RU2608573C1 - Интегрированная система опознавания - Google Patents

Интегрированная система опознавания Download PDF

Info

Publication number
RU2608573C1
RU2608573C1 RU2016113984A RU2016113984A RU2608573C1 RU 2608573 C1 RU2608573 C1 RU 2608573C1 RU 2016113984 A RU2016113984 A RU 2016113984A RU 2016113984 A RU2016113984 A RU 2016113984A RU 2608573 C1 RU2608573 C1 RU 2608573C1
Authority
RU
Russia
Prior art keywords
inputs
block
outputs
unit
information
Prior art date
Application number
RU2016113984A
Other languages
English (en)
Inventor
Сергей Борисович Жиронкин
Александр Викторович Макарычев
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации
Priority to RU2016113984A priority Critical patent/RU2608573C1/ru
Application granted granted Critical
Publication of RU2608573C1 publication Critical patent/RU2608573C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target

Landscapes

  • Error Detection And Correction (AREA)

Abstract

Изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для выработки признака государственной принадлежности объектов (целей). Достигаемый технический результат – повышение достоверности опознавания объектов. Указанный результат достигается за счет того, что интегрированная система опознавания содержит блок информационных каналов, блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ, блок умножения матриц, быстродействующую цифровую вычислительную систему, блок умножения, а также введены дополнительные выходы блока информационных каналов. Все перечисленные средства определенным образом соединены между собой. 1 ил., 2 табл.

Description

Предлагаемое изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для выработки признака государственной принадлежности объектов (целей).
Известна интегрированная система опознавания [Радиолокационные системы многофункциональных самолетов. Т1. РЛС - информационная основа боевых действий многофункциональных самолетов. Системы и алгоритмы первичной обработки радиолокационных сигналов / Под ред. А.И. Канащенкова и В.И. Меркулова. – М.: Радиотехника, 2006, с. 644-650], содержащая набор (блок) информационных каналов: канал координатно-связного опознавания; канал радиолокационного опознавания; канал на основе информации, получаемой по радиолокационным изображениям; каналы радиолокационного и оптико-электронного распознавания; канал радиотехнической разведки; канал тактического опознавания. Выход каждого из информационных каналов подключен к соответствующему входу процессора обработки данных, выход которого является выходом системы.
Система работает следующим образом. На основе поступающей информации о цели, для которой необходимо определить ее принадлежность к «своим» или «чужим» объектам, каждый информационный канал выделяет и оценивает соответствующие признаки. Эти признаки поступают в процессор обработки данных, который в соответствии с реализованным в нем алгоритмом выносит окончательное решение о принадлежности цели к одному из двух классов - «свой» или «чужой».
К недостаткам данной системы можно отнести то, что не используются возможности информационных каналов по выработке частных решений в различных алфавитах.
Известна также интегрированная система опознавания [Жиронкин С.Б., Аврамов А.В., Быстраков С.Г. Построение интегрированных систем опознавания на основе координатно-связного метода - Зарубежная радиоэлектроника. Успехи современной радиоэлектроники, 1997, №5, с. 71-74], которая содержит пять информационных каналов (подсистем): прямого опознавания, координатно-связного опознавания, радиолокационного распознавания, оптико-электронного распознавания и радиотехнического распознавания, а также быстродействующую цифровую вычислительную систему (БЦВС).
Система работает следующим образом. На основе поступающей информации о цели, для которой необходимо определить ее принадлежность к «своим» или «чужим» объектам, каждый информационный канал в соответствии с заложенными в нем принципами формирует частное решение о принадлежности цели к определенному типу (классу) в своем собственном алфавите. Частные решения информационных каналов поступают в БЦВС, которая в соответствии с реализованным в ней алгоритмом выносит окончательное решение о принадлежности цели к одному из двух классов - «свой» или «чужой».
Недостатками этой системы является ограниченное число информационных каналов, а также отсутствие учета достоверности вырабатываемых ими частных решений, что снижает достоверность принятого на их основе общего решения.
По техническому решению наиболее близким к предлагаемому изобретению является интегрированное устройство опознавания воздушных целей [Жиронкин С.Б., Макарычев А.В. Интегрированное устройство опознавания воздушных целей. Патент №2452975 от 10 июня 2012 г. Опубликован 10.06.2012 г. Бюллетень №16], которое и выбрано в качестве прототипа. Устройство содержит быстродействующую цифровую вычислительную систему (БЦВС), а также следующие N-канальные блоки: блок информационных каналов, блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ и блок умножения матриц.
Устройство работает следующим образом. На основе поступающей информации о цели, для которой необходимо определить ее принадлежность к «своим» или «чужим» объектам, каждый информационный канал по критерию идеального наблюдателя формирует частное решение о принадлежности цели к определенному типу (классу) в своем собственном алфавите. Информационные каналы выдают не только частные решения
Figure 00000001
, но и соответствующие им апостериорные вероятности
Figure 00000002
(формируют так называемые мягкие решения). Принятие общего (окончательного) решения о принадлежности наблюдаемого объекта классу m осуществляется в БЦВС на основе мягких решений
Figure 00000003
и соответствующих им вероятностей
Figure 00000004
, рассчитываемых с помощью соответствующих блоков по формулам
Figure 00000005
Figure 00000006
где
Figure 00000004
- вероятность принятия t-м информационным каналом частного решения
Figure 00000007
по объекту, принадлежащему классу m в алфавите общих решений;
m - номер класса объектов в алфавите общих решений (m=
Figure 00000008
);
Figure 00000009
- принятое t-м информационным каналом частное решение об отнесении объекта к типу (классу) с номером
Figure 00000010
;
qt - номер типа (класса) объекта в алфавите частных решений t-го информационного канала (qt=
Figure 00000011
);
Figure 00000012
- количество типов (классов) объектов в алфавите частных решений t-го информационного канала (объем алфавита);
P(qt/m) - априорная вероятность отнесения объекта t-м информационным каналом к типу (классу) с номером qt при условии, что объект принадлежит классу с номером m в алфавите общих решений;
Р(
Figure 00000013
/qt) - вероятность принятия t-ым информационным каналом частного решения об отнесении объекта к типу (классу) с номером
Figure 00000013
при условии, что объект принадлежит типу (классу) с номером qt;
М - количество классов объектов в алфавите общих решений (М=2 при опознавании «Свой», «Чужой»);
N - количество информационных каналов.
Повышение достоверности опознавания на основе мягких решений происходит за счет того, что вероятности
Figure 00000014
находятся с учетом конкретных условий принятия частных решений q в каждом информационном канале.
Оптимальное по критерию Неймана-Пирсона общее решение формируется в БЦВС на основе функции правдоподобия
Figure 00000015
и решающего правила
Figure 00000016
где отношение правдоподобия l определяется выражением
Figure 00000017
а порог h выбирается по заданной вероятности неправильного опознавания «чужого» объекта (m=2) как «своего» (m*=1).
В качестве примера рассмотрим процесс формирования общего решения прототипом в составе пяти (N=5) информационных каналов при следующих исходных данных:
1) количество классов объектов в основном алфавите Μ=2;
2) алфавиты частных решений первых двух информационных каналов совпадают с алфавитом общих решений, то есть Q1=Q2=Μ=2;
3) алфавиты остальных каналов не совпадают между собой, но имеют одинаковый объем, то есть Q3=Q4=Q5=5.
Рассмотрим первый информационный канал (t=l; Q1=M=2). Пусть в этом канале сформирована следующая совокупность апостериорных вероятностей отнесения наблюдаемого объекта к типам с номерами q1=
Figure 00000018
{P(q1)}={P(q1=1); P(q1=2)}={0,7; 0,3}.
Тогда в соответствии с критерием идеального наблюдателя
Figure 00000019
.
и в первом канале будет принято частное решение
Figure 00000020
=1.
Матрица - столбец условных вероятностей (2) принимает вид
Figure 00000021
.
Допустим, что на основе информации целеуказания, полученной от внешних источников, сформирована матрица априорных вероятностей
Figure 00000022
.
Тогда в соответствии с (1) по правилу перемножения матриц получим
Figure 00000023
.
Аналогично формируются матрицы
Figure 00000024
и в остальных четырех каналах. Результаты расчетов сведем в таблицу 1.
Figure 00000025
Подставив значения
Figure 00000026
из таблицы 1 в формулу (5), получим
Figure 00000027
.
Тогда в соответствии с решающим правилом (4) при h=1 будет принято общее решение m*=2, то есть наблюдаемый объект «Чужой».
В прототипе все информационные каналы считаются симметричными, то есть вероятности Р(
Figure 00000028
=j/qt=i) считаются одинаковыми при i≠j (см. формулы (2)). Однако реально информационные каналы свойством симметричности не обладают и характеризуются матрицами априорных вероятностей
Figure 00000029
, /=
Figure 00000030
; j=
Figure 00000031
; /=
Figure 00000032
.
Отсутствие учета указанных характеристик таких информационных каналов снижает достоверность принятого на их основе общего решения, что является серьезным недостатком прототипа.
Целью изобретения является повышение достоверности опознавания объектов (целей) путем устранения указанного недостатка.
Покажем, что учет несимметричности каналов возможен путем расчета вероятностей Р(
Figure 00000033
/qt) по формулам
Figure 00000034
где
Figure 00000035
и
Figure 00000036
- элементы матрицы
Figure 00000037
.
В соответствии с формулой (9.4.4) [Тихонов В.И., Харисов В.Н. Статистический анализ и синтез радиотехнических устройств и систем: Учеб. пособие для вузов. – М.: Радио и связь, 2004, с. 442] для симметричного канала справедливы формулы (2). Проверим справедливость формул (6), применив их к симметричному каналу, для которого
Figure 00000038
Тогда при i=qt; j=
Figure 00000039
выражение (7) принимает вид
Figure 00000040
Подставив (8) в (6), получим (2), что и является подтверждением справедливости соотношений (6).
Цель изобретения достигается тем, что в известное устройство (систему), содержащее N- канальный блок информационных каналов и быстродействующую цифровую вычислительную систему (БЦВС), выход которой является выходом устройства, а выход решения каждого информационного канала подключен к ее соответствующему входу, а также следующие N-канальные блоки: блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ и блок умножения матриц, выходы которого соединены с дополнительными входами БЦВС, первые входы являются входами внешних источников, а вторые входы подключены к выходам блока схем ИЛИ, первые и вторые входы которого соединены соответственно с выходами первого и второго блоков ключей, управляющие входы которых подключены соответственно к первым и вторым выходам блока сравнения, первые и вторые входы которого соединены соответственно с выходами решения и первыми дополнительными выходами блока информационных каналов, вторые дополнительные выходы которого подключены к информационным входам первого блока ключей и входам вычитаемого первого блока вычитания, входы уменьшаемого которого являются входами внешнего сигнала единичного уровня, а выходы первого и второго блоков вычитания подключены соответственно ко входам делимого и делителя блока деления, дополнительно введены четвертые дополнительные выходы блока информационных каналов, а также блок умножения, входы множителя которого соединены с выходами блока деления, входы множимого подключены к четвертым дополнительным выходам блока информационных каналов, третьи дополнительные выходы которого подключены ко входам вычитаемого второго блока вычитания, входы уменьшаемого которого объединены с аналогичными входами первого блока вычитания, а выходы блока умножения соединены с информационными входами второго блока ключей.
Сопоставительный анализ с прототипом показывает, что заявляемая система отличается тем, что содержит дополнительно введенные выходы блока информационных каналов, а также блок умножения и его дополнительные связи с другими блоками системы.
Таким образом, заявляемая система соответствует критерию изобретения «новизна».
Сравнение заявляемого решения с другими техническими решениями показывает, что вновь введенный блок известен.
Однако при его введении в указанной связи с другими блоками в заявляемую систему она проявляет новые свойства, что приводит к повышению достоверности принятого решения о государственной принадлежности объекта. Это позволяет сделать вывод о соответствии технического решения критерию «существенные отличия».
Блок-схема системы представлена на фиг.
Система содержит:
1 - блок информационных каналов (в составе N каналов), выходы решений которого подключены к соответствующим входам БЦВС 9 и первым входам блока сравнения 2. Первые, вторые и третьи дополнительные выходы блока 1 соединены соответственно со вторыми входами блока сравнения 2, со входами вычитаемого первого и второго блоков вычитания 3. Кроме того, вторые дополнительные выходы блока 1 подключены к информационным входам первого блока ключей 4, а четвертые дополнительные выходы соединены со входами множимого блока умножения 6.
2 - блок сравнения (в составе N схем сравнения на два входа и два выхода каждая), первые и вторые входы которого подключены соответственно к выходам решений и первым дополнительным выходам блока информационных каналов 1. Первые и вторые выходы блока сравнения 2 соединены соответственно с управляющими входами первого и второго блоков ключей 4.
3 - первый блок вычитания (в составе N схем вычитания на два входа каждая), входы вычитаемого которого подключены ко вторым дополнительным выходам блока информационных каналов 1, а входы уменьшаемого являются входом сигнала единичного уровня устройства и объединены со входами уменьшаемого второго блока вычитания 3. Выходы первого блока вычитания 3 подключены ко входам делимого блока деления 5.
3 - второй блок вычитания (в составе N схем вычитания на два входа каждая), входы вычитаемого которого подключены к третьим дополнительным выходам блока информационных каналов 1, а входы уменьшаемого являются входом сигнала единичного уровня устройства и объединены со входами уменьшаемого первого блока вычитания 3. Выходы второго блока вычитания 3 подключены ко входам делителя блока деления 5.
4 - первый блок ключей (в составе N ключей на два входа каждый), управляющие входы которого подключены к первым выходам блока сравнения 2, информационные входы - ко вторым дополнительным выходам блока информационных каналов 1, а выходы подключены к первым входам блока схем ИЛИ 7.
4 - второй блок ключей (в составе N ключей на два входа каждый), управляющие входы которого подключены ко вторым выходам блока сравнения 2, информационные входы - к выходам блока умножения 6, а выходы подключены ко вторым входам блока схем ИЛИ 7.
5 - блок деления (в составе N схем деления на 2 входа каждая), входы делимого и делителя которого подключены соответственно к выходам первого и второго блоков вычитания 3, а выходы - ко входам множителя блока умножения 6.
6 - блок умножения (в составе N схем умножения на 2 входа каждая), входы множителя которого подключены к выходам блока деления 5, входы множимого - к четвертым дополнительным выходам блока информационных каналов 1, а выходы - к информационным входам второго блока ключей 4.
7 - блок схем ИЛИ (в составе N схем ИЛИ на два входа каждая), первые и вторые входы которого подключены соответственно к выходам первого и второго блоков ключей 4, а выходы - ко вторым входам (входам множителя) блока умножения матриц 8.
8 - блок умножения матриц (в составе N схем умножения матриц на два входа каждая), первые входы которого (входы множимого) являются входами внешних источников, вторые входы (входы множителя) подключены к выходам блока схем ИЛИ 7, а выходы - к дополнительным входам БЦВС 9.
9 - быстродействующую цифровую вычислительную систему (БЦВС), входы которой подключены к выходам решений блока информационных каналов 1, дополнительные входы - к выходам блока умножения матриц 8, а выход является выходом системы.
Система работает следующим образом. Каждый из информационных каналов блока 1 (дальше рассматривается работа только одного t-гo канала и его связи с другими блоками) в рамках своего алфавита вырабатывает частное решение о принадлежности объекта к определенному типу (классу) в виде его номера
Figure 00000033
, который поступает с выхода решения t-гo информационного канала блока 1 на первый вход схемы сравнения блока сравнения 2. С первого дополнительного выхода t-гo информационного канала блока 1 на второй вход схемы сравнения блока сравнения 2 поступает последовательность {qt}={1; 2; …, qt; …, Qt} номеров типов (классов), соответствующая алфавиту t-гo информационного канала. В случае совпадения номера
Figure 00000033
с номером qt, то есть при выполнении равенства
Figure 00000033
=qt, с первого выхода схемы сравнения блока сравнения 2 на управляющий вход ключа первого блока ключей 4 поступает разрешающий сигнал. Если же
Figure 00000033
≠qt, то аналогичный разрешающий сигнал поступает со второго выхода схемы сравнения блока сравнения 2 на управляющий вход ключа второго блока ключей 4. Со второго дополнительного выхода t-гo информационного канала блока 1 выдается апостериорная вероятность P(
Figure 00000033
) принятого решения, которая поступает на информационный вход ключа первого блока ключей 4 и вход вычитаемого схемы вычитания первого блока вычитания 3.
На вход уменьшаемого схемы вычитания первого и второго блоков вычитания 3 поступает сигнал единичного уровня. На вход вычитаемого схемы вычитания второго блока вычитания 3 поступает информация о вероятности правильного опознавания объекта соответствующего типа (класса)
Figure 00000041
с третьего дополнительного выхода t-гo информационного канала блока 1. В результате на выходах схем вычитания первого и второго блоков вычитания 3 формируются значения 1 - P(
Figure 00000033
) и 1 -
Figure 00000042
соответственно, которые поступают на входы делимого и делителя схемы деления блока деления 7. Результат деления
Figure 00000043
с выхода схемы деления блока деления 5 поступает на вход множителя схемы умножения блока умножения 6, на вход множимого которой поочередно поступают значения вероятностей
Figure 00000044
,
Figure 00000045
с четвертого дополнительного выхода блока информационных каналов 1.
Значения
Figure 00000046
с выхода схемы умножения блока 6 поступают на информационный вход ключа второго блока ключей 4. При наличии разрешающего сигнала на управляющем входе ключа первого блока ключей 4 (при
Figure 00000033
=qt) он открывается и значение апостериорной вероятности P(
Figure 00000033
) принятого решения с его выхода поступает на первый вход схемы ИЛИ блока схем ИЛИ 7, на второй вход которой поступают значения
Figure 00000047
с выхода ключа второго блока ключей 6 при наличии разрешающего сигнала на его управляющем входе (при
Figure 00000033
≠qt).
В результате на выходе схемы ИЛИ блока схем ИЛИ 7 в соответствии с выражениями (6) формируются значения условных вероятностей в виде матрицы
Figure 00000048
, которые поступают на второй вход (вход множителя) схемы умножения матриц блока умножения матриц 9, на первый вход (вход множимого) которой поступает совокупность значений априорных вероятностей в виде матрицы
Figure 00000049
. На входы БЦВС 9 с выхода решения каждого информационного канала блока 1 поступают номера
Figure 00000050
(t=
Figure 00000051
) типов (классов), к которым отнесен объект, а на дополнительные входы БЦВС 9 поступают рассчитанные по формулам (1) значения вероятностей в виде матриц, с выходов блока умножения матриц 9. После расчета в БЦВС 9 отношения правдоподобия по формуле (5) и сравнения его с заданным порогом h с ее выхода выдается окончательное решение о принадлежности объекта классу «Свой» (m*=1) или «Чужой» (m*=2) в соответствии с решающим правилом (4).
Для сравнительной оценки с прототипом рассмотрим работу предлагаемой системы в приведенных в таблице 1 условиях с учетом дополнительных характеристик информационных каналов, задаваемых матрицами
Figure 00000052
Figure 00000053
; j=
Figure 00000054
; t=
Figure 00000055
. Все результаты расчетов и исходные данные сведены в таблицу 2.
Figure 00000056
Подставив значения
Figure 00000057
из таблицы 2 в формулу (5), получим
Figure 00000058
Тогда в соответствии с решающим правилом (4) при h=1 будет принято общее решение m*=1, то есть наблюдаемый объект «Свой».
Таким образом, учет несимметричности информационных каналов привел к принятию системой противоположного решения, что позволяет сделать вывод о его большей достоверности по сравнению с прототипом.

Claims (1)

  1. Интегрированная система опознавания, содержащая N-канальный блок информационных каналов и быстродействующую цифровую вычислительную систему (БЦВС), выход которой является выходом системы, а выход решения каждого информационного канала о принадлежности объекта к определенному типу подключен к соответствующему входу БЦВС, а также следующие N-канальные блоки: блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ и блок умножения матриц, выходы которого соединены с дополнительными входами БЦВС, первые входы блока умножения матриц являются входами внешних источников, а вторые входы подключены к выходам блока схем ИЛИ, первые и вторые входы которого соединены соответственно с выходами первого и второго блоков ключей, управляющие входы которых подключены соответственно к первым и вторым выходам блока сравнения, первые и вторые входы которого соединены соответственно с выходами решения и первыми дополнительными выходами блока информационных каналов, являющимися выходами последовательности значений номеров типов опознаваемых объектов, вторые дополнительные выходы блока информационных каналов, являющиеся выходами значений апостериорных вероятностей принятых решений, подключены к информационным входам первого блока ключей и входам вычитаемого первого блока вычитания, входы уменьшаемого которого являются входами внешнего сигнала единичного уровня, а выходы первого и второго блоков вычитания подключены соответственно ко входам делимого и делителя блока деления, отличающаяся тем, что в нее дополнительно введены третьи и четвертые дополнительные выходы блока информационных каналов, являющиеся выходами значений вероятностей правильного опознавания объекта соответствующего типа и вероятностей правильности принятого решения соответственно, а также блок умножения, входы множителя которого соединены с выходами блока деления, входы множимого подключены к четвертым дополнительным выходам блока информационных каналов, третьи дополнительные выходы которого подключены ко входам вычитаемого второго блока вычитания, входы уменьшаемого которого объединены с аналогичными входами первого блока вычитания, а выходы блока умножения соединены с информационными входами второго блока ключей.
RU2016113984A 2016-04-11 2016-04-11 Интегрированная система опознавания RU2608573C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016113984A RU2608573C1 (ru) 2016-04-11 2016-04-11 Интегрированная система опознавания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016113984A RU2608573C1 (ru) 2016-04-11 2016-04-11 Интегрированная система опознавания

Publications (1)

Publication Number Publication Date
RU2608573C1 true RU2608573C1 (ru) 2017-01-23

Family

ID=58456902

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016113984A RU2608573C1 (ru) 2016-04-11 2016-04-11 Интегрированная система опознавания

Country Status (1)

Country Link
RU (1) RU2608573C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2713511C1 (ru) * 2018-12-10 2020-02-05 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ построения системы опознавания "свой-чужой" на основе протокола с нулевым разглашением, реализованный в модулярном коде
RU203063U1 (ru) * 2019-12-30 2021-03-22 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Интегрированное устройство опознования воздушной цели
RU204861U1 (ru) * 2020-02-03 2021-06-16 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Интегрированное устройство опознования воздушной цели

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483241A (en) * 1994-05-09 1996-01-09 Rockwell International Corporation Precision location of aircraft using ranging
RU99100918A (ru) * 1999-01-15 2000-12-27 Иркутское высшее военное авиационное инженерное училище Интегрированная система опознавания
RU2252900C1 (ru) * 2004-05-20 2005-05-27 ОКБ "Электроавтоматика" Многопозиционный интегрированный комплекс бортового радиоэлектронного оборудования легкого многоцелевого самолета с повышенными маневренными возможностями
JP4711304B2 (ja) * 2006-02-13 2011-06-29 トヨタ自動車株式会社 対象物識別装置
RU2452975C1 (ru) * 2010-12-20 2012-06-10 Сергей Борисович Жиронкин Интегрированное устройство опознавания воздушных целей
JP2012154853A (ja) * 2011-01-27 2012-08-16 Japan Radio Co Ltd 到来時点識別装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483241A (en) * 1994-05-09 1996-01-09 Rockwell International Corporation Precision location of aircraft using ranging
RU99100918A (ru) * 1999-01-15 2000-12-27 Иркутское высшее военное авиационное инженерное училище Интегрированная система опознавания
RU2252900C1 (ru) * 2004-05-20 2005-05-27 ОКБ "Электроавтоматика" Многопозиционный интегрированный комплекс бортового радиоэлектронного оборудования легкого многоцелевого самолета с повышенными маневренными возможностями
JP4711304B2 (ja) * 2006-02-13 2011-06-29 トヨタ自動車株式会社 対象物識別装置
RU2452975C1 (ru) * 2010-12-20 2012-06-10 Сергей Борисович Жиронкин Интегрированное устройство опознавания воздушных целей
JP2012154853A (ja) * 2011-01-27 2012-08-16 Japan Radio Co Ltd 到来時点識別装置
RU2574601C1 (ru) * 2014-12-26 2016-02-10 Акционерное общество "Центральный научно-исследовательский институт экономики, информатики и систем управления" (АО "ЦНИИ ЭИСУ") Способ опознавания объектов

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RU 2452975 C1,10/06/2012. *
RU 2574601 C1, 10/02/2016. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2713511C1 (ru) * 2018-12-10 2020-02-05 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ построения системы опознавания "свой-чужой" на основе протокола с нулевым разглашением, реализованный в модулярном коде
RU203063U1 (ru) * 2019-12-30 2021-03-22 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Интегрированное устройство опознования воздушной цели
RU204861U1 (ru) * 2020-02-03 2021-06-16 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Интегрированное устройство опознования воздушной цели

Similar Documents

Publication Publication Date Title
RU2608573C1 (ru) Интегрированная система опознавания
CN110210535B (zh) 神经网络训练方法及装置以及图像处理方法及装置
Shannon Two-way communication channels
RU2452975C1 (ru) Интегрированное устройство опознавания воздушных целей
CN110019283B (zh) 极值确定方法及装置、电子设备、存储介质
CN111783551B (zh) 基于贝叶斯卷积神经网络的对抗样本防御方法
CN111462174B (zh) 多目标跟踪方法、装置以及电子设备
CN113792526B (zh) 字符生成模型的训练方法、字符生成方法、装置和设备和介质
EP4195084A1 (en) Method and device for adjusting model parameters, and storage medium and program product
Adzhemov et al. Evaluation program of an efficient source coding algorithm under the condition of converting metric spaces
CN112148908A (zh) 图像数据库的更新方法、装置、电子设备和介质
CN113569992A (zh) 异常数据识别方法及装置、电子设备和存储介质
Song et al. Online multi-object tracking and segmentation with gmphd filter and simple affinity fusion
CN106557178B (zh) 用于更新输入法词条的方法及装置
US20160063336A1 (en) Generating Weights for Biometric Tokens in Probabilistic Matching Systems
RU2561914C1 (ru) Интегрированное устройство опознавания
CN104063259A (zh) 基于程序文法的指令集类型识别方法
RU203063U1 (ru) Интегрированное устройство опознования воздушной цели
RU204861U1 (ru) Интегрированное устройство опознования воздушной цели
RU221749U1 (ru) Интегрированное устройство комплексного опознавания воздушных объектов
CN113128278A (zh) 一种图像识别方法及装置
Rahman et al. AWST: A Novel Attribute Weight Selection Technique for Data Clustering.
Yue et al. OsaMOT: Occlusion and scale‐aware multi‐object tracking algorithm for low viewpoint
KR20120060458A (ko) 물체 추적 방법 및 그 장치
CN112671595B (zh) 网络特征的获取方法和装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180412