каротажа во время бурения размещается в специальной утяжеленной бурильной трубе, как известно в технике, и может содержать один или множество известных каротажных инструментов. Следует также понимать, что можно использовать несколько модулей каротажа во время бурения и/или измерений во время бурения, например, как представлено позицией 120A. (Ссылки на модуль 120 могут альтернативно также означать модуль позиции 120A.) Модуль каротажа во время бурения обладает возможностями измерения, обработки и хранения информации, а также осуществления связи с наземным оборудованием. В настоящем варианте осуществления модуль каротажа во время бурения включает в себя устройство измерения давления.
Модуль 130 измерений во время бурения также размещается в специальной утяжеленной бурильной трубе, как известно в технике, и может содержать одно или несколько устройств для измерения характеристик бурильной колонны и бурового долота. Инструмент измерений во время бурения дополнительно включает в себя устройство (не показано) для генерирования электроэнергии для скважинной системы. Такое устройство может обычно включать в себя забойный турбогенератор (также известный как «забойный турбинный двигатель»), приводимый в действие потоком бурового раствора, следует понимать, что можно использовать и другие системы электропитания и/или батареи. В настоящем варианте осуществления модуль измерений во время бурения включает в себя одно или несколько следующих измерительных устройств: устройство измерения осевой нагрузки на долото, устройство измерения крутящего момента, устройство измерения вибрации, устройство измерения ударной нагрузки, устройство измерения прихвата и проскальзывания, устройство измерения азимута и инклинометр.
В частности, предпочтительным является использование, системы, соединенной с управлением направлением бурения или «наклонно-направленным бурением». В данном варианте осуществления создана подсистема 150 роторного управляемого бурения (фиг.1). Наклонно-направленное бурение является намеренным отклонением ствола скважины от естественной траектории. Другими словами, наклонно-направленное бурение является управлением направлением бурильной колонны так, что колонна перемещается в нужном направлении.
Наклонно-направленное бурение является, например, предпочтительным в морском бурении, поскольку обеспечивает бурение множества скважин с одной платформы. Наклонно-направленное бурение также обеспечивает горизонтальное бурение через коллектор. Горизонтальное бурение обеспечивает пересечение коллектора отрезком большей длины ствола скважины, что увеличивает дебит скважины.
Систему наклонно-направленного бурения можно также использовать в вертикальном бурении. Часто буровое долото отклоняется от заданного направления проектной траектории бурения по причине непредсказуемого характера пластов проходки или изменения сил, действующих на буровое долото. Когда такое отклонение происходит, систему наклонно-направленного бурения можно использовать для приведения бурового долота обратно на курс.
Известный способ наклонно-направленного бурения включает в себя использование роторных управляемых систем («РУС»). В РУС бурильную колонну вращают с поверхности, и забойные устройства обуславливают бурение буровым долотом в нужном направлении. Вращение бурильной колонны значительно уменьшает возможность застревания бурильной колонны или прихвата во время бурения. Роторные управляемые системы для бурения наклонно-направленных стволов скважины в геологической среде можно, в общем, классифицировать как системы «отталкивания всей компоновки» или «позиционирования долота».
В системе позиционирования долота ось вращения бурового долота отклоняется от локальной оси компоновки низа бурильной колонны в общем направлении нового ствола. Ствол проводится согласно обычной трехточечной геометрии, образованной верхней и нижней точками касания центратора с жесткими лопастями и буровым долотом. Угол отклонения оси бурового долота в соединении с конечным расстоянием между буровым долотом и нижним центратором дает в результате условие неколлинеарности, требуемое для создания кривой. Существует много способов достижения данного условия, включающие в себя фиксированное искривление в точке компоновки низа бурильной колонны вблизи нижнего центратора или изгиб приводного вала бурового долота между верхним и нижним центратором. В идеализированной форме, от бурового долота не требуется бокового разрушения породы, поскольку ось долота непрерывно поворачивается в направление искривленного ствола. Примеры роторных управляемых систем с позиционированием долота и способов управления ими описаны в патентах США №№ 6394193; 6364034; 6244361; 6158529; 6092610; и 5113953; и публикациях патентов США №№ 2002/0011359 и 2001/0052428.
В роторной управляемой системе отталкивания всей компоновки обычно нет специально идентифицированного механизма для отклонения оси долота от локальной оси компоновки низа бурильной колонны; вместо этого требуемое условие неколлинеарности получают, обуславливая приложение внецентренного усилия верхним и/или нижним центратором или смещение в направлении предпочтительной ориентации относительно направления продвижения ствола. Также, существует много способов, которыми можно достигать указанного, включающих в себя использование не вращающихся (относительно ствола) эксцентричных центраторов (подходы на основе смещения) и эксцентричных исполнительных механизмов, прикладывающих усилие к буровому долоту для необходимого управления направлением направлении. Также, управление направлением получают, создавая условие неколлинеарности между буровым долотом и, по меньшей мере, двумя другими точками касания. В идеализированной форме, от бурового долота требуется боковое разрушение породы для создания искривленного ствола. Примеры роторных управляемых систем отталкивания всей компоновки и способов их работы описаны в патентах США №№ 6089332; 5971085; 5803185; 5778992; 5706905; 5695015; 5685379; 5673763; 5603385; 5582259; 5553679; 5553678; 5520255; и 5265682.
Забойные двигатели
На фиг.2A-2C показан винтовой (объемный) забойный двигатель 200 типа обращенного одновинтового насоса Муано. Забойный двигатель 200 включает в себя ротор 202, размещенный в статоре 204. Ротор 202 может представлять собой винтообразный элемент, изготовленный из жесткого материала, такого как металлы, смолы, композиты и т.п. Статор 204 может иметь продолговатую винтообразную форму и изготавливаться из эластомеров, обеспечивающих вращение ротора 202 в статоре 204 при проходе текучей среды между камерами 206, образующимися между ротором 202 и статором 204. В некоторых вариантах осуществления статор 204 размещается в трубе 208 статора, которая может частично ограничивать деформацию статора 204 при вращении ротора 202 и может защищать внешнюю поверхность статора 204 от износа.
Забойные двигатели 200 могут изготавливаться в различных конфигурациях. В общем, при рассмотрении поперечного сечения, показанного на фиг.1B, ротор 202 имеет nr винтовых зубьев, и статор 204 имеет ns винтовых зубьев, при этом ns=nr+1. Например, на фиг.2A-2C показан забойный двигатель 200 с профилем винтовых зубьев 1:2, в котором ротор 202 имеет один винтовой зуб 210, и статор 204 имеет два винтовых зуба 212. На фиг.3A-3F показан забойный двигатель 300 с профилем винтовых зубьев 3:4, в котором ротор 302 имеет три винтовых зуба 310, и статор 304 имеет четыре винтовых зуба 312. Другие примеры профилей винтовых зубьев включают в себя 5:6, 7:8, 9:10 и т.п.
Вращение ротора 302 показано на фиг.3C-3F.
Забойные двигатели дополнительно описаны в ряде публикаций, таких как патенты США №№ 7442019; 7396220; 7192260; 7093401; 6827160; 6543554; 6543132; 6527512; 6173794; 5911284; 5221197; 5135059; 4909337; 4646856 и 2464011; публикации патентных заявок США №№ 2009/0095528; 2008/0190669; и 2002/0122722; и публикации William C. Lyons et al., Air & Gas Drilling Manual: Applications for Oil & Gas Recovery Wells & Geothermal Fluids Recovery Wells § 11.2 (3d ed. 2009); G.Robello Samuel, Downhole Drilling Tools: Theory & Practice for Engineers & Students 288-333 (2007); Standard Handbook of Petroleum & Natural Gas Engineering 4-276 - 4-299 (William C. Lyons & Gary J. Plisga eds. 2006); и 1 Yakov A. Gelfgat et al., Advanced Drilling Solutions: Lessons from the FSU 154-72 (2003).
Способы изготовления статоров
На фиг.4 в контексте фиг.5A-5D показан способ 400 изготовления статора 500. Поперечные сечения показаны без привязки по глубине на фиг.5A-5D для упрощения показа и понимания.
На этапе S402 создают трубу 502 статора. Как рассмотрено в данном документе, труба 502 статора может быть выполнена из жесткого материала. Например, труба 502 статора может быть изготовлена из железа, стали, инструментальной стали, углеродистой стали, вольфрамовой стали, латуни, меди и т.п.
Если необходимо, на этапе S404 готовят внутреннюю поверхность трубы 502 статора. В некоторых вариантах осуществления изношенную вставку статора удаляют из трубы 502 статора. В других вариантах осуществления внутреннюю поверхность трубы 502 статора очищают, обезжиривают, подвергают пескоструйной обработке, подвергают дробеструйной обработке и т.п.
На этапе S406 связывающее вещество 504 наносят на внутреннюю поверхность трубы 502 статора. Связывающее вещество 504 может быть однослойным связывающим веществом или многослойным связывающим веществом. Специалист в данной области техники должен учитывать, что существует ряд подходящих связывающих веществ, включающих в себя, без ограничения этим, эпоксидную смолу, фенолоальдегидную смолу, полиэфирную смолу и/или любое число подходящих альтернатив.
На этапе S408 шпиндель 506 устанавливают в трубе 502 статора. Предпочтительно шпиндель 506 центрируют в трубе 502 статора так, что продольная ось шпинделя 506 становится соосной с продольной осью трубы 502 статора. Шпиндель 506 имеет наружную геометрию комплементарную с необходимой внутренней геометрией статора 500, подлежащего изготовлению. Например, шпиндель 506 может иметь продолговатую, винтообразную форму и иметь ns винтовых зубьев (например, четыре винтовых зуба в варианте осуществления, показанном на фиг.5A).
В некоторых вариантах осуществления шпиндель 506 снабжен покрытием из разделительного состава (не показано) для обеспечения удаления шпинделя 506. Кроме того или альтернативно, один или несколько упругих слоев 508 можно нанести на шпиндель 506 (например, поверх разделительного состава) для упрочнения статора 500. Для ясности, термины «армирующий/упругий слой» используются взаимозаменяемо в настоящем подробном описании. Например, упругий слой 508 может быть выполнен из эластомеров, таких как резина, натуральный каучук (NR), синтетический полиизопрен (IR), бутилкаучук, галогенированный бутилкаучук, полибутадиен (BR), нитриловый каучук, бутадиен-нитрильный каучук (NBR), гидрогенизированный бутадиен-нитрильный каучук (HNBR), карбоксилированный гидрогенизированный бутадиен-нитрильный каучук (XHNBR), хлоропреновый каучук (CR), фторуглеродный каучук (FKM) и перфторэластомеры (FFKM) и т.п. В других вариантах осуществления упругий слой 508 можно армировать волокном и/или текстильным материалом, таким как полиарамидные синтетические волокна, такие как волокно KEVLAR®, поставляемые E.I. Du Pont de Nemours and Company of Wilmington, Delaware.
В некоторых вариантах осуществления связывающее вещество (не показано) наносят на упругий слой 508. Связывающее вещество может быть однослойным связывающим веществом или многослойным связывающим веществом.
На этапе S410 армирующий материал 510 вводят в трубу 502 статора. Примеры подходящих армирующих материалов 510 рассмотрены в данном документе.
На этапе S412 армирующий материал 510 отверждается, как рассмотрено в данном документе.
На этапе S414 шпиндель 506 удаляют из отвержденного статора 500.
Способы изготовления вставок статора
На фиг.6 в контексте фиг.7A-7D показан способ 600 изготовления вставок статора. Поперечные сечения показаны без привязки по глубине на фиг.7A-7D для упрощения показа и понимания.
На этапе S602 создают шпиндель 702. Шпиндель 702 имеет наружную геометрию, комплементарную с необходимой внутренней геометрией вставки статора, подлежащей изготовлению. Например, шпиндель 702 может иметь продолговатую винтообразную форму и иметь ns винтовых зубьев (например, четыре винтовых зуба в варианте осуществления, показанном на фиг.7A).
На этапе S604 гибкий рукав 704 накладывают поверх шпинделя 702. Гибкий рукав 704 может быть эластомером. Например, эластомеры могут являться резиной, натуральным каучуком (NR), синтетическим полиизопреном (IR), бутилкаучуком, галогенированным бутилкаучуком, полибутадиеном (BR), нитриловым каучуком, бутадиен-нитриловым каучуком (NBR), гидрогенизированным бутадиен-нитриловым каучуком (HNBR), карбоксилированным гидрогенизированным бутадиен-нитриловым каучуком (XHNBR), хлоропреновым каучуком (CR), фторуглеродным каучуком (FKM), перфторэластомерами (FFKM) и т.п. В других вариантах осуществления гибкий рукав 704 можно армировать с использованием волокна и/или текстильного материала, такого как полиарамидные синтетические волокна, такие как волокно KEVLAR®, поставляемые E.I. Du Pont de Nemours and Company of Wilmington, Delaware.
В некоторых вариантах осуществления смазку или разделительный состав (например, жидкости, гели и/или порошки) наносят между гибким рукавом 704 и шпинделем 702 для обеспечения вставления и удаления шпинделя 702. Предпочтительно, смазка/разделительный слой является совместимым со шпинделем 702 и гибким рукавом 704. Специалист в данной области техники должен понимать, что данная смазка/разделительный слой может принимать многочисленные формы, включающие в себя, без ограничения этим, постоянный или полупостоянный слой, имеющий твердую или жидкую форму.
Если необходимо, на этапе S606 создают вакуум между гибким рукавом и шпинделем для лучшего прилегания гибкого рукава 704 с соответствием геометрии шпинделя 702. В некоторых вариантах осуществления вакуумирование не требуется, поскольку гибкий материал 704 обеспечивает прилегание с соответствием геометрии шпинделя без физического воздействия.
На этапе S608 гибкий рукав 704 и шпиндель 702 в сборе устанавливают в форму 706. Предпочтительно, шпиндель 702 центрируют в форме 706 так, что продольная ось шпинделя 702 становится соосной с продольной осью формы 706. В некоторых вариантах осуществления внутренняя геометрия формы 706 является комплементарной трубе 708 статора, в которую отлитая вставка статора должна быть установлена (за вычетом любых допусков для адгезивов 710, расширения, сокращения и т.п.). Например, вставка статора может иметь, по существу, круглый наружный профиль, и труба 708 статора может иметь, по существу, круглый внутренний профиль.
В другом варианте осуществления, показанном на фиг.8, труба 808 статора может иметь совокупность шлицов 812, и вставка 814 статора может включать в себя совокупность комплементарных шлицов для обеспечения механического удержания вставки 814 статора в трубе 808 статора. Согласно альтернативному варианту осуществления специалисту в данной области техники должно быть совершенно понятно, что внутренняя и наружная поверхности стенок трубы статора не обязательно должны быть параллельны.
На этапе S610 армирующий материал 714 вводят в форму. Примеры подходящих армирующих материалов 714 рассмотрены в данном документе.
Если необходимо, разделительный состав и/или смазку можно наносить на внутреннюю поверхность формы 706 перед вводом армирующего материала 714 для обеспечения удаления отвержденной вставки статора из формы 706.
Кроме того или альтернативно, связывающее вещество (не показано) можно наносить на гибкий рукав 704 перед вводом армирующего материала 714 для обеспечения связывания армирующего материала 714 с гибким рукавом 704.
На этапе S612 армирующий материал 714 отверждается, как рассмотрено в данном документе.
На этапе S614 отвержденный армирующий материал 714 и гибкий рукав 704 удаляют из формы 706. В некоторых вариантах осуществления наружную поверхность отвержденной вставки статора обрабатывают для обеспечения лучшего связывания с трубой 708 статора. Например, отвержденную вставку статора можно очищать, обезжиривать, подвергать пескоструйной обработке, подвергать дробеструйной обработке и т.п.
На этапе S616 шпиндель 702, если необходимо, удаляют из отвержденной вставки статора перед вставлением статора в трубу 708 статора на этапе S618. В другом варианте осуществления, шпиндель 702 удаляют из отвержденной вставки статора после вставления последней в трубу 708 статора.
Различные методики можно использовать для подготовки трубы 708 статора к приему отвержденной вставки статора. В некоторых вариантах осуществления изношенную вставку статора удаляют из трубы 708 статора. В других вариантах осуществления внутреннюю поверхность трубы 708 статора очищают, обезжиривают, подвергают пескоструйной обработке, подвергают дробеструйной обработке и т.п.
В некоторых вариантах осуществления вставка статора соединяется с внутренней поверхностью трубы 708 статора. Вставка статора может соединяться с трубой 708 статора с помощью адгезива 710. Например, адгезив 710 можно наносить на наружную поверхность вставки статора и/или внутреннюю поверхность трубы 708 статора. Альтернативно, адгезив 710 можно подавать или нагнетать под давлением или с использованием вакуума между вставкой статора и трубой 708 статора после ввода вставки статора. Можно использовать различные адгезивы 710, включающие в себя эпоксидные составы, поли(метил метилакрилат), адгезивы на основе полиуретана и т.п.
Армирующие материалы и способы отверждения
Армирующие материалы 510, 714, рассмотренные в данном документе, могут являться различными материалами, включающими в себя композиты, полимеры, термореактивный пластик, термопласты и т.п. Являющиеся примером полимеры включают в себя эпоксидные смолы, полиимиды, поликетоны, полиэфирэфиркетоны (PEEK), фенолоальдегидные смолы, полифениленсульфиды (PPS) и т.п. Армирующие материалы 510, 714 можно вводить в различных формах, включающих в себя жидкость, пасту, суспензию, порошок, гранулированный материал и т.п. Согласно аспектам настоящего изобретения армирующие материалы могут включать в себя, без ограничения этим, многочисленные жидкости, пасты и/или порошки, которые могут отверждаться. Согласно одному аспекту настоящего изобретения они могут являться керамикой или цементами.
Армирующие материалы 510, 714 могут быть сшитыми. Кроме того или альтернативно, армирующие материалы 510, 714 могут иметь высокую степень кристаллизации.
Отверждение армирующих материалов 510, 714 можно выполнять с помощью различных методик, включающих в себя использование химических добавок, ультрафиолетового облучения, электронных пучков, нагрева, воздействия части или всего микроволнового спектра, отверждения паром, охлаждения и т.п. Способы отверждения могут меняться для конкретных армирующих материалов 510, 714, но могут устанавливаться спецификациями изготовителя и общими химическими принципами. В некоторых вариантах осуществления армирующий материал 510, 714 отверждается под давлением для обеспечения связывания и/или улучшения механических свойств с помощью упругих слоев 508 или гибкого рукава 704, для прижатия упругих слоев 508 или гибкого рукава 704 к геометрии шпинделя 506, 702 и для улучшения механических свойств армирующих материалов 510, 174. Например, эксперименты показывают улучшение на около 20% Tg, жесткости и твердости, когда армирующий материал отверждается под давлением.
Дополнительные способы изготовления статоров
На фиг.9 в контексте фиг.5A-5D, показан способ 900 изготовления статора 500. Поперечные сечения показаны без привязки по глубине на фиг.5A-5D для упрощения показа и понимания.
На этапе S902 создают шпиндель 506. Шпиндель 506 может иметь наружную геометрию, комплементарную с необходимой внутренней геометрией статора 500. Например, шпиндель 506 может иметь продолговатую, винтообразную форму и иметь ns винтовых зубьев (например, четыре винтовых зуба в варианте осуществления, показанном на фиг.5A).
Если необходимо, на этапе S904 шпиндель 506 можно снабжать покрытием с разделительным составом (не показано) для обеспечения удаления шпинделя 506 из гибкого рукава 508.
На этапе S906 гибкий рукав 508 укладывают поверх шпинделя 506. Гибкий рукав 508 может быть выполнен из эластомеров, таких как резина, натуральный каучук (NR), синтетический полиизопрен (IR), бутилкаучук, галогенированный бутилкаучук, полибутадиен (BR), нитриловый каучук, бутадиен-нитрильный каучук (NBR), гидрогенизированный бутадиен-нитрильный каучук (HNBR), карбоксилированный гидрогенизированный бутадиен-нитрильный каучук (XHNBR), хлоропреновый каучук (CR), фторуглеродный каучук (FKM), перфторэластомеры (FFKM) и т.п. В других вариантах осуществления гибкий рукав 508 можно армировать волокном и/или текстильным материалом, таким как полиарамидные синтетические волокна, такие как волокно KEVLAR®, поставляемые E.I. Du Pont de Nemours and Company of Wilmington, Delaware.
Если необходимо, на этапе S908 связывающее вещество (не показано) наносят на наружную поверхность гибкого рукава 508. Связывающее вещество может быть однослойным связывающим веществом или многослойным связывающим веществом.
На этапе S910 создают трубу 502 статора. Как рассмотрено в данном документе, труба 502 статора может быть выполнена из жесткого материала. Например, труба 502 статора может быть изготовлена из железа, стали, инструментальной стали, углеродистой стали, вольфрамовой стали, латуни, меди и т.п.
Если необходимо, на этапе S912 готовят внутреннюю поверхность трубы 502 статора. В некоторых вариантах осуществления изношенные вставки статора удаляют из трубы 502 статора. В других вариантах осуществления внутреннюю поверхность трубы 502 статора очищают, обезжиривают, подвергают пескоструйной обработке, подвергают дробеструйной обработке и т.п.
На этапе S914 связывающее вещество 504 наносят на внутреннюю поверхность трубы 502 статора. Связывающее вещество 504 может быть однослойным связывающим веществом или многослойным связывающим веществом. Согласно настоящему изобретению можно использовать различные связывающие вещества, включающие в себя, без ограничения этим, Hunstman CW47/HY33 или Chemosil 310. На этапе S916 гибкий рукав 508 и шпиндель 506 устанавливают в трубу 502 статора. Предпочтительно шпиндель 506 и гибкий рукав 508 центрируют в трубе 502 статора так, что продольная ось шпинделя 506 становится соосной с продольной осью трубы 502 статора.
На этапе S918 вводят армирующий материал 510 для заполнения пространства между гибким рукавом 508 и трубой 502 статора. Примеры подходящих армирующих материалов 510 рассмотрены в данном документе.
На этапе S920 армирующий материал 510 отверждается, как рассмотрено в данном документе.
Если необходимо, на этапе S922 шпиндель 506 удаляют из статора 500.
Все патенты, опубликованные патентные заявки и другие материалы, указанные в данном документе, полностью включены в виде ссылки в данный документ.
Специалисту в данной области техники должно быть ясно, или он должен быть способен установить не более чем с помощью рутинных опытов многие эквиваленты конкретных вариантов осуществления изобретения, описанных в данном документе. Такие эквиваленты охватывает следующая формула изобретения.

Claims (40)

1. Способ изготовления статора для забойного двигателя, содержащего:
трубу статора, включающую в себя внутреннюю поверхность и имеющую совокупность шлицев, проходящих внутрь от внутренней поверхности;
вставку статора, выполненную из отвержденного армирующего материала, имеющего высокую степень кристаллизации, которая расположена во внутренней поверхности и расположена вдоль совокупности шлицев, причем вставка статора имеет внутреннюю поверхность, образующую внутреннюю винтообразную полость, включающую в себя совокупность внутренних винтовых зубьев; и
ротор, размещенный в статоре, при этом способ включает в себя:
обеспечение трубы статора;
нанесение разделительного состава на наружную поверхность шпинделя;
размещение шпинделя в трубе статора, причем шпиндель имеет наружную геометрию, комплементарную с необходимой внутренней геометрией статора;
ввод армирующего материала в трубу статора для заполнения пространства между шпинделем и внутренней поверхностью трубы статора;
отверждение армирующего материала; и
удаление по меньшей мере части шпинделя из трубы статора и отвержденного армирующего материала;
таким образом, получая статор.
2. Способ по п.1, в котором труба статора содержит материал, выбранный из группы, состоящей из следующего: железа, стали, инструментальной стали, углеродистой стали, вольфрамовой стали, латуни и меди.
3. Способ по п.1, дополнительно содержащий этап, на котором наносят связывающее вещество на внутреннюю поверхность трубы статора, при этом связывающее вещество является однослойным связывающим веществом.
4. Способ по п.1, дополнительно содержащий этап, на котором наносят связывающее вещество на внутреннюю поверхность трубы статора, при этом связывающее вещество является многослойным связывающим веществом.
5. Способ по п.1, в котором шпиндель содержит материал, выбранный из группы, состоящей из следующего: железа, стали, инструментальной стали, углеродистой стали, вольфрамовой стали, латуни и меди.
6. Способ по п.1, в котором армирующий материал является композитом.
7. Способ по п.1, в котором армирующий материал является полимером.
8. Способ по п.7, в котором армирующий материал является термореактивным пластиком.
9. Способ по п.7, в котором армирующий материал является термопластом.
10. Способ по п.7, в котором армирующий материал содержит один или несколько полимеров, выбранных из группы, состоящей из следующего: эпоксидные смолы, полиимиды, поликетоны, полиэфирэфиркетоны (PEEK), фенолоальдегидные смолы и полифениленсульфиды (PPS).
11. Способ по п.1, в котором армирующий материал имеет форму, выбранную из группы, состоящей из следующего: жидкость, пасты, суспензии, порошок и гранулированный материал.
12. Способ по п.1, в котором армирующий материал является сшитым.
13. Способ по п.1, в котором армирующий материал имеет высокую степень кристаллизации.
14. Способ по п.1, в котором этап отверждения армирующего материала дополнительно содержит одну или более методик, выбранных из группы, состоящей из следующего: затвердевание при нагреве, затвердевание при облучении, затвердевание при обработке паром и охлаждении.
15. Статор для забойного двигателя, содержащий:
трубу статора, включающую в себя внутреннюю поверхность и имеющую совокупность шлицев, проходящих внутрь от внутренней поверхности;
вставку статора, выполненную из отвержденного армирующего материала, имеющего высокую степень кристаллизации, которая расположена во внутренней поверхности и расположена вдоль совокупности шлицев, причем вставка статора имеет внутреннюю поверхность, образующую внутреннюю винтообразную полость, включающую в себя совокупность внутренних винтовых зубьев и обработанную наружную поверхность, причем обработанная наружная поверхность представляет собой поверхность, которая способствует связыванию с трубой статора;
ротор, размещенный в статоре;
первый адгезив, расположенный между наружной поверхностью вставки статора и внутренней поверхностью трубы статора для дополнительного крепления вставки статора в трубе статора;
гибкий рукав, прикрепленный к вставке статора вдоль протяженности совокупности внутренних винтовых зубьев; и
второй адгезив, расположенный между наружной поверхностью гибкого рукава и внутренней поверхностью вставки статора.
16. Забойный двигатель, содержащий:
трубу статора, включающую в себя внутреннюю поверхность и имеющую совокупность шлицев;
вставку статора, выполненную из отвержденного армирующего материала, имеющего высокую степень кристаллизации, которая расположена во внутренней поверхности и расположена вдоль совокупности шлицев, причем вставка статора имеет внутреннюю поверхность, образующую внутреннюю винтообразную полость, включающую в себя совокупность внутренних винтовых зубьев; и
ротор, размещенный в статоре.
17. Забойный двигатель по п.16, в котором ротор снабжен покрытием с эластомером.
18. Забойный двигатель по п.17, в котором эластомер содержит один или несколько материалов, выбранных из группы, состоящей из следующего: резина, натуральный каучук (NR), синтетический полиизопрен (IR), бутилкаучук, галогенированный бутилкаучук, полибутадиен (BR), нитриловый каучук, бутадиен-нитрильный каучук (NBR), гидрогенизированный бутадиен-нитрильный каучук (HNBR), карбоксилированный гидрогенизированный бутадиен-нитрильный каучук (XHNBR), хлоропреновый каучук (CR), фторуглеродный каучук (FKM) и перфторэластомеры (FFKM).
19. Способ по п. 1, в котором также:
наносят упругий слой на шпиндель поверх разделительного состава; и
наносят связывающее вещество на шпиндель поверх упругого слоя, при этом шпиндель включает разделительный состав, разделительный слой и связывающее вещество, когда шпиндель размещен в трубе статора, при этом связывающий слой удерживает разделительный слой прикрепленным к внутренней поверхности отвержденного армирующего материала, когда по меньшей мере часть шпинделя удалена.
RU2012124076A 2009-11-13 2010-09-30 Статоры для забойных двигателей, способы их изготовления и забойные двигатели с ними RU2611125C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/617,864 2009-11-13
US12/617,864 US8777598B2 (en) 2009-11-13 2009-11-13 Stators for downwhole motors, methods for fabricating the same, and downhole motors incorporating the same
PCT/GB2010/001830 WO2011058294A2 (en) 2009-11-13 2010-09-30 Stators for downhole motors, methods for fabricating the same, and downhole motors incorporating the same

Publications (2)

Publication Number Publication Date
RU2012124076A RU2012124076A (ru) 2013-12-20
RU2611125C2 true RU2611125C2 (ru) 2017-02-21

Family

ID=43992146

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012124076A RU2611125C2 (ru) 2009-11-13 2010-09-30 Статоры для забойных двигателей, способы их изготовления и забойные двигатели с ними

Country Status (6)

Country Link
US (2) US8777598B2 (ru)
CA (1) CA2780863C (ru)
DE (1) DE112010004390T5 (ru)
GB (1) GB2496237B (ru)
RU (1) RU2611125C2 (ru)
WO (1) WO2011058294A2 (ru)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9347266B2 (en) * 2009-11-13 2016-05-24 Schlumberger Technology Corporation Stator inserts, methods of fabricating the same, and downhole motors incorporating the same
US8777598B2 (en) 2009-11-13 2014-07-15 Schlumberger Technology Corporation Stators for downwhole motors, methods for fabricating the same, and downhole motors incorporating the same
US9168552B2 (en) 2011-08-25 2015-10-27 Smith International, Inc. Spray system for application of adhesive to a stator tube
CN102386692B (zh) * 2011-09-02 2013-05-29 西南石油大学 一种滚珠填充螺杆钻具定子及加工工艺
US9228584B2 (en) 2011-11-10 2016-01-05 Schlumberger Technology Corporation Reinforced directional drilling assemblies and methods of forming same
WO2013126546A1 (en) 2012-02-21 2013-08-29 Smith International, Inc. Fiber reinforced elastomeric stator
US10351686B2 (en) 2013-03-13 2019-07-16 Baker Hughes, A Ge Company, Llc Methods of forming modified thermoplastic structures for down-hole applications
US20150122549A1 (en) * 2013-11-05 2015-05-07 Baker Hughes Incorporated Hydraulic tools, drilling systems including hydraulic tools, and methods of using hydraulic tools
US9610611B2 (en) 2014-02-12 2017-04-04 Baker Hughes Incorporated Method of lining an inner surface of a tubular and system for doing same
US9976227B2 (en) 2014-05-15 2018-05-22 Baker Hughes, A Ge Company, Llc Electrochemical machining method for rotors or stators for moineau pumps
WO2016069412A2 (en) 2014-10-27 2016-05-06 Gagemaker, Lp Stator bore gage.
US10287829B2 (en) 2014-12-22 2019-05-14 Colorado School Of Mines Method and apparatus to rotate subsurface wellbore casing
EP3201420B1 (en) * 2014-12-29 2020-01-22 Halliburton Energy Services Inc. Variable stiffness fixed bend housing for directional drilling
US10151145B2 (en) 2015-02-17 2018-12-11 Clean-Tube LLC Coring apparatus for rubber stator
US9896885B2 (en) 2015-12-10 2018-02-20 Baker Hughes Incorporated Hydraulic tools including removable coatings, drilling systems, and methods of making and using hydraulic tools
US20180369083A1 (en) 2015-12-17 2018-12-27 L'oreal Water-in-oil emulsion with moisturizing effect containing hydrophobic coated pigments and an aqueous phase at high content
CA2961629A1 (en) 2017-03-22 2018-09-22 Infocus Energy Services Inc. Reaming systems, devices, assemblies, and related methods of use
US10612381B2 (en) 2017-05-30 2020-04-07 Reme Technologies, Llc Mud motor inverse power section
US11148327B2 (en) 2018-03-29 2021-10-19 Baker Hughes, A Ge Company, Llc Method for forming a mud motor stator
US10914306B2 (en) * 2018-07-05 2021-02-09 Arnold Jaeger Holding Gmbh Stator assembly for a progressive cavity pump or a progressive cavity motor as well as method for manufacturing and repairing the same
RU209009U1 (ru) * 2021-10-18 2022-01-27 Общество с ограниченной ответственностью "Гидробур- сервис" Статор винтового забойного двигателя для бурения скважин

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2209911C1 (ru) * 2002-07-29 2003-08-10 Открытое акционерное общество Научно-производственное объединение "Буровая техника" Способ изготовления статоров винтовых забойных двигателей
US20050089429A1 (en) * 2003-10-27 2005-04-28 Dyna-Drill Technologies, Inc. Composite material progressing cavity stators
US20060182643A1 (en) * 2005-02-11 2006-08-17 Dyna-Drill Technologies, Inc. Progressing cavity stator having a plurality of cast longitudinal sections
EP1693571A2 (en) * 2005-01-12 2006-08-23 Dyna-Drill Technologies Inc. Multiple elastomer layer progressing cavity stators
RU2283442C1 (ru) * 2005-02-11 2006-09-10 Общество с ограниченной ответственностью фирма "Радиус-Сервис" Статор винтовой героторной гидромашины
RU2287655C1 (ru) * 2005-05-26 2006-11-20 Михаил Валерьевич Шардаков Винтовой забойный двигатель
US20080025859A1 (en) * 2006-07-31 2008-01-31 Schlumberger Technology Corporation Controlled thickness resilient material lined stator and method of forming
US20080050259A1 (en) * 2006-08-25 2008-02-28 Dyna-Drill Technologies, Inc. Highly reinforced elastomer for use in downhole stators
US20080304991A1 (en) * 2007-06-05 2008-12-11 Dyna-Drill Technologies, Inc. Moineu stator including a skeletal reinforcement
RU79314U1 (ru) * 2008-07-11 2008-12-27 Общество С Ограниченной Ответственностью "Вниибт-Буровой Инструмент" Статор винтового забойного двигателя

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2464011A (en) 1946-11-29 1949-03-08 Fmc Corp Helical hollow rotor pump
DE3322095A1 (de) * 1983-06-20 1984-12-20 Gummi-Jäger KG GmbH & Cie, 3000 Hannover Stator fuer exzenterschneckenpumpen
US4646856A (en) 1983-09-26 1987-03-03 Dismukes Newton B Downhole motor assembly
EP0265521B1 (de) 1986-01-31 1992-04-29 Permsky Filial Vsesojuznogo Nauchno-Issledovatelskogo Instituta Burovoi Tekhniki Rotor eines bohrlochschneckenmotors und dessen herstellung
CA2002135C (en) 1988-11-03 1999-02-02 James Bain Noble Directional drilling apparatus and method
US5096004A (en) 1989-12-22 1992-03-17 Ide Russell D High pressure downhole progressive cavity drilling apparatus with lubricating flow restrictor
US5135059A (en) 1990-11-19 1992-08-04 Teleco Oilfield Services, Inc. Borehole drilling motor with flexible shaft coupling
US5265682A (en) 1991-06-25 1993-11-30 Camco Drilling Group Limited Steerable rotary drilling systems
US5221197A (en) 1991-08-08 1993-06-22 Kochnev Anatoly M Working member of a helical downhole motor for drilling wells
US5553678A (en) 1991-08-30 1996-09-10 Camco International Inc. Modulated bias units for steerable rotary drilling systems
GB9303507D0 (en) 1993-02-22 1993-04-07 Mono Pumps Ltd Progressive cavity pump or motors
GB9411228D0 (en) 1994-06-04 1994-07-27 Camco Drilling Group Ltd A modulated bias unit for rotary drilling
GB9503830D0 (en) 1995-02-25 1995-04-19 Camco Drilling Group Ltd "Improvements in or relating to steerable rotary drilling systems"
GB9503829D0 (en) 1995-02-25 1995-04-19 Camco Drilling Group Ltd "Improvememnts in or relating to steerable rotary drilling systems"
GB9503828D0 (en) 1995-02-25 1995-04-19 Camco Drilling Group Ltd "Improvements in or relating to steerable rotary drilling systems"
GB9503827D0 (en) 1995-02-25 1995-04-19 Camco Drilling Group Ltd "Improvements in or relating to steerable rotary drilling systems
GB9521972D0 (en) 1995-10-26 1996-01-03 Camco Drilling Group Ltd A drilling assembly for drilling holes in subsurface formations
US6461128B2 (en) * 1996-04-24 2002-10-08 Steven M. Wood Progressive cavity helical device
GB2322651B (en) 1996-11-06 2000-09-20 Camco Drilling Group Ltd A downhole unit for use in boreholes in a subsurface formation
US6173794B1 (en) 1997-06-30 2001-01-16 Intedyne, Llc Downhole mud motor transmission
US5911284A (en) 1997-06-30 1999-06-15 Pegasus Drilling Technologies L.L.C. Downhole mud motor
US20020084029A1 (en) * 1997-10-15 2002-07-04 Aps Technology, Inc. Stator especially adapted for use in a helicoidal pump/motor and method of making same
ATE249581T1 (de) 1997-12-18 2003-09-15 Baker Hughes Inc Verfahren zur herstellung von statormanteln für exzenterschneckenpumpen
US6092610A (en) 1998-02-05 2000-07-25 Schlumberger Technology Corporation Actively controlled rotary steerable system and method for drilling wells
US6158529A (en) 1998-12-11 2000-12-12 Schlumberger Technology Corporation Rotary steerable well drilling system utilizing sliding sleeve
CA2474232C (en) 1999-07-12 2007-06-19 Halliburton Energy Services, Inc. Anti-rotation device for a steerable rotary drilling device
US6364034B1 (en) 2000-02-08 2002-04-02 William N Schoeffler Directional drilling apparatus
US6658809B2 (en) 2000-05-26 2003-12-09 Consolidated Systems, Inc. Light gauge metal truss system and method
US20010052428A1 (en) 2000-06-15 2001-12-20 Larronde Michael L. Steerable drilling tool
US6394193B1 (en) 2000-07-19 2002-05-28 Shlumberger Technology Corporation Downhole adjustable bent housing for directional drilling
AU2001279017A1 (en) 2000-07-28 2002-02-13 Charles T. Webb Directional drilling apparatus with shifting cam
US6561290B2 (en) 2001-01-12 2003-05-13 Performance Boring Technologies, Inc. Downhole mud motor
US6527512B2 (en) 2001-03-01 2003-03-04 Brush Wellman, Inc. Mud motor
US6543554B2 (en) 2001-05-21 2003-04-08 Continental Directional Corp. Adjustable housing for a mud motor
US20050154090A1 (en) * 2001-09-05 2005-07-14 Carmen Salvino Polymer composition and method of rapid preparation in situ
US6604922B1 (en) * 2002-03-14 2003-08-12 Schlumberger Technology Corporation Optimized fiber reinforced liner material for positive displacement drilling motors
EP1558847A1 (en) 2002-10-21 2005-08-03 Noetic Engineering Inc. Stator of a moineau-pump
US7135231B1 (en) * 2003-07-01 2006-11-14 Fairmont Minerals, Ltd. Process for incremental coating of proppants for hydraulic fracturing and proppants produced therefrom
US7192260B2 (en) 2003-10-09 2007-03-20 Lehr Precision, Inc. Progressive cavity pump/motor stator, and apparatus and method to manufacture same by electrochemical machining
US7396220B2 (en) 2005-02-11 2008-07-08 Dyna-Drill Technologies, Inc. Progressing cavity stator including at least one cast longitudinal section
CA2518146C (en) 2005-09-02 2012-05-01 Nicu Cioceanu Bearing assembly for downhole mud motor
CN101512046B (zh) * 2007-01-24 2011-08-10 哈利伯顿能源服务公司 用于螺杆装置的电铸定子管
US7950914B2 (en) * 2007-06-05 2011-05-31 Smith International, Inc. Braze or solder reinforced Moineau stator
CN201056983Y (zh) 2007-06-25 2008-05-07 郭太利 螺杆钻具定子壳体
US7757781B2 (en) 2007-10-12 2010-07-20 Halliburton Energy Services, Inc. Downhole motor assembly and method for torque regulation
US7941906B2 (en) * 2007-12-31 2011-05-17 Schlumberger Technology Corporation Progressive cavity apparatus with transducer and methods of forming and use
GB0805250D0 (en) 2008-03-20 2008-04-30 Advanced Interactive Materials Stator for use in helicoidal motor
US8777598B2 (en) 2009-11-13 2014-07-15 Schlumberger Technology Corporation Stators for downwhole motors, methods for fabricating the same, and downhole motors incorporating the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2209911C1 (ru) * 2002-07-29 2003-08-10 Открытое акционерное общество Научно-производственное объединение "Буровая техника" Способ изготовления статоров винтовых забойных двигателей
US20050089429A1 (en) * 2003-10-27 2005-04-28 Dyna-Drill Technologies, Inc. Composite material progressing cavity stators
EP1693571A2 (en) * 2005-01-12 2006-08-23 Dyna-Drill Technologies Inc. Multiple elastomer layer progressing cavity stators
US20060182643A1 (en) * 2005-02-11 2006-08-17 Dyna-Drill Technologies, Inc. Progressing cavity stator having a plurality of cast longitudinal sections
RU2283442C1 (ru) * 2005-02-11 2006-09-10 Общество с ограниченной ответственностью фирма "Радиус-Сервис" Статор винтовой героторной гидромашины
RU2287655C1 (ru) * 2005-05-26 2006-11-20 Михаил Валерьевич Шардаков Винтовой забойный двигатель
US20080025859A1 (en) * 2006-07-31 2008-01-31 Schlumberger Technology Corporation Controlled thickness resilient material lined stator and method of forming
US20080050259A1 (en) * 2006-08-25 2008-02-28 Dyna-Drill Technologies, Inc. Highly reinforced elastomer for use in downhole stators
US20080304991A1 (en) * 2007-06-05 2008-12-11 Dyna-Drill Technologies, Inc. Moineu stator including a skeletal reinforcement
RU79314U1 (ru) * 2008-07-11 2008-12-27 Общество С Ограниченной Ответственностью "Вниибт-Буровой Инструмент" Статор винтового забойного двигателя

Also Published As

Publication number Publication date
DE112010004390T5 (de) 2012-08-23
WO2011058294A2 (en) 2011-05-19
WO2011058294A3 (en) 2011-08-11
CN102695844A (zh) 2012-09-26
US20150017047A1 (en) 2015-01-15
GB201214247D0 (en) 2012-09-26
CA2780863A1 (en) 2011-05-19
US20110116959A1 (en) 2011-05-19
GB2496237B (en) 2014-01-29
GB2496237A (en) 2013-05-08
RU2012124076A (ru) 2013-12-20
CA2780863C (en) 2018-11-06
US10233926B2 (en) 2019-03-19
US8777598B2 (en) 2014-07-15

Similar Documents

Publication Publication Date Title
RU2611125C2 (ru) Статоры для забойных двигателей, способы их изготовления и забойные двигатели с ними
RU2578066C2 (ru) Способ изготовления вставки статора для забойного двигателя
RU2566512C2 (ru) Способ изготовления статора для забойного двигателя
US6881045B2 (en) Progressive cavity pump/motor
CA2957512C (en) Electricity generation within a downhole drilling motor
US9309884B2 (en) Downhole motor or pump components, method of fabrication the same, and downhole motors incorporating the same
CN110832164B (zh) 泥浆马达逆功率区段
US20080000083A1 (en) Process for lining a fluid helical device stator
CN108368726B (zh) 包括可移除涂层的液压工具、钻井系统以及制作和使用液压工具的方法
GB2570233A (en) Asymmetric lobes for motors and pumps
CN102695844B (zh) 用于井下动力钻具的定子、其制造方法及包括该定子的井下动力钻具

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171001