RU2609440C1 - Изолятор автономного прибора акустического каротажа - Google Patents

Изолятор автономного прибора акустического каротажа Download PDF

Info

Publication number
RU2609440C1
RU2609440C1 RU2015142613A RU2015142613A RU2609440C1 RU 2609440 C1 RU2609440 C1 RU 2609440C1 RU 2015142613 A RU2015142613 A RU 2015142613A RU 2015142613 A RU2015142613 A RU 2015142613A RU 2609440 C1 RU2609440 C1 RU 2609440C1
Authority
RU
Russia
Prior art keywords
rubber
washers
insulator
pipe
metal
Prior art date
Application number
RU2015142613A
Other languages
English (en)
Inventor
Рамиль Сафиевич Мухамадиев
Андрей Георгиевич Вершинин
Святослав Андреевич Вершинин
Original Assignee
Общество с Ограниченной Ответственностью "ТНГ-Групп"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с Ограниченной Ответственностью "ТНГ-Групп" filed Critical Общество с Ограниченной Ответственностью "ТНГ-Групп"
Priority to RU2015142613A priority Critical patent/RU2609440C1/ru
Application granted granted Critical
Publication of RU2609440C1 publication Critical patent/RU2609440C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/52Structural details
    • G01V1/523Damping devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging

Abstract

Изобретение относится к области геофизики и может быть использовано в процессе акустического каротажа. Согласно заявленному предложению предложен изолятор автономного прибора акустического каротажа, содержащий наружный несущий корпус, выполненный из стеклопластиковой трубы со стальными окончаниями, а также поглотитель упругих колебаний, состоящий из чередующихся элементов с контрастным волновым сопротивлением в виде резиновых и металлических шайб. Причем резиновые шайбы содержат мелкозернистый порошок тяжелых металлов и включают крупные шарики либо ролики из тяжелого металла, расположенные равномерно по окружности в каждой шайбе. Дополнительно введена внутренняя стальная труба, отверстие которой служит сквозным каналом для промывочной жидкости, а в герметизированном от внешней среды кольцевом пространстве между наружной и внутренней трубами, заполненном кремнийорганической жидкостью, размещен поглотитель упругих колебаний из резиновых и металлических шайб. Узлы стыковки выполнены в виде переходных головок, которые акустически развязаны от внутренней трубы и реализованы с возможностью продольного перемещения без вращения. Причем установлен компенсатор наружного давления и температурного изменения объема кремнийорганической жидкости. Кроме того, поглотитель упругих колебаний из резиновых и металлических шайб поджимается и фиксируется с обеих сторон с помощью металлических втулок для создания необходимого контакта резиновых шайб с наружной и внутренней трубами. Резиновые шайбы выполнены толщиной, равной четверти длины волны для основной частоты монопольного излучения либо равной четверти длины волны для набора частот, соответствующего диапазону частот монопольного излучения, кроме того, резиновые шайбы выполнены с заданным волновым сопротивлением из силиконовой резины малой вязкости. На наружной поверхности внутренней трубы выполнены продольные пазы для транзитных проводов, которые закрыты тонкостенной защитной гильзой для предотвращения деформации резиновых шайб в пазы при поджатии поглотителя и защиты транзитных проводов. В переходных головках установлены один или несколько гермовводов с необходимым количеством контактов, обеспечивающих герметизацию полости изолятора и электрическое соединение, как внутри изолятора с транзитными проводами, так и со стыкуемыми блоками, а также дополнительно размещены электрические соединители негерметичного типа для стыковки с блоками излучателей и приемной антенны. Компенсатор наружного давления и температурного изменения объема кремнийорганической жидкости реализован с упругой мембраной либо поршнем. Технический результат - повышение акустической эффективности изолятора при высокой прочности конструкции за счет разгрузки несущей трубы посредством заполнения внутренней полости кремнийорганической жидкостью. 8 з.п. ф-лы, 1 ил.

Description

Изобретение относится к автономной аппаратуре волнового акустического каротажа и играет главную роль в достижении качественных сигналов при проведении измерений в сильнонаклонных и горизонтальных скважинах, а также в скважинах со сложной траекторией в условиях значительных эксплуатационных нагрузок, высоких температур, внешнего давления и агрессивного воздействия буровой жидкости на конструкцию.
Основными помехами акустического каротажа являются моды колебаний (например, продольные, изгибные), возникающие при импульсном возбуждении излучателей (монопольных, дипольных и т.п.) и распространяющиеся по корпусу автономной аппаратуры в направлении приемной антенны, поэтому при недостаточной акустической фильтрации происходит интерференция помехи с продольной волной по породе, затрудняя ее выделение при обработке. Использование прибора волнового акустического каротажа требует минимизации помех, как в конструкции блоков излучателей и приемной антенны, так и в промежутке между ними размещенного акустического изолятора. Автономный скважинный прибор доставляется к интервалу измерений с помощью бурильных труб, испытывая при этом нагрузки на сжатие и продольный изгиб при спуске, на растяжение при возможных прихватах (прилипание к стенке скважины за счет глинистой корки), которые значительно отличаются от нагрузок, характерных для приборов на геофизическом кабеле, предназначенных для акустического каротажа в вертикальных и слабонаклонных скважинах. Дополнительные преимущества при спускоподъемных операциях дает использование в конструкции приборов сквозного канала для прохождения промывочной жидкости, что облегчает их прохождение в сложных геологических условиях и дает возможность поддерживать устойчивое состояние скважины в процессе каротажа.
Сочетание высокой прочности и жесткости конструкции акустического изолятора и его акустической эффективности при наличии сквозного канала промывки является серьезной инженерной проблемой. Кроме того, для работы в скважинных условиях требуется защита от действия бурового раствора на внутренние элементы конструкции прибора, приводящего к коррозии и короткому замыканию контактов на электрических соединениях.
К настоящему времени разработано большое количество технических решений изоляторов-фильтров, основанных на принципах скоростной задержки помех, частотной фильтрации, поглощения энергии колебаний поглощающими материалами, акустически контрастными слоями, большими массами и упругими элементами, а также на различных комбинациях указанных принципов (см., Акустический герметичный изолятор - AC SU №1045188, МПК G01V 01/52, публикация от 30.09.1983; Акустический изолятор для каротажа скважины - патент US №5229553, МПК G01V 01/52, публикация от 20.07.1993; Акустический изолятор для акустического каротажа, патент US №5728978, МПК G10K 11/16, G01V 01/52, публикация от 02.08.1996; В.Ф. Козяр, Н.А. Смирнов, Д.В. Белоконь, Н.В. Козяр, Измерения параметров упругих волн зондами с монопольными и дипольными преобразователями, НТВ “Каротажник”, Тверь: ГЕРС, 1998, выпуск №42, стр. 14-30; Акустический изолятор между скважинных приемников и передатчиков - патент US №7216737, МПК G01V 01/00, G01V 01/16, G01V 01/32, G01V 01/40, публикация от 15.05.2000).
Известен акустический изолятор (см., патент US №3191141, МПК G01V 01/52, публикация от 22.06.1965), расположенный между излучателем и, по меньшей мере, двумя акустическими магнитострикционными преобразователями на фиксированном расстоянии друг от друга, выполненный в форме перфорированной трубы из стали. Расположение перфораций задает спиралевидный путь распространения энергии акустических волн, одновременно замедляя и ослабляя волну. Применение перфорированной трубы иногда дает удовлетворительные результаты для приборов только с монопольными излучателями, но зачастую не отвечает предъявляемым требованиям при использовании дипольных или прочих мультипольных излучателей. Кроме того, перфорированная конструкция показала себя довольно хрупкой либо склонной к чрезмерным деформациям в осевом или окружном направлениях.
Известен акустический изолятор, расположенный между акустическим источником и акустическим приемником (см., патент RU №2375726, МПК G01V 01/52, публикация от 10.12.2009), содержащий наружный корпус, элемент, выполненный продолжающимся внутри наружного корпуса, пружинную сборку, расположенную между элементом и внутренней стенкой наружного корпуса, причем элемент выполнен с возможностью осевого скольжения и качательного движения в поперечном направлении в наружном корпусе, при этом элемент и пружинная сборка выполнены с возможностью ослабления акустической энергии, проходящей через установку.
Это техническое решение построено на принципах скоростной задержки помех за счет механических контактных пружин, больших масс с упругими элементами, способное поглощать звуковые волны, распространяющиеся вдоль каротажного устройства, однако известное техническое решение не обладает требуемой жесткостью и несущими свойствами, характерными для автономных приборов, спускаемых на бурильных трубах, а также не обеспечивает сквозной канал для промывочной жидкости, что ограничивает его применение в вертикальных и слабонаклонных скважинах с геофизическим кабелем.
Наиболее близким по технической сущности и достигаемому результату является изолятор автономного прибора акустического каротажа (см., Технологии сейсморазведки, 2013, №1, стр. 87-95, А.Г. Вершинин, С.А. Вершинин, С.В. Добрынин, Разработка современной аппаратуры волнового кросс-дипольного акустического каротажа с применением компьютерного моделирования), расположенный между блоками излучателей и приемной антенны, содержащий наружный несущий корпус из низкоскоростного и высокопрочного пластика, полость которого заполнена композицией из чередующихся элементов с контрастными волновыми сопротивлениями, шайб из вольфрама и резины, причем резиновые шайбы содержат мелкозернистый порошок тяжелых металлов и включают крупные шарики либо ролики из тяжелого металла, расположенные равномерно по окружности в каждой шайбе для усиления эффекта гашения и рассеяния проходящих волн.
Данное техническое решение обладает высокой эффективностью акустической изоляции при жесткой конструкции, однако не обеспечивает высоких прочностных свойств, так как стеклопластик теряет несущую способность при одновременном воздействии наружного давления и нагрузок на растяжение-сжатие, а также не обеспечивает возможность сквозной промывки через изолятор.
Техническим результатом предложенного решения является повышение акустической эффективности изолятора при высокой прочности конструкции за счет разгрузки несущей трубы путем организации герметизированной полости, заполненной кремнийорганической жидкостью, с компенсацией наружного давления и температурного изменения ее объема, а также создание сквозного канала для прохождения промывочной жидкости, а для сборки изолятора и стыковки с блоками излучателей и приемной антенны предусмотрены переходные головки с возможностью продольного перемещения без вращения стыкуемых блоков прибора акустического каротажа.
Технический результат достигается тем, что в изолятор автономного прибора акустического каротажа, расположенный между блоками излучателей и приемной антенны, содержащий наружный несущий корпус, выполненный из стеклопластиковой трубы со стальными окончаниями, а также поглотитель упругих колебаний, состоящий из чередующихся элементов с контрастным волновым сопротивлением в виде резиновых и металлических шайб, причем резиновые шайбы содержат мелкозернистый порошок тяжелых металлов и включают крупные шарики либо ролики из тяжелого металла, расположенные равномерно по окружности в каждой шайбе, а также узлы стыковки с блоками излучателей и приемной антенны, дополнительно введена внутренняя стальная труба, отверстие которой служит сквозным каналом для промывочной жидкости, а в герметизированном от внешней среды кольцевом пространстве между наружной и внутренней трубами, заполненном кремнийорганической жидкостью, размещен поглотитель упругих колебаний из резиновых и металлических шайб, узлы стыковки выполнены в виде переходных головок, которые акустически развязаны от внутренней трубы и реализованы с возможностью продольного перемещения без вращения, причем установлен компенсатор наружного давления и температурного изменения объема кремнийорганической жидкости и выполнена акустическая развязка переходных головок от внутренней трубы, кроме того, поглотитель упругих колебаний из резиновых и металлических шайб поджимается и фиксируется с обеих сторон с помощью металлических втулок для создания необходимого контакта резиновых шайб с наружной и внутренней трубами.
Резиновые шайбы выполнены толщиной, равной четверти длины волны для основной частоты монопольного излучения либо равной четверти длины волны для набора частот, соответствующего диапазону частот монопольного излучения, кроме того, резиновые шайбы выполнены с заданным волновым сопротивлением из силиконовой резины малой вязкости. На наружной поверхности внутренней трубы выполнены продольные пазы для транзитных проводов, которые закрыты тонкостенной защитной гильзой для предотвращения деформации резиновых шайб в пазы при поджатии поглотителя и защиты транзитных проводов. В переходных головках установлены один или несколько гермовводов с необходимым количеством контактов, обеспечивающих герметизацию полости изолятора и электрическое соединение, как внутри изолятора с транзитными проводами, так и со стыкуемыми блоками. Электрическое соединение изолятора с блоками излучателей и приемной антенны достигается с помощью непосредственно гермовводов, либо дополнительных электрических соединителей негерметичного типа, также установленных в переходных головках.
Компенсатор наружного давления и температурного изменения объема кремнийорганической жидкости реализован с упругой мембраной либо поршнем.
Сущность предложенного технического решения заключается в том, что изолятор сконфигурирован так, чтобы отфильтровать проходящие акустические колебания с целью их минимизации, которые могли бы в противном случае отрицательно повлиять на акустические измерения, которые проводятся с помощью акустических приемных преобразователей, таким образом, предложенный изолятор включают в себя поглотитель упругих колебаний из чередующихся элементов с контрастным волновым сопротивлением из резиновых и металлических шайб с плотностью стали и выше, причем в резиновые шайбы добавлен мелкозернистый порошок тяжелых металлов для согласования волновых сопротивлений шайб и наружной трубы, а также в резиновые шайбы дополнительно включены крупные шарики либо ролики из тяжелого металла, играющие роль локальных резонаторов, таким образом, шайбы, размещенные в кольцевой полости между наружной и внутренней трубами, с торцов поджимаются металлическими резьбовыми втулками, для создания необходимого контакта между собой и стенками труб и лучшего акустического согласования, причем предложенная конфигурация позволяет снизить амплитуду акустических колебаний, по меньшей мере, в выбранных частотных диапазонах, оттягивая энергию колебаний, пробегающих по обеим трубам, в поглотитель для дальнейшего рассеяния и поглощения.
В конструкцию изолятора введена внутренняя стальная труба, отверстие которой обеспечивает сквозное прохождение промывочной жидкости, причем труба монтируется в переходных головках с акустической развязкой по краям, например, за счет резиновых втулок, для снижения доли энергии упругих колебаний, передаваемой трубе от переходных головок. Кроме того, снаружи на трубе выполнены продольные пазы для прокладки транзитных проводов, а сверху монтируется тонкостенная защитная гильза для предотвращения деформации резиновых шайб в пазы и защиты проводов.
Использование герметизированной кольцевой полости, заполненной кремнийорганической жидкостью, например ПМС-100 (ГОСТ 13032-77 Жидкости полиметилсилоксановые, Технические условия), позволяет добиться более высоких прочностных нагрузок, так как наружная силовая труба из стеклопластика не нагружена внешним давлением, при этом допустимые нагрузки на растяжение-сжатие существенно возрастают. Для компенсации наружного давления и температурного изменения объема кремнийорганической жидкости предусмотрена упругая мембрана либо поршень. Как результат, стеклопластиковые трубы со стальными окончаниями обеспечивают достижение силовых нагрузок, при спускоподъемных операциях, значительно превышающих нагрузки для приборов, работающих на геофизическом кабеле (десятки кН). Например, для автономных приборов диаметром 100 мм допустимые нагрузки составляют - на сжатие до 200 кН, на растяжение - до 150 кН.
Материал резиновых шайб подбирается на основе силиконовой резины, имеющей малую вязкость и большой коэффициент растяжения (сотни процентов), исходя из заданного волнового сопротивления, которое регулируется за счет количества порошка тяжелого металла, после чего производится формовка данных изделии в пресс-форме, включая заливку шариков либо роликов. В результате получаются шайбы с необходимым волновым сопротивлением, имеющие остаточную упругость, позволяющую многократную сборку-разборку изолятора. Например, на основе 2-компонентной силиконовой резины RTV8001, имеющей исходную вязкость 23 Па⋅с и коэффициент растяжения после полимеризации 570%, получены шайбы, имеющие плотность до 4-5 г/см3. При скорости 1000 м/с импеданс составляет 4-5 мР. Четвертьволновая толщина шайбы при скорости продольных волн 1000 м/с составляет для частот 5 кГц - 50 мм; 7.5 кГц - 33 мм; 10 кГц - 25 мм; 12.5 кГц - 20 мм; 15 кГц - 17 мм.
Изолятор содержит переходные головки, выполненные с возможностью стыковки со стальными окончаниями как несущей трубы, так и с блоками излучателей и приемной антенны без вращения вокруг оси, а только с продольным перемещением, например, за счет разрезной резьбовой втулки и направляющих выступов либо пазов, что обеспечивает целостность транзитных проводов при сборке. Переходные головки также обеспечивают герметизацию изолятора за счет уплотнения резиновыми кольцами стальных окончаний несущей трубы. В местах соединения головок с внутренней трубой предусмотрена акустическая развязка в виде резиновых втулок. В головках для электрического соединения с транзитными проводами предусмотрены один или несколько гермовводов с необходимым количеством контактов, относящиеся к категории электрических соединителей, работающих под высоким давлением и обеспечивающих герметизацию конструкций. Например, гермовводы типа вилок СН-47Б производства ЗАО “Соединитель” (г. Миасс), выполненные со стеклоизолятором в стальном корпусе и имеющие уплотнительные кольца, либо гермовводы фирмы “Greene, Tweed” (USA) из высокотемпературного и прочного пластика, рассчитанные на давление более 100 МПа. Электрическое соединение изолятора с блоками излучателей и приемной антенны достигается с помощью непосредственно гермовводов либо дополнительных электрических соединителей негерметичного типа, например, из серии 2РМ либо 2РМД (В.Ф. Лярский, О.Б. Мурадян, 1988, Электрические соединители, Справочник, Москва, Радио и связь, стр.272).
В довершении всего герметизация полости изолятора обеспечивает защиту внутренних элементов от агрессивного бурового раствора.
Сравнение предлагаемого решения с известными техническими решениями показывает, что оно обладает новой совокупностью существенных признаков, которые совместно с известными признаками позволяют успешно реализовать поставленную цель.
Предлагаемое техническое решение поясняется чертежом.
Состав изолятора:
1 - наружная труба из стеклопластика;
2 - стальные окончания наружной трубы;
3 - внутренняя труба с продольными пазами;
4 - переходные головки;
5 - акустическая развязка;
6 - шайбы;
7 - шарики либо ролики;
8 - металлические шайбы;
9 - металлические втулки;
10 - тонкостенная защитная гильза;
11 - гермовводы;
12 - стопор;
13 - электрические соединители негерметичного типа;
14 - упругая мембрана.
Динамика работы изолятора автономного прибора акустического каротажа.
Изолятор включает стеклопластиковую наружную трубу 1 со стальными окончаниями 2, внутреннюю стальную трубу 3 с продольными пазами для прокладки транзитных проводов, отверстие которой является каналом для сквозной промывки, переходные головки 4, имеющие акустическую развязку 5 от трубы 3. Кольцевая полость между трубами заполнена поглотителем упругих колебаний в виде шайб четвертьволновой толщины 6, выполненных из силиконовой резины малой вязкости, включающей порошок тяжелого металла. Шайбы 6 содержат металлические шарики либо ролики 7, равномерно расположенные по окружности. Между шайбами 6 находятся металлические шайбы 8 для дополнительного акустического контраста и удобства монтажа. Для достижения контакта поглотителя с наружной 1 и внутренней 3 трубами в стальных окончаниях 2 имеются металлические втулки 9, поджимающие и фиксирующие поглотитель с обеих сторон.
Кроме того, продольные пазы с транзитными проводами на внутренней трубе 3 закрыты тонкостенной защитной гильзой 10 для предотвращения избыточной деформации резиновых шайб в продольные пазы и защиты проводов.
В переходных головках 4 установлены гермовводы 11 для соединения с транзитными проводами и герметизации полости изолятора, фиксируемые от действия внутреннего давления стопорами 12, а также электрические соединители 13 негерметичного типа для стыковки с блоками излучателей и приемной антенны.
Компенсация наружного давления и температурного изменения объема кремнийорганической жидкости осуществляется за счет упругой мембраны 14 либо поршня.
Компьютерное моделирование методом конечных элементов показало акустическую эффективность изолятора в широком диапазоне частот излучения, а также высокие прочностные характеристики. Так, с помощью поглотителя на основе модели резиновых шайб плотностью 2 г/см3 со стальными шариками диаметром 10 мм достигается ослабление амплитуды волны, инициированной широкополосным импульсом с центральной частотой 10 кГц на входе и регистрируемой на выходе изолятора, на 40 дБ в области низких частот (0.8-2.5 кГц), порядка 50 дБ в полосе 3-6 кГц, более 60 дБ для 6-10 кГц и более 80 дБ на частотах выше 10 кГц.
При этом расчетные показатели силовой нагрузки составляют для изолятора, выполненного на основе трубы из стеклопластика с наружным диметром 90 мм, не менее 100 кН для продольных усилий растяжения и сжатия при любом значении внешнего давления. К несомненному достоинству выбранной схемы изолятора относится конструктивная простота и технологичность изготовления, что особенно важно для практической реализации.
Техническо-экономическим результатом предложенного решения является высокая акустическая эффективность изолятора в широком диапазоне частот излучения, а также высокие прочностные характеристики за счет разгрузки несущей трубы, путем создания герметизированной от внешней среды внутренней кольцевой полости, заполненной кремнийорганической жидкостью с компенсацией наружного давления и температурного изменения объема, а также обеспечивается сквозное прохождение промывочной жидкости, кроме того, для сборки изолятора и стыковки с блоками излучателей и приемной антенны предусмотрены переходные головки с возможностью продольного перемещения без вращения стыкуемых блоков прибора акустического каротажа, а электрические соединения выполнены с помощью гермовводов и электрических соединителей негерметичного типа.

Claims (9)

1. Изолятор автономного прибора акустического каротажа, расположенный между блоками излучателей и приемной антенны, содержащий наружный несущий корпус, выполненный из стеклопластиковой трубы со стальными окончаниями, а также поглотитель упругих колебаний, состоящий из чередующихся элементов с контрастным волновым сопротивлением в виде резиновых и металлических шайб, причем резиновые шайбы содержат мелкозернистый порошок тяжелых металлов и включают шарики либо ролики из тяжелого металла, расположенные равномерно по окружности в каждой шайбе, а также узлы стыковки с блоками излучателей и приемной антенной, отличающийся тем, что введена внутренняя стальная труба, отверстие которой служит сквозным каналом для прохождения промывочной жидкости, а в герметизированном от внешней среды кольцевом пространстве между наружной и внутренней трубами, заполненном кремнийорганической жидкостью, размещен поглотитель упругих колебаний из резиновых и металлических шайб, который поджимают и фиксируют металлическими втулками с обеих сторон для создания контакта с наружной и внутренней трубами, узлы стыковки выполнены в виде переходных головок, которые акустически развязаны от внутренней трубы и реализованы с возможностью продольного перемещения без вращения, а также установлен компенсатор наружного давления и температурного изменения объема кремнийорганической жидкости.
2. Изолятор по п. 1, отличающийся тем, что резиновые шайбы выполнены толщиной, равной четверти длины волны для основной частоты монопольного излучения.
3. Изолятор по п. 1, отличающийся тем, что резиновые шайбы выполнены толщиной, равной четверти длины волны для набора частот, соответствующего диапазону частот монопольного излучения.
4. Изолятор по п. 2 или 3, отличающийся тем, что резиновые шайбы выполнены с заданным волновым сопротивлением из силиконовой резины малой вязкости.
5. Изолятор по п. 1, отличающийся тем, что на наружной поверхности внутренней трубы выполнены продольные пазы для транзитных проводов.
6. Изолятор по п. 1, отличающийся тем, что внутренняя труба закрыта защитной гильзой.
7. Изолятор по п. 1, отличающийся тем, что в переходных головках установлены один либо несколько гермовводов.
8. Изолятор по п. 1, отличающийся тем, что в переходных головках установлены электрические соединители негерметичного типа.
9. Изолятор по п. 1, отличающийся тем, что компенсатор наружного давления и температурного изменения объема кремнийорганической жидкости реализован с упругой мембраной либо поршнем.
RU2015142613A 2015-10-07 2015-10-07 Изолятор автономного прибора акустического каротажа RU2609440C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015142613A RU2609440C1 (ru) 2015-10-07 2015-10-07 Изолятор автономного прибора акустического каротажа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015142613A RU2609440C1 (ru) 2015-10-07 2015-10-07 Изолятор автономного прибора акустического каротажа

Publications (1)

Publication Number Publication Date
RU2609440C1 true RU2609440C1 (ru) 2017-02-01

Family

ID=58457179

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015142613A RU2609440C1 (ru) 2015-10-07 2015-10-07 Изолятор автономного прибора акустического каротажа

Country Status (1)

Country Link
RU (1) RU2609440C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026467A (zh) * 2019-06-24 2022-02-08 埃尼股份公司 用于检测地质地层中的不连续界面和/或孔隙压力的异常的检测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU693307A1 (ru) * 1977-06-06 1979-10-25 Всесоюзный научно-исследовательский институт нефтепромысловой геофизики Скважинный прибор акустического каротажа
SU1045188A1 (ru) * 1982-02-12 1983-09-30 Всесоюзный Научно-Исследовательский И Проектно-Конструкторский Институт Геофизических Исследований Геолого-Разведочных Скважин Изол тор акустический герметичный
US4872526A (en) * 1988-07-18 1989-10-10 Schlumberger Technology Corporation Sonic well logging tool longitudinal wave attenuator
EP0388316A2 (en) * 1989-03-17 1990-09-19 Schlumberger Limited A sonic well tool transmitter and receiver array including an attenuation and delay apparatus
RU2375726C2 (ru) * 2004-02-03 2009-12-10 Шлюмбергер Текнолоджи Б.В. Акустический изолятор между скважинными излучателями и приемниками

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU693307A1 (ru) * 1977-06-06 1979-10-25 Всесоюзный научно-исследовательский институт нефтепромысловой геофизики Скважинный прибор акустического каротажа
SU1045188A1 (ru) * 1982-02-12 1983-09-30 Всесоюзный Научно-Исследовательский И Проектно-Конструкторский Институт Геофизических Исследований Геолого-Разведочных Скважин Изол тор акустический герметичный
US4872526A (en) * 1988-07-18 1989-10-10 Schlumberger Technology Corporation Sonic well logging tool longitudinal wave attenuator
EP0388316A2 (en) * 1989-03-17 1990-09-19 Schlumberger Limited A sonic well tool transmitter and receiver array including an attenuation and delay apparatus
RU2375726C2 (ru) * 2004-02-03 2009-12-10 Шлюмбергер Текнолоджи Б.В. Акустический изолятор между скважинными излучателями и приемниками

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
А.Г. Вершинин, С.А. Вершинин, С.В. Добрынин. "РАЗРАБОТКА СОВРЕМЕННОЙ АППАРАТУРЫ ВОЛНОВОГО КРОСС-ДИПОЛЬНОГО КУСТИЧЕСКОГО КАРОТАЖА С ПРИМЕНЕНИЕМ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ", Технологии сейсморазведки, номер 1, 2013, с. 93. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026467A (zh) * 2019-06-24 2022-02-08 埃尼股份公司 用于检测地质地层中的不连续界面和/或孔隙压力的异常的检测系统
US11860328B2 (en) 2019-06-24 2024-01-02 Eni S.P.A. Detection system for detecting discontinuity interfaces and/or anomalies in pore pressures in geological formations
CN114026467B (zh) * 2019-06-24 2024-05-03 埃尼股份公司 用于检测地质地层中的不连续界面和/或孔隙压力的异常的检测系统

Similar Documents

Publication Publication Date Title
US6834743B2 (en) Wideband isolator for acoustic tools
NO339390B1 (no) Marin seismisk lyttekabel og fremgangsmåte for fremstilling av den
NO340581B1 (no) Sensormontering for marin seismisk streamer
NO338949B1 (no) Marinseismisk lyttekabel med oppløsbar innkapsling som omgir seismiske sensorer
AU2014241228B2 (en) Acoustic receiver assembly for downhole tools
RU2339057C2 (ru) Устройство и способ для акустических исследований горных пород и используемый в них акустический изолятор
RU2609440C1 (ru) Изолятор автономного прибора акустического каротажа
US9891336B2 (en) Acoustic isolator for downhole tools
US3213414A (en) Acoustic transducer with pressure equalizing cover
US3786894A (en) Acoustic sounding instrument
CN110295893B (zh) 低频大功率发射换能器
CN203050676U (zh) 具有隔声功能的声波测井仪
CN103879035B (zh) 基于复合结构的水声换能器透声保护装置
CN102996118A (zh) 具有隔声功能的声波测井仪
US3063035A (en) Coupling for transducers in a well-logging device
US3288245A (en) Rigid acoustically isolated well logging tool
US2742629A (en) Metallic coupling means for acoustic logging
CN204140054U (zh) 一种阵列声波换能器
EP2673664B1 (en) Broadband flex joint isolator for acoustic tools
US3102604A (en) Single strength member for multitransducer mounting in acoustic well logging tools
CN107843929B (zh) 一种用于声波测井中的隔声结构
RU2604561C1 (ru) Изолятор прибора акустического каротажа в процессе бурения
SU693307A1 (ru) Скважинный прибор акустического каротажа
CN104453846B (zh) 声波测井仪器的复合发射短节
SU650037A1 (ru) Акустический блок скважинного каротажного прибора