RU2607598C1 - Способ получения гибридной двухфазной системы доставки малорастворимых и нерастворимых в воде биологически активных веществ с контролируемой кинетикой выделения - Google Patents

Способ получения гибридной двухфазной системы доставки малорастворимых и нерастворимых в воде биологически активных веществ с контролируемой кинетикой выделения Download PDF

Info

Publication number
RU2607598C1
RU2607598C1 RU2015131980A RU2015131980A RU2607598C1 RU 2607598 C1 RU2607598 C1 RU 2607598C1 RU 2015131980 A RU2015131980 A RU 2015131980A RU 2015131980 A RU2015131980 A RU 2015131980A RU 2607598 C1 RU2607598 C1 RU 2607598C1
Authority
RU
Russia
Prior art keywords
poly
hydrophobic
drugs
water
polymer
Prior art date
Application number
RU2015131980A
Other languages
English (en)
Inventor
Антон Борисович Архипов
Дмитрий Давидович Дементьев
Татьяна Леонидовна НАУМИДИ
Павел Павлович Куликов
Андрей Николаевич Кусков
Михаил Исаакович Штильман
Екатерина Игоревна Шишацкая
Татьяна Григорьевна Волова
Светлана Эммануиловна Гельперина
Original Assignee
Антон Борисович Архипов
Дмитрий Давидович Дементьев
Татьяна Леонидовна НАУМИДИ
Павел Павлович Куликов
Андрей Николаевич Кусков
Михаил Исаакович Штильман
Екатерина Игоревна Шишацкая
Татьяна Григорьевна Волова
Светлана Эммануиловна Гельперина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Антон Борисович Архипов, Дмитрий Давидович Дементьев, Татьяна Леонидовна НАУМИДИ, Павел Павлович Куликов, Андрей Николаевич Кусков, Михаил Исаакович Штильман, Екатерина Игоревна Шишацкая, Татьяна Григорьевна Волова, Светлана Эммануиловна Гельперина filed Critical Антон Борисович Архипов
Priority to RU2015131980A priority Critical patent/RU2607598C1/ru
Application granted granted Critical
Publication of RU2607598C1 publication Critical patent/RU2607598C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Группа изобретений относится к области фармацевтической промышленности, а именно к системе доставки малорастворимых и нерастворимых в воде биологически активных веществ (БАВ) с контролируемой кинетикой высвобождения, которая представляет собой сферические наночастицы, содержащие плотное гидрофобное ядро, образованное биосовместимыми и биоразлагаемыми гидрофобными полимерами, такими как полигидроксибутират, полилактид, полигликолид, полидиоксанон, поли-ε-капралактон, полигидроксивалерат, сополимер молочной и гликолевой кислот, в которое включено малорастворимое или нерастворимое в воде БАВ, при этом гидрофобное ядро окружено гидрофильными фрагментами амфифильных полимеров, состоящих из одного фрагмента водорастворимого карбоцепного полимера с молекулярным весом Mn=1000-30000 Да и одной концевой гидрофобной группы, включающей один алифатический радикал с числом атомов углерода в углеродной цепи 9÷20, а также к способу получения такой системы доставки. Группа изобретений обеспечивает повышение водосовместимости малорастворимых и нерастворимых в воде БАВ, повышение стабильности лекарственных веществ и возможность регулирования скорости выделения БАВ. 2 н. и 4 з.п. ф-лы, 7 пр., 6 табл., 15 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к области фармацевтики, в частности к способу получения двухфазной системы доставки плохорастворимых и нерастворимых в воде биологически активных веществ (БАВ) с контролируемой кинетикой выделения путем их включения в плотное гидрофобное ядро, модифицированное амфифильными полимерами, а также к самим лекарственным формам доставки плохорастворимых и нерастворимых в воде лекарственных средств.
УРОВЕНЬ ТЕХНИКИ
Доставка лекарственных препаратов к органам-мишеням в организме человека является одним из приоритетных направлений развития современной медицины и фармакологии. В настоящее время выделяется два основных направления по доставке БАВ: использование для доставки мицеллярных частиц на основе блок-сополимеров (амфифильных полимеров) и использование наночастиц и микрокапсул на основе биосовместимых гидрофобных полимеров.
Из уровня техники (RU 2423104 С2, опубликовано 10.07.2011) известен способ получения системы доставки лекарственных веществ через гематоэнцефалический барьер, содержащей наночастицы на основе поли(DL-лактида) и/или сопополимера (DL-молочной и гликолевой кислот), фармакологически активное вещество, абсорбируемое, адсорбируемое и/или включаемое в наночастицы, покрытые поверхностно-активным веществом.
Из уровня техники (RU 2530577 С2, опубликовано 10.10.2014) также известен способ получения полимерных микрочастиц с модифицированной кинетикой высвобождения лекарственного препарата. Согласно изобретению микрочастицы состоят из поли-3-оксибутирата или поли-3-оксибутирата-со-3-оксивалериата, активного лекарственного вещества с растворимостью в воде менее 20 мкг/мл и дополнительного компонента, выбранного из фосфолипидов и/или полиэтиленгликолей, и/или полоксамеров. Размер частиц варьирует от 1 до 100 мкм.
Общим существенным признаком известных и заявляемого технических решений является их форма - частицы (нано- или микрочастицы), состоящие из биоразлагаемых полимеров, дополнительно стабилизированные полимером.
В качестве недостатка известных систем доставки следует отметить то, что они не способствуют растворению малорастворимых лекарственных средств в организме человека, а, следовательно, невозможно создать на ее основе лекарственную форму доставки малорастворимых или нерастворимых в воде лекарственных средств. В качестве ближайшего аналога, по мнению заявителей, может служить техническое решение, известное из RU 2325151 С2, опубликованное 27.05.2008. В указанном источнике раскрывается способ получения мицеллярных наночастиц на основе амфифильных полимеров для доставки биологически активных веществ для внутривенного, перорального, ингаляционного и трансдермального применения. Известная система доставки обеспечивает высокую степень солюбилизации плохо растворимых и нерастворимых в воде БАВ и тем самым увеличивает биодоступность ряда лекарственных препаратов. Однако данное изобретение не позволяет регулировать скорость выделения индивидуального биологически активного вещества или лекарственного препарата. Это объясняется неустойчивостью мицеллярной структуры при разбавлении и проникновением активного вещества из гидрофобного ядра в окружающую среду.
Задачей, на решение которой направлено данное изобретение, является создание системы доставки малорастворимых и нерастворимых в воде лекарственных средств, обеспечивающей контролируемую кинетику высвобождения действующего вещества, и, как следствие, повышение эффективности лечения ряда заболеваний.
Технический результат, достигаемый настоящим изобретением, заключается в повышении водосовместимости малорастворимых и нерастворимых в воде биологически активных веществ, повышении стабильности лекарственных веществ и БАВ под воздействием внешних факторов (температура, излучение) и возможности регулирования скорости выделения лекарственного вещества или БАВ в организме, что позволяет создать новые высокоэффективные водорастворимые формы биологически активных веществ для инъекционного, перорального и другого применения.
При этом использование таких форм позволяет обеспечить длительное действие биологически активных веществ, их контролируемое высвобождение и пригодность для различных путей введения, обеспечивает доставку активного вещества в оптимальных дозах, снижая возможность передозировки и проявления побочной токсичности.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг. 1 представлено схематичное изображение двухфазной системы доставки (двухфазной частицы). Как видно, частица состоит из плотного гидрофобного ядра, образованного полиэфирами, например полигидроксибутиратом, полилактидом, полидиоксаноном, поли-ε-капралактоном или их сополимерами. В такое ядро могут быть включены разнообразные плохо- и нерастворимые в воде биологически активные вещества (БАВ). Гидрофобное ядро окружено гидрофильными фрагментами амфифильных полимеров, образующих гидрофильную оболочку данных двухфазных частиц и придающих им устойчивость.
На фиг. 2 показана гистограмма распределения двухфазных частиц по размерам. Распределение получено с помощью метода динамического светорассеяния. Из полученных данных можно сделать вывод, что распределение носит характер близкий к нормальному с преобладающей фракцией частиц от 100 до 300 нм.
На фиг. 3 показано распределение по ζ-потенциалу частиц. Из данных, полученных методом динамического светорассеяния, видно, что частицы обладают небольшим отрицательным ζ-потенциалом (от -6 до -8 мВ), указывающим на наличие у частиц гидрофильной оболочки, состоящей из поли-N-винилпирролидона.
На фиг. 4 представлены микрофотографии двухфазных частиц, полученные методом электронной сканирующей микроскопии. На фотографиях видно, что частицы обладают сферической формой.
На фиг. 5 представлена гистограмма стабильности двухфазных частиц при хранении. Полученные данные указывают на повышение стабильности частиц в воде при увеличении среднечисленной молекулярной массы гидрофильного фрагмента (поли-N-винилпирролидона) амфифильного полимера.
На фиг. 6 показана сравнительная кинетика высвобождения модельного гидрофобного антибиотика рифабутина из мицеллярной формы на основе амфифильного поли-N-винилпирролидона и из формы на основе поли-3-гидроксибутирата и поли-N-винилпирролидона. Полученные данные указывают на возможность изменять кинетику высвобождения гидрофобного БАВ путем включения его в двухфазные частицы, тем самым пролонгируя эффект.
На фиг. 7 показана сравнительная кинетика высвобождения модельного гидрофобного антибиотика рифабутина из мицеллярной формы на основе амфифильного поли-N-винилпирролидона, из формы на основе полилактида и поли-N-винилпирролидона и из формы на основе сополимера молочной и гликолевой кислот и поли-N-винилпирролидона. Полученные данные указывают на возможность изменять кинетику высвобождения гидрофобного БАВ путем включения его в двухфазные частицы, тем самым пролонгируя эффект, а так же на прямую зависимость между материалом из которого образовано гидрофобное ядро (например, полилактид, сополимер молочной и гликолевой кислот) и кинетикой высвобождения гидрофобного БАВ.
На фиг. 8 показано распределение по ζ-потенциалу частиц на основе поли-3-гидроксибутирата и поли-N-винилпирролидона с включенным протионамидом (совпадение пиков на графике свидетельствуют о воспроизводимости полученных результатов).
На фиг. 9 представлены микрофотографии частиц на основе поли-3-гидроксибутирата и поли-N-винилпирролидона с включенным протионамидом, полученные просвечивающей электронной микроскопией (ТЕМ).
На фиг. 10 показана стабильность частиц протионамида на основе амфифильного поли-N-винилпирролидона (ПВП) и поли-3-гидроксибутирата (ПГБ) в водной среде при температуре +5°C. Массовое соотношение ПВП:ПГБ:Прот=10:1:0.1.
На фиг. 11 показана кинетика высвобождения антифунгального препарата Амфотерицина В (АмфВ) из полимерной формы на основе поли-3-гидроксибутирата и поли-N-винилпирролидона (MMn(ПВП)=6 кДа). Приведенные данные показывают, что частицы на основе поли-3-гидроксибутирата и поли-N-винилпирролидона (6 кДа-ПГБ-АмфВ) имеют пролонгированное действие, а так же что профиль выделения амфотерицина В является схожим с профилем выделения рифабутина.
На фиг. 12 показано распределение по ζ-потенциалу частиц на основе поли-3-гидроксибутирата и поли-N-винилпирролидона с включенным амфотерицином В (совпадение пиков на графике свидетельствуют о воспроизводимости полученных результатов).
На фиг. 13 продемонстрированы микрофотографии частиц на основе поли-3-гидроксибутирата и поли-N-винилпирролидона с включенным амфотерицином В, полученные просвечивающей электронной микроскопией (ТЕМ).
На фиг. 14 показана стабильность частиц амфотерицина В на основе амфифильного поли-N-винилпирролидона (ПВП) и поли-3-гидроксибутирата (ПГБ) в водной среде при температуре +5°C.
Массовое соотношение ПВП:ПГБ:АмфВ=10:1:0.1.
На фиг. 15 показана кинетика высвобождения противотуберкулезного антибиотика протионамида (Прот) из полимерной формы на основе поли-3-гидроксибутирата и поли-N-винилпирролидона.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к способу получения системы доставки (лекарственной формы) малорастворимых и нерастворимых в воде биологически активных веществ с контролируемой кинетикой высвобождения путем их включения в плотное гидрофобное ядро, состоящее из биосовместимых гидрофобных полимеров, таких как полигидроксибутират, полилактид, полидиоксанон, поли-ε-капралактон, полигидроксивалерат, сополимер молочной и гликолевой кислот, и последующей модификацией водорастворимыми амфифильными полимерами методом совместного диспергирования компонентов с амфифильным полимером в водно-органической среде, при концентрациях амфифильного полимера выше критической концентрации мицеллообразования (ККМ) или критической концентрации агрегации (ККА), с образованием частиц в виде сферических наноразмерных структур, при этом гидрофобные фрагменты амфифильных молекул обращены внутрь частиц, прочно связываясь с гидрофобным ядром за счет гидрофобно-гидрофобного взаимодействия, а гидрофильные полимерные цепи образуют водосовместимую оболочку указанных частиц. При этом биологически активное вещество может содержаться как во внутреннем гидрофобном ядре, образованном биосовместимыми гидрофобными полимерами, так и быть иммобилизовано в водосовместимой внешней оболочке частиц.
В качестве гидрофобного биосовместимого полимера для образования ядра используют биоразлагаемые и биосовместимые полиэфиры (полилактиды, полигидроксибутираты, полидиоксанон, поли-ε-капралактон, полигидроксивалерат, сополимер молочной и гликолевой кислот и пр.).
В качестве амфифильного полимера используют макромолекулярную структуру, состоящую из одного фрагмента водорастворимого карбоцепного полимера и одной концевой гидрофобной группы.
В качестве фрагмента водорастворимого карбоцепного полимера используют фрагмент с молекулярным весом Mn=1000-30000 Да, а в качестве концевой гидрофобной группы предпочтительно выбирают группу, включающую один алифатический радикал с числом атомов углерода в углеродной цепи 9÷20.
В качестве водорастворимого карбоцепного полимера используют, например, поли(N-винил-2-пирролидон), полиакриловую кислоту, полиакриламид, полиметакриловую кислоту, полиэтиленамин, поли(2-аллилоксибензальдегид), полиэфиры карбоновых кислот, поли(N-диалкилакриламид), поли(N-изопропилакриламид), поли(N-(2-гидроксипропил)метакриламид), соли поликарбоновых кислот, а также их сополимеры, например, поли(N-винил-2-пирролидон-акриламид), поли(N-изопропилакриламид-акриловая кислота) и пр.
Настоящее изобретение также относится к системе доставки лекарственных средств - лекарственная форма (полученная по описанному выше способу), которая представляет собой сферические наночастицы, содержащие плотное гидрофобное ядро, образованное биосовместимыми и биоразлагаемыми гидрофобными полимерами, такими как полигидроксибутират, полилактид, полигликолид, полидиоксанон, поли-ε-капралактон, полигидроксивалерат, сополимер молочной и гликолевой кислот, в которое включено малорастворимое или нерастворимое в воде биологически активное вещество, окруженное гидрофильными фрагментов фрагментами амфифильных полимеров.
В качестве гидрофобного полимера, образующего ядро частицы, система содержит биосовместимые и биоразлагаемые полиэфиры.
В качестве амфифильного полимера система содержит макромолекулярную структуру, состоящую из одного фрагмента водорастворимого карбоцепного полимера и одной концевой гидрофобной группы.
В качестве фрагмента водорастворимого карбоцепного полимера система предпочтительно содержит фрагмент с молекулярным весом Mn=1000-30000 Да, а в качестве концевой гидрофобной группы система содержит группу, включающую один алифатический радикал с числом атомов углерода в углеродной цепи 9÷20.
В качестве водорастворимого карбоцепного полимера используют, например, поли(N-винил-2-пирролидон), полиакриловую кислоту, полиакриламид, полиметакриловую кислоту, полиэтиленамин, поли(2-аллилоксибензальдегид), полиэфиры карбоновых кислот, поли(N-диалкилакриламид), поли(N-изопропилакриламид), поли(N-(2-гидроксипропил)метакриламид), соли поликарбоновых кислот, а так же их сополимеры, например поли(N-винил-2-пирролидон-акриламид), поли(N-изопропилакриламид-акриловая кислота) и пр.
Общая формула предлагаемых амфифильных полимеров может быть представлена следующим образом:
Figure 00000001
где
Figure 00000002
- гидрофильная часть - линейный водорастворимый карбоцепной полимер. Количество мономеров в цепи карбоцепного полимера выбирается так, чтобы среднечисловая молекулярная масса (Mn) амфифильного полимера составляла от 1 до 30 кДа.
Мономер выбирается из группы:
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
при этом R представляет собой длинноцепочечную алифатическую линейную или разветвленную гидрофобную группу общего строения
Figure 00000008
при этом X представляет собой Н, ОН, NH2, NH3Cl.
Примеры возможных амфифильных полимеров представлены ниже.
1. Амфифильные гомополимеры полиакриламида:
Figure 00000009
Figure 00000010
2. Амфифильные гомополимеры поли-N-изопропилакриламида:
Figure 00000011
3. Амфифильные гомополимеры поли-N-(2-гидроксипропил)метакриламида:
Figure 00000012
4. Амфифильные гомополимеры поли-N-винилпирролидона:
Figure 00000013
5. Амфифильные гомополимеры полиакриловой кислоты и ее эфиров:
Figure 00000014
6. Амфифильные гомополимеры поли-N-диалкилакриламида:
Figure 00000015
7. Амфифильные гомополимеры полиэтиленамина:
Figure 00000016
8. Амфифильные гомополимеры метакриловой кислоты и ее эфиров:
Figure 00000017
9 Амфифильные гомополимеры 2-аллилоксибензальдегида:
Figure 00000018
10. Сополимер N-винилпирролидона и N-изопропилакриламида.
Figure 00000019
11. Сополимер N-винилпирролидона и N-(2-гидроксипропил)метакриламида.
Figure 00000020
12. Сополимер N-винилпирролидона и этиленамина.
Figure 00000021
13. Сополимер N-винилпирролидона и метакриловой кислоты.
Figure 00000022
14. Сополимер N-винилпирролидона и акриловой кислоты.
Figure 00000023
15. Сополимер N-диэтилакриламида и N-винилпирролидона.
Figure 00000024
16. Сополимер N-винилпирролидона и 2-аллилоксибензальдегида.
Figure 00000025
17. Сополимер N-винилпирролидона и акриламида.
Figure 00000026
18. Сополимер акриловой кислоты и N-изопропилакриламида.
Figure 00000027
19. Сополимер метилового эфира акриловой кислоты и N-(2-гидроксипропил)метакриламида.
Figure 00000028
20. Сополимер этиленамина и N-(2-гидроксипропил)метакриламида.
Figure 00000029
21. Сополимер N-дипропилакриламида и N-изопропилакриламида.
Figure 00000030
22. Сополимер N-диэтилакриламида и N-(2-гидроксипропил)метакриламида.
Figure 00000031
23. Сополимер N-метилакриламида и акриламида.
Figure 00000032
24. Сополимер N-метилэтилакриламида и пропилового эфира акриловой кислоты.
Figure 00000033
25. Сополимер N-(2-гидроксипропил)метакриламида и 2-аллилоксибензальдегида.
Figure 00000034
26. Сополимер акриламида и 2-аллилоксибензальдегида.
Figure 00000035
27. Сополимер этиленамина и 2-аллилоксибензальдегида.
Figure 00000036
28. Сополимер метилового эфира акриловой кислоты и 2-аллилоксибензальдегида.
Figure 00000037
29. Сополимер этиленамина и акриламида.
Figure 00000038
30. Сополимер этиленамина и N-изопропилакриламида.
Figure 00000039
31. Сополимер акриламида и N-изопропилакриламида.
Figure 00000040
32. Сополимер акриламида и N-(2-гидроксипропил)метакриламида.
Figure 00000041
33. Сополимер N-(2-гидроксипропил)метакриламида и N-изопропилакриламида.
Figure 00000042
34. Сополимер метилового эфира акриловой кислоты, N-(2-гидроксипропил)метакриламида и акриламида.
Figure 00000043
35. Сополимер акриламида, N-изопропилакриламида и этиленамина.
Figure 00000044
36. Сополимер N-винилпирролидона, N-изопропилакриламида и этиленамина.
Figure 00000045
при этом R1, независимо представляет собой Н, СН3, С2Н5, С3Н7, Me (ионы металлов).
Схематичное изображение предлагаемой двухфазной системы доставки представлено на фиг. 1.
Получение гибридных полимерных наночастиц с контролируемой кинетикой высвобождения биологически активных веществ.
Гибридные полимерные наночастицы получают эмульсионным методом или методом осаждения. Амфифильный полимер берут в таких количествах, чтобы в конечном растворе его концентрация была больше критической концентрации мицеллообразования или критической концентрации агрегации. Массовое соотношение гидрофобного и амфифильного полимеров варьируют от 1:20 до 20:1, соответственно. Количество включаемого биологически активного вещества согласно изобретению варьируют от 0,1 до 60% масс.
Эмульсионный метод:
а) Предварительно готовят раствор гидрофобного лекарственного вещества и гидрофобного полимера в органическом растворителе, в котором это вещество растворяется (этилацетат, хлороформ, метиленхлорид). Так же готовят раствор амфифильного полимера в бидистиллированной обеспыленной воде. Растворы перемешивают при комнатной температуре в течение 20-40 минут. После этого растворы сливают вместе. Полученную смесь интенсивно перемешивают 10-20 минут на вортексе, а затем подвергают воздействию ультразвукового излучения 12-24 минуты при мощности 60 Вт и импульсном режиме (1 сек. через 1 сек.) (на приборе "VibraCell", США). Органический растворитель отгоняют на роторном испарителе.
б) Расчетное количество амфифильного полимера, гидрофобного полимера и лекарственного вещества растворяют в подходящем органическом растворителе (этилацетате, хлороформе или метиленхлориде) при перемешивании. Затем к полученному раствору добавляют бидистиллированную обеспыленную воду. Полученную смесь интенсивно перемешивают 10-20 минут на вортексе, а затем подвергают воздействию ультразвукового излучения 12-24 минуты при мощности 60 Вт и импульсном режиме (1 сек. через 1 сек.) (на приборе "VibraCell", США). Органический растворитель отгоняют на роторном испарителе.
Полученные гибридные полимерные наночастицы имеют устойчивую сферическую форму, узкое распределение по размерам для каждого образца полимера (средний размер частиц для разных образцов полимеров варьирует от 100 до 2000 нм).
Таким образом, предлагаемым способом могут быть получены водосовместимые препараты в виде наночастиц следующих лекарственных веществ:
- снотворных и успокаивающих лекарственных веществ: нитразепама, флунитразипама, барбитала, бромизовала;
- противосудорожных лекарственных веществ: бензонала, гексамидина, дифенина, клоназепама;
- транквилизаторов и антидепрессантов: сибазона, феназепама, пиразидола, флуоксетина;
- противопаркинсонических средств: циклодола, леводопа, глудантана;
- анальгезирующих (болеутоляющих) лекарственных веществ: амидопирина, фенацетина, парацетамола, ибупрофена,
- противовоспалительных лекарственных веществ: дихлофенака, индометацина, кортизона;
- сердечно-сосудистых лекарственных веществ: дигитоксина, кавинтона, теофиллина, форидона;
- гормональных лекарственных веществ: тиреоидина, эстрона, метилтестостерона, силаболина;
- витаминов и родственных веществ: бенфотиамина, рибофлавина, рутина;
- ферментных лекарственных веществ: лизоамидазы, панкреатина, солизима;
- лекарственных веществ, стимулирующих или регулирующих метаболические процессы: фепромарона, дипиридамола, ловастатина;
- противомикробных, противовирусных и противопаразитарных лекарственных веществ: ампициллина, тетрациклина, рифампицина, левомицетина, стрептоцида, бонафтона, метисазона;
- противогрибковых лекарственных веществ: нистатина, амфотерицина В, гризеофульвина;
- противоопухолевых лекарственных веществ: доксорубицина, метотрексата, цисплатина, эпирубицина, реумицина, хлодитана;
- диагностических лекарственных веществ: йодамида, билигноста, пентагастрина.
Для получения водорастворимых лекарственных форм биологически активных веществ в виде порошков суспензии гибридных полимерных частиц сушат в кипящем слое. Возможно также получение лиофильно высушенных лекарственных форм.
Для получения таблетированных форм биологически активных веществ полученные порошки подвергают прессованию.
Порошки и лиофилизаты пригодны также для получения суспензий для парентерального введения.
Получение амфифильных полимеров согласно изобретению
Амфифильные гомополимеры и сополимеры по настоящему изобретению получают одностадийным способом (соответственно заявке на патент №2014137555 от 17.09.2014 и №2014141950 от 17.10.2014) путем, соответственно, радикальной гомо- или сополимеризации мономеров в органическом растворителе в присутствии инициатора радикальной полимеризации. При этом в процессе радикальной полимеризации применяют регулятор роста длины цепи в виде длинноцепочечного алифатического меркаптана или его производного, позволяющего в процессе радикальной полимеризации получить биосовместимый амфифильный полимер в одну стадию синтеза, т.е. без дополнительной модификации. Это существенно упрощает аппаратурное оформление, сокращает время получения готового амфифильного полимера, а также позволяет регулировать среднечисловую молекулярную массу амфифильного полимера непосредственно в процессе синтеза и получать готовый продукт с высоким выходом.
В предпочтительном варианте осуществления изобретения органический растворитель выбирают из группы, включающей спирт, метиленхлорид, диоксан, тетрагидрофуран, акрилонитрил, N-метил пиррол идон, диметилформамид, диметилсульфоксид, этилацетат, бутилацетат, амилацетат, циклогексан.
Предпочтительно в качестве спирта применяют спирт, выбранный из группы, включающей этанол, изопропанол, пропанол-1, бутанол-1, амиловый спирт, бутанол-2, третбутанол.
Инициатор предпочтительно выбирают из группы, включающей бензоилпероксид, дитретбутилпероксид, гидропероксид кумола, азобисизобутиронитрил, персульфат калия, персульфат аммония, персульфат натрия, дициклогексилпероксидикарбонат, дицетилпероксидикарбонат, димиристилпероксидикарбонат, ди(2-этилгексил)пероксидикарбонат, ди(4-трет-бутилциклогексил)пероксидикарбонат, 3-хлорпербензойную кислоту.
Результаты проведенных нами экспериментов, направленных на определение влияния длины гидрофобного фрагмента на амфифильность и выход гомо- и сополимеров, свидетельствуют о целесообразности использования длинноцепочечного алифатического меркаптана или его производного с числом атомов углерода в углеродной цепи от 9 до 20.
Проведенные эксперименты также свидетельствуют о том, что при использовании короткоцепочечных (<С9) либо длинноцепочечных (>С20) меркаптанов или их производных теряются амфифильные свойства полимеров, а также существенно снижается выход алифатического полимера по изобретению.
Результаты проведенных экспериментов, направленных на определение влияния количества регулятора роста длины цепи на состав и выход амфифильных гомо- и сополимеров, показывают, что при получении гомополимеров целесообразным является использование длинноцепочечного алифатического меркаптана или его производного в количестве от 0,1 до 8% мол.; при получении сополимеров целесообразным является использование длинноцепочечного алифатического меркаптана или его производного в количестве от 0,1 до 5% мол.
Предпочтительно в качестве производного длинноцепочечного алифатического меркаптана используют меркаптоспирты, меркаптоамины, солянокислый меркаптоамин.
С технической и экономической точки зрения оптимальным временем проведения синтеза является то время, при котором выход продукта максимален, а затраты энергоносителей минимальны. Данные проведенных нами исследований, направленных на изучение влияния времени синтеза на выход амфифильных гомополимеров и сополимеров показывают, что максимальный выход амфифильных полимеров по изобретению различается для различных мономеров. Так, например, максимальный выход амфифильного гомополимера на основе акриламида наблюдается при проведении синтеза в течение 3-х часов, а на основе акриловой кислоты - в течение 1-го часа. Максимальный выход амфифильного сополимера на основе акриламида и N-винилпирролидона наблюдается при проведении синтеза в течение 3-х часов, а амфифильного сополимера на основе акриловой кислоты и N-винилпирролидона- в течение 2-х часов. Таким образом, оптимальное время синтеза для каждого мономера при синтезе гомополимеров и сополимеров различно, и в зависимости от природы мономера изменяется от 1 до 6 часов.
Исследование влияния температуры синтеза на выход амфифильных гомо- и сополимеров показывает, что радикальную гомополимеризацию предпочтительно проводить при температуре от 70 до 80°C, а радикальную сополимеризацию - при температуре от 60 до 75°C.
Ниже представлены примеры получения некоторых амфифильных гомо- и сополимеров по изобретению.
Следует понимать, что эти и все приведенные в материалах заявки примеры не являются ограничивающими и приведены с целью иллюстрации настоящего изобретения.
Пример 1
Амфифильный гомополимер, мономером которого является акриловая кислота, получают следующим образом. В хорошо промытую и высушенную пробирку с притертой пробкой загружают рассчитанное количество акриловой кислоты, требуемое количество меркаптана, инициатора (бензоилпероксид) и растворитель (бутанол-1). Затем пробирку помешают в термостат, где поддерживают температуру 70°C с точностью ±0,2°C. По истечении 1 часа содержимое пробирки осаждают в десятикратный объем диэтилового эфира. Выпавший полимер отделяют фильтрацией и сушат в термошкафу в течение суток. Альтернативным методом очистки является диализ полимера против воды в течение 5 суток. Выход полимера - 81%.
Пример 2
Амфифильный гомополимер, мономером которого является N-изопропилакриламид, получают следующим образом. В хорошо промытую и высушенную пробирку с притертой пробкой загружают рассчитанное количество N-изопропилакриламида, требуемое количество меркаптана, инициатора (гидропероксид кумола) и растворитель (N-метилпирролидон). Затем пробирку помещают в термостат, где поддерживают температуру 75°C с точностью ±0,2°C. По истечении 1 часа содержимое пробирки осаждают в десятикратный объем диэтилового эфира. Выпавший полимер отделяют фильтрацией и сушат в термошкафу в течение суток. Альтернативным методом очистки является диализ полимера против воды в течение 5 суток. Выход полимера - 79%.
Пример 3
Амфифильный сополимер N-винилпирролидона и акриламида получают следующим образом. В хорошо промытую и высушенную пробирку с притертой пробкой загружают рассчитанное количество мономеров (N-винилпирролидон и акриламид), требуемое количество меркаптана, инициатора (азобисизобутиронитрил) и растворитель (диоксан). Затем пробирку помещают в термостат, где поддерживают температуру 70°C с точностью ±0,2°C. По истечении 3 часов содержимое пробирки осаждают в десятикратный объем диэтилового эфира. Выпавший полимер отделяют фильтрацией и сушат в термошкафу в течение суток. Альтернативным методом очистки является диализ полимера против воды в течение 5 суток. Выход сополимера составляет 83%.
Пример 4
Афифильный сополимер N-изопропилакриламида, акриламида и N-винилпирролидона получают следующим образом. В хорошо промытую и высушенную пробирку с притертой пробкой загружают рассчитанное количество мономеров (N-изопропилакриламид, акриламид и N-винилпирролидон), требуемое количество меркаптана, инициатора (азобисизобутиронитрил) и растворитель (диоксан). Затем пробирку помещают в термостат, где поддерживают температуру 75°C с точностью ±0,2°C. По истечении 5 часов содержимое пробирки осаждают в десятикратный объем диэтилового эфира. Выпавший полимер отделяют фильтрацией и сушат в термошкафу в течение суток. Альтернативным методом очистки является диализ полимера против воды в течение 5 суток. Выход сополимера - 79%.
Получение фармацевтических композиций для доставки лекарственных веществ на основе гибридных полимерных частиц.
В качестве модельных лекарственных препаратов были использованы антибиотик рифабутин и противогрибковый препарат амфотерицин В.
Пример 5. Получение гибридной полимерной формы рифабутина.
Расчетное количество амфифильного полимера по изобретению растворяют в бидистиллированной обеспыленной воде, а необходимое количество рифабутина и гидрофобного полимера (например, поли-3-гидроксибутирата) растворяют в хлороформе при перемешивании без нагревания. Затем полученный раствор рифабутина и гидрофобного полимера в хлороформе добавляют при интенсивном перемешивании по каплям к раствору амфифильного полимера в бидистиллированной воде. Полученную эмульсию интенсивно перемешивают 10-20 минут, а затем подвергают воздействию ультразвукового излучения 12-24 минуты при мощности 60 Вт и импульсном режиме (1 сек через 1 сек) (на приборе "VibraCell", США). Органический растворитель отгоняют на роторном испарителе, при наличии осадка, раствор фильтруют на 0.4 или 0.2 мкм фильтрах (Миллипор) и лиофильно сушат.
Пример 6. Получение гибридной полимерной формы амфотерицина В.
Расчетное количество амфифильного полимера, гидрофобного полимера (например, полилактида) и амфотерицина В по изобретению растворяют в этаноле при перемешивании без нагревания. Затем полученный раствор в этаноле добавляют при интенсивном перемешивании к бидистиллированной обеспыленной воде. Полученную эмульсию интенсивно перемешивают 10-20 минут, а затем подвергают воздействию ультразвукового излучения 12-24 минуты при мощности 60 Вт и импульсном режиме (1 сек через 1 сек) (на приборе "VibraCell", США). Органический растворитель отгоняют на роторном испарителе, при наличии осадка, раствор фильтруют на 0.4 или 0.2 мкм фильтрах (Миллипор) и лиофильно сушат.
В таблице 1 и на фиг. 2, 3, 4 характеристики частиц, полученных на основе поли-3-гидроксибутирата и поли-N-винилпирролидона (среднечисленная молекулярная масса поли-N-винилпирролидона (MMn) 6 кДа).
Figure 00000046
На фиг. 5 представлены данные по стабильности частиц на основе амфифильного поли-N-винилпирролидона (ПВП) и поли-3-гидроксибутирата (ПГБ) в зависимости от среднечисленной молекулярной массы поли-N-винилпирролидона. Массовое соотношение ПВП:ПГБ=10:1. Приведенные данные демонстрируют, что при увеличении размера гидрофильной оболочки частиц (среднечисленной молекулярной массы поли-N-винилпирролидона) увеличивается их стабильность.
Стабильность растворов частиц измерялась органолептически - по выпадению осадка при хранении растворов в закрытых сосудах в темном месте при температуре +5°C.
Данные по выделению модельного лекарственного вещества (рифабутина).
На фиг. 6 продемонстрирована кинетика высвобождения антибиотика рифабутина (Rb) из полимерной формы на основе амфифильного поли-N-винилпирролидона (среднечисленная молекулярная масса ПВП 6 кДа) и полимерной формы на основе поли-3-гидроксибутирата и поли-N-винилпирролидона (MMn(ПВП)=6 кДа). Приведенные данные показывают, что частицы на основе поли-3-гидроксибутирата и поли-N-винилпирролидона (6 кДа-ПГБ-Rb) имеют более пролонгированное действие, чем частицы на основе только поли-N-винилпирролидона (6 кДа-Rb).
На фиг. 7 показана кинетика высвобождения антибиотика рифабутина (Rb) из полимерной формы на основе амфифильного поли-N-винилпирролидона (среднечисленная молекулярная масса ПВП 12 кДа), формы на основе полилактида и поли-N-винилпирролидона (среднечисленная молекулярная масса ПВП 12 кДа), формы на основе сополимера молочной и гликолевой кислот и поли-N-винилпирролидона (среднечисленная молекулярная масса ПВП 12 кДа). Приведенные данные указывают на возможность изменять профиль выделения гидрофобного БАВ путем введения в состав частиц различных гидрофобных полиэфиров: 12 кДа-Rb - частицы на основе амфифильного поли-N-винилпирролидона с включенным антибиотиком рифабутином; 12 кДа-PLA-Rb - частицы на основе амфифильного поли-N-винилпирролидона и полилактида с включенным антибиотиком рифабутином; 12 кДа-PLGA-Rb - частицы на основе амфифильного поли-N-винилпирролидона и сополимера молочной и гликолевой кислот с включенным антибиотиком рифабутином.
Данные по степени включения рифабутина в частицы, полученные из поли-N-винилпирролидона различной среднечисленной молекулярной массы (согласно патенту RU 2325151 С2) и частицы с ядром из поли-3-гидроксибутирата и поли-N-винилпирролидона (согласно методу по настоящему изобретению), представлены в таблице 2. Степень включения рифабутина в полимерные частицы без твердого ядра (согласно патенту RU 2325151 С2) более чем в два раза ниже степени включения активного вещества в частицы с твердым гидрофобным ядром и гидрофильной оболочкой из поли-N-винилпирролидона (согласно настоящему изобретению).
Figure 00000047
Пример 7. Получение гибридной полимерной формы протионамида.
Расчетное количество амфифильного полимера, гидрофобного полимера (например, поли-3-гидроксибутират) и протионамида по изобретению растворяют в этаноле при перемешивании без нагревания. Затем полученный раствор в этаноле добавляют при интенсивном перемешивании к бидистиллированной обеспыленной воде. Полученную эмульсию интенсивно перемешивают 10-20 минут, а затем подвергают воздействию ультразвукового излучения 12-24 минуты при мощности 60 Вт и импульсном режиме (1 сек через 1 сек) (на приборе "VibraCell", США). Органический растворитель отгоняют на роторном испарителе, при наличии осадка, раствор фильтруют на 0.4 или 0.2 мкм фильтрах (Миллипор) и лиофильно сушат.
В таблице 3 и на фиг. 8, 9, характеристики частиц, полученных на основе поли-3-гидроксибутирата и поли-N-винилпирролидона с включенным протионамидом (среднечисленная молекулярная масса поли-N-винилпирролидона (MMn) 6 кДа).
Figure 00000048
На фиг. 10 представлены данные по стабильности частиц на основе амфифильного поли-N-винилпирролидона (ПВП) и поли-3-гидроксибутирата (ПГБ) с включенным протионамидом, в зависимости от среднечисленной молекулярной массы поли-N-винилпирролидона. Массовое соотношение ПВП:ПГБ:Прот=10:1:0,1. Приведенные данные демонстрируют, что при увеличении размера гидрофильной оболочки частиц (среднечисленной молекулярной массы поли-N-винилпирролидона) увеличивается их стабильность.
Стабильность растворов частиц измерялась органолептически - по выпадению осадка при хранении растворов в закрытых сосудах в темном месте при температуре +5°C.
Данные по выделению модельного лекарственного вещества (Амфотерицин В).
На фиг. 11 продемонстрирована кинетика высвобождения антифунгального препарата Амфотерицина В (АмфВ) из полимерной формы на основе поли-3-гидроксибутирата и поли-N-винилпирролидона (MMn(ПВП)=6 кДа). Приведенные данные показывают, что частицы на основе поли-3-гидроксибутирата и поли-N-винилпирролидона (6 кДа-ПГБ-АмфВ) имеют пролонгированное действие, а так же что профиль выделения амфотерицина В является схожим с профилем выделения рифабутина.
Данные по степени включения амфотерицина B в частицы, полученные из поли-N-винилпирролидона различной среднечисленной молекулярной массы (согласно патенту RU 2325151 С2) и частицы с ядром из поли-3-гидроксибутирата и поли-N-винилпирролидона (согласно методу по настоящему изобретению), представлены в таблице 4. Степень включения амфотерицина B в полимерные частицы без твердого ядра (согласно патенту RU 2325151 С2) значительно ниже степени включения активного вещества в частицы с твердым гидрофобным ядром и гидрофильной оболочкой из поли-N-винилпирролидона (согласно настоящему изобретению).
Figure 00000049
В таблице 5 и на фиг. 12, 13 характеристики частиц, полученных на основе поли-3-гидроксибутирата и поли-N-винилпирролидона (среднечисленная молекулярная масса поли-N-винилпирролидона (MMn) 6 кДа) с включенным амфотерицином В.
Figure 00000050
На фиг. 14 представлены данные по стабильности частиц на основе амфифильного поли-N-винилпирролидона (ПВП) и поли-3-гидроксибутирата (ПГБ) с включенным амфотерицином В, в зависимости от среднечисленной молекулярной массы поли-N-винилпирролидона. Массовое соотношение ПВП:ПГБ:АмфВ=10:1:0,1. Приведенные данные демонстрируют, что при увеличении размера гидрофильной оболочки частиц (среднечисленной молекулярной массы поли-N-винилпирролидона) увеличивается их стабильность.
Стабильность растворов частиц измерялась органолептически - по выпадению осадка при хранении растворов в закрытых сосудах в темном месте при температуре +5°C.
Данные по выделению модельного лекарственного вещества (Протионамид).
На фиг. 15 продемонстрирована кинетика высвобождения противотуберкулезного антибиотика протионамида (Прот) из полимерной формы на основе поли-3-гидроксибутирата и поли-N-винилпирролидона (MMn(ПВП)=6 кДа). Приведенные данные показывают, что частицы на основе поли-3-гидроксибутирата и поли-N-винилпирролидона (6 кДа-ПГБ-Прот) имеют пролонгированное действие, а так же что профиль выделения протионамида является схожим с профилем выделения рифабутина и амфотерицина В.
Данные по степени включения протионамида в частицы, полученные из поли-N-винилпирролидона различной среднечисленной молекулярной массы (согласно патенту RU 2325151 С2) и частицы с ядром из поли-3-гидроксибутирата и поли-N-винилпирролидона (согласно методу по настоящему изобретению), представлены в таблице 6. Степень включения протионамида в полимерные частицы без твердого ядра (согласно патенту RU 2325151 С2) ниже степени включения активного вещества в частицы с твердым гидрофобным ядром и гидрофильной оболочкой из поли-N-винилпирролидона (согласно настоящему изобретению).
Figure 00000051

Claims (6)

1. Система доставки малорастворимых и нерастворимых в воде биологически активных веществ с контролируемой кинетикой высвобождения, которая представляет собой сферические наночастицы, содержащие плотное гидрофобное ядро, образованное биосовместимыми и биоразлагаемыми гидрофобными полимерами, такими как полигидроксибутират, полилактид, полигликолид, полидиоксанон, поли-ε-капралактон, полигидроксивалерат, сополимер молочной и гликолевой кислот, в которое включено малорастворимое или нерастворимое в воде биологически активное вещество, окруженное гидрофильными фрагментами амфифильных полимеров, состоящих из одного фрагмента водорастворимого карбоцепного полимера с молекулярным весом Mn=1000-30000 Да и одной концевой гидрофобной группы, включающей один алифатический радикал с числом атомов углерода в углеродной цепи 9÷20.
2. Система доставки по п. 1, отличающаяся тем, что водорастворимый карбоцепной полимер выбирают из поли(N-винил-2-пирролидона), полиакриловой кислоты, полиакриламида, полиметакриловой кислоты, полиэтиленамина, поли(2-аллилоксибензальдегида), полиэфиров карбоновых кислот, поли(N-диалкилакриламида), поли(N-изопропилакриламида), поли(N-(2-гидроксипропил)метакриламида), солей поликарбоновых кислот, а также их сополимеров, в частности поли(N-винил-2-пирролидон-акриламида), поли(N-изопропилакриламид-акриловой кислоты).
3. Система доставки по п. 1, отличающаяся тем, что среднечисловая молекулярная масса амфифильного полимера составляет от 1 до 30 кДа.
4. Система доставки по п. 1, отличающаяся тем, что биологически активное вещество выбирают из группы, состоящей из снотворных и успокаивающих лекарственных веществ, противосудорожных лекарственных веществ, антидепрессантов, противопаркинсонических средств, анальгезирующих и болеутоляющих лекарственных веществ, противовоспалительных лекарственных веществ, сердечно-сосудистых лекарственных веществ, гормональных лекарственных веществ, витаминов, ферментных лекарственных веществ, лекарственных веществ, стимулирующих или регулирующих метаболические процессы, противомикробных, противовирусных и противопаразитарных лекарственных веществ, противогрибковых лекарственных веществ, противоопухолевых лекарственных веществ или диагностических лекарственных веществ.
5. Система доставки по п. 1, отличающаяся тем, что наночастицы имеют размер от 100 до 2000 нм.
6. Способ получения системы доставки мало растворимых и нерастворимых в воде биологически активных веществ с контролируемой кинетикой высвобождения по любому из пп. 1-5, характеризующийся включением малорастворимых и нерастворимых в воде биологически активных веществ в плотное гидрофобное ядро, состоящее из биосовместимых и биоразлагаемых гидрофобных полимеров, и последующей модификацией поверхности такого ядра водорастворимыми амфифильными полимерами методом совместного диспергирования гидрофобного полимера и биологически активного вещества с амфифильным полимером в водно-органической среде при концентрациях амфифильного полимера выше критической концентрации мицеллообразования (ККМ) или критической концентрации агрегации (ККА) с образованием наночастиц, при этом гидрофобные алифатические фрагменты таких амфифильных молекул обращены внутрь частиц, прочно связываясь с гидрофобным ядром за счет гидрофобно-гидрофобного взаимодействия, а гидрофильные полимерные цепи образуют оболочку, придающую водосовместимость указанным частицам.
RU2015131980A 2015-07-31 2015-07-31 Способ получения гибридной двухфазной системы доставки малорастворимых и нерастворимых в воде биологически активных веществ с контролируемой кинетикой выделения RU2607598C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015131980A RU2607598C1 (ru) 2015-07-31 2015-07-31 Способ получения гибридной двухфазной системы доставки малорастворимых и нерастворимых в воде биологически активных веществ с контролируемой кинетикой выделения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015131980A RU2607598C1 (ru) 2015-07-31 2015-07-31 Способ получения гибридной двухфазной системы доставки малорастворимых и нерастворимых в воде биологически активных веществ с контролируемой кинетикой выделения

Publications (1)

Publication Number Publication Date
RU2607598C1 true RU2607598C1 (ru) 2017-01-10

Family

ID=58452604

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015131980A RU2607598C1 (ru) 2015-07-31 2015-07-31 Способ получения гибридной двухфазной системы доставки малорастворимых и нерастворимых в воде биологически активных веществ с контролируемой кинетикой выделения

Country Status (1)

Country Link
RU (1) RU2607598C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077882A2 (en) * 2002-03-18 2003-09-25 Labopharm Inc. Preparation of sterile stabilized nanodispersions
RU2325151C2 (ru) * 2006-06-29 2008-05-27 ООО "Научно-производственный центр "Амфион" Способ получения системы доставки водонерастворимых и плохорастворимых биологически активных веществ и лекарственная форма на ее основе
WO2013124867A1 (en) * 2012-02-21 2013-08-29 Amrita Vishwa Vidyapeetham University Polymer - polymer or polymer - protein core - shell nano medicine loaded with multiple drug molecules

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077882A2 (en) * 2002-03-18 2003-09-25 Labopharm Inc. Preparation of sterile stabilized nanodispersions
RU2325151C2 (ru) * 2006-06-29 2008-05-27 ООО "Научно-производственный центр "Амфион" Способ получения системы доставки водонерастворимых и плохорастворимых биологически активных веществ и лекарственная форма на ее основе
WO2013124867A1 (en) * 2012-02-21 2013-08-29 Amrita Vishwa Vidyapeetham University Polymer - polymer or polymer - protein core - shell nano medicine loaded with multiple drug molecules

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Shilpi Gupta et al. Polyether based amphiphiles for delivery of active components / Polymer, 2012, vol.53, pages 3053-3078. *
William B. Liechty et al. Polymers for Drug Delivery Systems / Annu rev Chem Biomol Eng, 2010, Vol.1, pages 149-173. *
William B. Liechty et al. Polymers for Drug Delivery Systems / Annu rev Chem Biomol Eng, 2010, Vol.1, pages 149-173. Shilpi Gupta et al. Polyether based amphiphiles for delivery of active components / Polymer, 2012, vol.53, pages 3053-3078. *

Similar Documents

Publication Publication Date Title
TWI306869B (en) Amphiphilic block copolymers and nano particles comprising the same
Berkland et al. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres
Freiberg et al. Polymer microspheres for controlled drug release
US20220110863A1 (en) Polymer composite for controlled release of an agent
Murueva et al. Microparticles prepared from biodegradable polyhydroxyalkanoates as matrix for encapsulation of cytostatic drug
Larsson et al. Nanocomposites of polyacrylic acid nanogels and biodegradable polyhydroxybutyrate for bone regeneration and drug delivery
Lee et al. Subcutaneous vaccination using injectable biodegradable hydrogels for long-term immune response
Morgese et al. Ultrastable suspensions of polyoxazoline-functionalized ZnO single nanocrystals
Tsung et al. Biodegradable polymers in drug delivery systems
JP2006131577A (ja) 異なる粒子径を有する薬物封入ナノ粒子の作製方法および当該方法で得られたナノ粒子
Kaur et al. Microwave grafted, composite and coprocessed materials: drug delivery applications
CN109414401A (zh) 用于胃肠外给药的生物可降解聚合物微球组合物
Papaneophytou et al. Polyhydroxyalkanoates applications in drug carriers
Abd El-Hay et al. Biodegradable polymeric microcapsules for sustained release of riboflavin
Moraes et al. Initial development and characterization of PLGA nanospheres containing ropivacaine
US20080138418A1 (en) Nanoparticles composed of alkyl-cyanoacrylate polymers
Priya Dasan et al. Polymer blend microspheres for controlled drug release: The techniques for preparation and characterization: A review article
Suhail et al. Synthesis and evaluation of alginate-based nanogels as sustained drug carriers for caffeine
Victor et al. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles
RU2607598C1 (ru) Способ получения гибридной двухфазной системы доставки малорастворимых и нерастворимых в воде биологически активных веществ с контролируемой кинетикой выделения
WO2016043620A1 (ru) Амфифильные полимеры и системы доставки на их основе
Ulianova et al. Tuning the release rate of rilpivirine from PLGA-based in situ forming implants
Suhail et al. In-vitro and in-vivo evaluation of biocompatible polymeric microgels for pH-driven delivery of Ketorolac tromethamine
JP2017527611A (ja) 脊髄損傷を有する患者において炎症を阻害するための組成物、及びそれを使用する方法
Sarkar et al. Development and in-vitro characterisation of chitosan loaded paclitaxel nanoparticle

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180801