RU2606952C1 - Способ настройки режима компенсации емкостных токов в электрических сетях - Google Patents

Способ настройки режима компенсации емкостных токов в электрических сетях Download PDF

Info

Publication number
RU2606952C1
RU2606952C1 RU2015127388A RU2015127388A RU2606952C1 RU 2606952 C1 RU2606952 C1 RU 2606952C1 RU 2015127388 A RU2015127388 A RU 2015127388A RU 2015127388 A RU2015127388 A RU 2015127388A RU 2606952 C1 RU2606952 C1 RU 2606952C1
Authority
RU
Russia
Prior art keywords
frequency
current
value
network
circuit
Prior art date
Application number
RU2015127388A
Other languages
English (en)
Inventor
Николай Владиславович Данилов
Михаил Иванович Петров
Original Assignee
Николай Владиславович Данилов
Михаил Иванович Петров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Владиславович Данилов, Михаил Иванович Петров filed Critical Николай Владиславович Данилов
Priority to RU2015127388A priority Critical patent/RU2606952C1/ru
Application granted granted Critical
Publication of RU2606952C1 publication Critical patent/RU2606952C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/162Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass for ac systems
    • H02H3/165Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass for ac systems for three-phase systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

Использование: в области электротехники. Технический результат - повышение точности настройки дугогасящих реакторов (ДГР), достоверности результата измерений и расширение области применения. Согласно способу для формирования возмущений в контуре нулевой последовательности (КНП) используют серию импульсов чередующейся полярности с периодом следования в серии, близким или равным периоду собственных колебаний контура. Оцифровывают входные аналоговые значения напряжения несимметрии и тока реактора, используя расчетное значение частоты дискретизации Fd, свободную составляющую получают методом вычитания входного и задержанного на время Т сигнала с учетом изменений промышленной частоты на интервале Т. Определяют собственную частоту колебаний контура нулевой последовательности, сравнивают с частотой промышленной сети, находят значение расстройки и при выходе ее значения за пределы, заданные уставками, воздействуют на изменение индуктивного тока ДГР. 3 з.п. ф-лы, 4 ил.

Description

Уровень техники.
Для компенсации емкостных токов замыкания на землю в сетях 6-35 кВ используются настраиваемые дугогасящие реакторы (ДГР), включаемые в контур нулевой последовательности (КНП) сети. Емкостные токи компенсируют индуктивным током ДГР, при равенстве которых возникает явление резонанса, когда полное сопротивление КНП на промышленной частоте становится чисто активным, а ток в месте замыкания на землю уменьшается до уровня суммарных активных потерь в ДГР и отходящих кабельных линиях.
Известен способ настройки компенсации емкостных токов по переходной характеристике КНП сети [1], выбранный в качестве первого прототипа. В данном способе для получения переходной характеристики в КНП сети подают импульс опорного тока через сигнальную обмотку ДГР, а для выделения свободной составляющей переходного процесса используется осциллограмма напряжения, снимаемая с трансформатора напряжения секции или с сигнальной обмотки ДГР. Свободная составляющая КНП сети выделяется как разностный сигнал двух фрагментов контрольной осциллограммы, зафиксированной до и после действия импульса опорного тока. Собственная частота контура определяется с учетом декремента затухания свободного колебательного процесса. Оценка расстройки производится сравнением промышленной частоты с частотой свободных колебаний КНП, после чего формируется регулирующее воздействие на индуктивность ДГР.
Недостатки способа - зависимость регулирующего воздействия от колебаний частоты промышленной сети, величины и фазы напряжения в контуре нулевой последовательности в момент подачи импульса опорного тока, малая амплитуда переходного процесса возмущения и, как следствие, высокая погрешность определения собственной частоты КНП. Способ не учитывает амплитуду и фазу собственных колебаний КНП в момент подачи импульса опорного тока, что приводит к недопустимо высокой погрешности измерений, когда интервал измерений меньше времени затухания вынужденных колебаний. Кроме того, способ не позволяет выполнять измерения существенных параметров КНП, таких как емкость сети и индуктивность дугогасящего реактора, без дополнительных действий оперативного персонала. Эти недостатки ограничивают область применения рассмотренного способа.
Наиболее близким к предлагаемому изобретению является способ реализации управления настройкой дугогасящего реактора [2], в котором собственная частота КНП также определяется по переходной характеристике сети. Способ, применяемый в устройстве, предполагает задержку оцифрованного сигнала на целое число N полупериодов промышленной частоты, поступающего с аналого-цифрового преобразователя, и возбуждение колебаний в контуре нулевой последовательности. Для выделения свободной составляющей производится суммирование или вычитание текущего и задержанного оцифрованных сигналов при нечетном или четном числе N соответственно. После определения собственной частоты колебаний КНП формируется управляющее воздействие на ДГР через блок сопряжения, который приближает собственную частоту КНП к частоте сети.
Недостаток прототипа - при подаче импульса опорного тока не учитываются колебания частоты промышленной сети, которые вносят погрешность в работу суимматор-вычитателя, малая амплитуда переходного процесса возмущения, не учитывается амплитуда и фаза собственных колебаний КНП в момент подачи импульса опорного тока, что в целом приводит к значительной погрешности определения собственной частоты КНП при малых уровнях полезного сигнала, а также в случаях, когда интервал измерений меньше времени затухания вынужденных колебаний. Учитывая, что автоматика управления ДГР, работающая по принципам [1] и [2] по своей сути являются системами автоматического управления (САУ) с замкнутой обратной связью (ОС), где высокая погрешность определения собственной частоты КНП приводит в лучшем случае к неоптимальным (излишним) управляющим воздействиям на привод ДГР, а в худшем - потерей устойчивости САУ. Способ, реализованный в прототипе [2], также как и способ [1], не предусматривают измерение существенных параметров КНП, таких как емкость сети и индуктивность дугогасящего реактора, без дополнительных действий оперативного персонала.
Недостатки вышеуказанных прототипов вытекают из следующего: простое вычитание осциллограмм по способу [1] приводит к появлению разностного сигнала ошибки после операции вычитания двух участков кривой контрольного сигнала из-за неиспользования информации о периоде промышленной частоты. В отличие от способа настройки [1] способ, реализованный в устройстве [2], позволяет уменьшить погрешность вычисления собственной частоты колебаний КНП, однако на практике частота сети постоянно меняется в ограниченных пределах или «плывет» по заранее неизвестному закону в зависимости от типа генерирующего оборудования и характера нагрузки потребителей. Этот факт указывает на то, что длительность полупериода промышленной частоты, представленная в М тактах фиксированной частоты дискретизации, имеет в худшем случае погрешность, равную периоду дискретизации устройства Td, что приводит к появлению разностного сигнала ошибки после операции вычитания с четным числом N (или суммирования с нечетным N). Таким образом, при использовании элемента задержки реализованного как
Figure 00000001
в сумматоре-вычитателе устройства [2] возникает неустранимая методическая ошибка, пропорциональная периоду дискретизации, умноженному на N. Так, если использовать линию задержки на 20 полупериодов промышленной частоты 50 Гц и Td=1/9600, то погрешность совмещения прямого сигнала и задержанной копии составит Тош=20/9600=2,1 мс, что может повлечь некорректную работу автоматики. (2,1 мс ?)
Известно, что при подаче импульса опорного тока в КНП возникает возмущение пропорционально прикладываемой мощности к обмотке ДГР. Для получения максимально точного результата измерений полезный сигнал возмущения должен значительно превышать уровень помех, обусловленных наведенными напряжениями в кабеле и собственными шумами сети. Так как конструктивно сигнальная обмотка выполнена достаточно тонким проводом (1,5-2 мм), то увеличение мощности опорного тока, с одной стороны, повышает требования к источнику наложения опорного тока, а с другой - может привести к повреждению сигнальной обмотки. На практике однократная подача импульса в сигнальную обмотку не позволяет получить отклик достаточной амплитуды в канале измерения тока из-за того, что мощность импульса сравнима с мощностью потерь в ДГР, а также потерь в элементах разветвленной сети. При этом переходная характеристика напряжения, снятая с сигнальной обмотки или трансформатора напряжения секции, не позволяет определить все ключевые параметры КНП. Ситуацию значительно усугубляет параллельное включение нескольких ДГР, где для корректной работы автоматики мощность импульса опорного тока должна быть увеличена пропорционально количеству установленных ДГР в сети. Учитывая ограничения по току для сигнальных обмоток ДГР, на сегодня, данный вопрос технически остается не разрешенным.
Дополнительные параметры КНП, такие как текущая индуктивность реактора (индуктивный ток реактора) и текущая емкость сети (емкостной ток сети) представляют особый интерес для оперативного персонала электрических станций, так как должны постоянно фиксироваться в рабочих журналах. Автоматические методы измерений таких параметров не представлены в прототипах и на сегодняшний день не известны.
Техническим результатом предлагаемого изобретения является повышение точности настройки и достоверности результата измерения.
Указанная цель достигается тем, что способ настройки режима компенсации емкостных токов на землю в электрических сетях, заключающийся в том, что формируют опорный ток в контуре нулевой последовательности, контролируют напряжение нулевой последовательности, ток реактора, частоту промышленной сети, отличается тем, что для возбуждения затухающих колебаний в контуре нулевой последовательности применяют опорный ток в виде серии импульсов чередующейся полярности с периодом следования в серии, близким или равным периоду собственных колебаний контура, оцифровывают входные аналоговые значения напряжения несимметрии и тока реактора, используя расчетное значение частоты дискретизации Fd, свободную составляющую получают методом вычитания входного и задержанного на время Т сигнала с учетом изменений промышленной частоты на интервале Т, определяют собственную частоту колебаний контура нулевой последовательности, сравнивают с частотой промышленной сети, находят значение расстройки и при выходе ее значения за пределы, заданные уставками, воздействуют на изменение индуктивного тока ДГР. При этом значение частоты дискретизации Fd выбирают на каждом шаге из условия, что ее отношение к частоте промышленной сети должно соответствовать целому значению N, а для возбуждения затухающих колебаний в контуре нулевой последовательности применяют одну или несколько серий импульсов, следующих друг за другом с периодом Т. Одновременно с этим управление скоростью изменения индуктивного тока ДГР производят пропорционально величине расстройки компенсации.
Суть способа настройки режима компенсации емкостных токов в электрических сетях заключается в том, что для получения разностных сигналов напряжения на нейтрали и тока реактора в сигнальную обмотку подается серия из нескольких импульсов разной полярности, частота следования которых внутри серии, близка или равна собственной частоте КНП сети. В своей основе способ использует эффект «накачки», когда накопление энергии в резонансном контуре происходит путем многократного внешнего воздействия с частотой, близкой или равной собственной частоте контура. При этом энергия очередного импульса, прикладываемая к контуру синфазно частоте собственных колебаний, будет увеличивать суммарную энергию контура до тех пор, пока энергия потерь в КНП не сравняется с энергией, получаемой КНП извне. На практике достаточно 5-8 импульсов для получения не зашумленных контрольных сигналов. В результате действия указанного эффекта, происходит усиление контрольных сигналов напряжения и тока реактора пропорционально добротности КНП. Так, на практике, при добротности контура Q=4,8 и использовании 7 импульсов в серии получен эффект усиления контрольных сигналов более чем в 3 раза (см. фиг. 2А и 2Б) по отношению к одиночному импульсу. Кроме того, при последовательном наложении 2-х взаимообратных серий импульсов с интервалом следования, равным времени задержки Т, на выходе фильтра можно получить дополнительное удвоение сигнала (см. фиг. 3).
При выделении собственной частоты колебаний КНП используется способ адаптивной фильтрации, суть которого заключается в том, что период дискретизации аналоговых величин Td и величина задержки адаптивного фильтра Т, равная целому значению периодов промышленной частоты, зависят от текущей частоты промышленной сети. Так, при отсутствии возмущения и наличии напряжения смещения нейтрали с некоторой амплитудой и фазой разностный сигнал на выходе фильтра должен быть равен нулю, в противном случае должен расцениваться как сигнал помехи. При плавном уменьшении частоты сети период дискретизации Td получит положительное приращение, пропорциональное уменьшению частоты сети, устраняя тем самым нарастающий фазовый сдвиг прямого и задержанного сигналов. Аналогично, при увеличении частоты сети период дискретизации Td получит отрицательное приращение, устраняя нарастающий отрицательный фазовый сдвиг прямого и задержанного сигналов. Дополнительно заявляемый способ позволяет рассчитывать индуктивность реактора и емкость сети непосредственно в каждом цикле измерения собственной частоты КНП. Текущая индуктивность ДГР рассчитывается как отношение действующих значений напряжения на реакторе к току реактора за интервал времени, кратный периоду собственных колебаний и умноженному на круговую частоту собственных колебаний КНП.
Figure 00000002
где Lдгр - текущая индуктивность реактора;
3Uo - действующее напряжение КНП;
Iдгр - действующий ток ДГР;
ωc - круговая частота собственных колебаний.
Емкость сети находится по известной формуле исходя из равенства реактивных сопротивлений КНП на частоте резонанса
Figure 00000003
Отсюда емкость сети находится как
Figure 00000004
Для пояснения принципа действия способа на фиг. 1 приведена одна из возможных функциональных схем устройства, использующего предлагаемый способ. Схема содержит электрическую сеть с изолированной нейтралью напряжением 6-35 кВ с коммутируемыми электрическими линиями и их фазными емкостями 11, нейтралеобразующий трансформатор 1, дугогасящий реактор 2, с блоком управления привода 3, формирователь биполярных импульсов 4, который подключен к сигнальной обмотке ДГР, блок управления режимом компенсации 5, в котором по сигналу рассогласования формируется соответствующее управляющее воздействие на блок управления приводом 3 плунжера реактора 2, измеритель частоты сети 6, подключенный к измерительному трансформатору напряжения 7. Измерительный трансформатор напряжения 7 имеет вторичные обмотки типа «разомкнутый треугольник» и «звезда». Свободные составляющие переходных процессов каналов напряжения 3U0 и тока Iдгр выделяется в адаптивных фильтрах 8 и 9, выходные сигналы которых поступают на параметрический вычислитель 10, где вычисляются основные параметры КНП: собственная частота сети, добротность сети, декремент затухания, индуктивность реактора и емкость сети.
Устройство работает следующим образом. В нормальном режиме работы сети, когда отсутствуют какие-либо возмущающие факторы сигналы на выходах адаптивных фильтров 8 и 9 отсутствуют, при этом измеритель частоты сети 6 отслеживает изменения частоты промышленной частоты, корректирует время задержки адаптивных фильтров и частоту дискретизации, уменьшая, таким образом, сигналы ошибки фильтров. В соответствии с алгоритмом блок управления режимом компенсации 5 через формирователь импульсов 4 подает серию коротких импульсов тока разной полярности в сигнальную обмотку ДГР и одновременно с этим запускает параметрический вычислитель 10. При этом период следования импульсов внутри серии выбирается равным периоду собственных колебаний КНП. Количество импульсов в серии выбирается исходя из добротности сети и может быть от 1-3 для сетей с высокой добротностью до 10-и в сетях с низкой добротностью. При первом включении устройства, когда собственная частота контура не известна, используется одиночный импульс опорного тока, при этом определяется только собственная частота КНП, далее все последующие воздействия на сигнальную обмотку выполняются сериями импульсов с последующим уточнением собственной частоты и расчетом всех параметров КНП сети. Блок управления режимом компенсации 5 сравнивает частоту свободных колебаний КНП с промышленной частотой и по результатам сравнения формирует управляющее воздействие через блок управления приводом 3, который увеличивает или уменьшает индуктивность реактора 2. Выходной величиной параметрического вычислителя является текущая величина коэффициента расстройки КНП сети, добротность контура, коэффициент затухания, индуктивность реактора и емкость сети. Расстройка контура нулевой последовательности вычисляется по формуле
Figure 00000005
где f0 - собственная частота контура; fc - частота промышленной сети.
Высокая точность измерений и настройки в данном способе достигается за счет:
- увеличения амплитуды полезного сигнала посредством синфазного способа подачи импульсов «накачки» в контур сети;
- уменьшения погрешности измерений путем коррекции частоты дискретизации и времени задержки Т в зависимости от текущей частоты сети, что обеспечивает стационарность процесса измерений не зависимо от амплитуды и фазы напряжения несимметрии в КНП.
Дополнительно, способ настройки обеспечивает вычисление индуктивности реактора и емкости сети в каждом цикле измерения, что позволяет расширить область применения способа настройки режима компенсации емкостных токов в электрических сетях, например, в качестве способа измерения и мониторинга параметров распределительных электрических сетей.
Проведенные испытания доказали работоспособность заявляемого способа, а также достижение заявляемого результата: повышение точности настройки и достоверности результата измерения.
Литература
1. Патент на изобретение №2475915. Способ настройки компенсации емкостных токов замыкания на землю в электрических сетях. Ильин В.Ф., Петров М.И., Соловьев И.В. Опубликовано в Бюл. №5 20.02.2013 г.
2. Патент на полезную модель №147273. Устройство управления настройкой дугогасящего реактора. Березкин Е.Д., Марченко Г.Н. Опубликовано в Бюл. №30 27.10.2014 г.

Claims (4)

1. Способ настройки режима компенсации емкостных токов на землю в электрических сетях, заключающийся в том, что формируют опорный ток в контуре нулевой последовательности, контролируют напряжение нулевой последовательности, ток реактора, частоту промышленной сети, отличающийся тем, что для возбуждения затухающих колебаний в контуре нулевой последовательности применяют опорный ток в виде серии импульсов чередующейся полярности с периодом следования в серии, близким или равным периоду собственных колебаний контура, оцифровывают входные аналоговые значения напряжения несимметрии и тока реактора, используя расчетное значение частоты дискретизации Fd, свободную составляющую получают методом вычитания входного и задержанного на время Т сигнала с учетом изменений промышленной частоты на интервале Т, определяют собственную частоту колебаний контура нулевой последовательности, сравнивают с частотой промышленной сети, находят значение расстройки и при выходе ее значения за пределы, заданные уставками, воздействуют на изменение индуктивного тока дугогасящего реактора (ДГР).
2. Способ настройки по п. 1, отличающийся тем, что значение частоты дискретизации Fd выбирают на каждом шаге из условия, что ее отношение к частоте промышленной сети должно соответствовать целому значению N.
3. Способ настройки по п. 1, отличающийся тем, что для возбуждения затухающих колебаний в контуре нулевой последовательности применяют одну или несколько серий импульсов, следующих друг за другом с периодом Т.
4. Способ настройки по п. 1, отличающийся тем, что управление скоростью изменения индуктивного тока ДГР производят пропорционально величине расстройки компенсации.
RU2015127388A 2015-07-07 2015-07-07 Способ настройки режима компенсации емкостных токов в электрических сетях RU2606952C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015127388A RU2606952C1 (ru) 2015-07-07 2015-07-07 Способ настройки режима компенсации емкостных токов в электрических сетях

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015127388A RU2606952C1 (ru) 2015-07-07 2015-07-07 Способ настройки режима компенсации емкостных токов в электрических сетях

Publications (1)

Publication Number Publication Date
RU2606952C1 true RU2606952C1 (ru) 2017-01-10

Family

ID=58452463

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015127388A RU2606952C1 (ru) 2015-07-07 2015-07-07 Способ настройки режима компенсации емкостных токов в электрических сетях

Country Status (1)

Country Link
RU (1) RU2606952C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110780160A (zh) * 2019-12-06 2020-02-11 广东电网有限责任公司 一种弧光高阻接地故障检测方法及其装置
CN113258565A (zh) * 2021-05-11 2021-08-13 广东电网有限责任公司韶关供电局 一种频率调节方法、装置、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446951A2 (en) * 1990-03-16 1991-09-18 Mitsubishi Denki Kabushiki Kaisha Four-pole circuit breaker
WO2007008263A2 (en) * 2005-07-08 2007-01-18 Humanizing Technologies, Inc. Self-organized concept search and data storage method
RU2475915C2 (ru) * 2006-12-18 2013-02-20 Ооо "Нпп Бреслер" Способ настройки компенсации емкостных токов замыкания на землю в электрических сетях
RU147273U1 (ru) * 2014-07-10 2014-10-27 Геннадий Николаевич Марченко Устройство управления настройкой дугогасящего реактора

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446951A2 (en) * 1990-03-16 1991-09-18 Mitsubishi Denki Kabushiki Kaisha Four-pole circuit breaker
WO2007008263A2 (en) * 2005-07-08 2007-01-18 Humanizing Technologies, Inc. Self-organized concept search and data storage method
RU2475915C2 (ru) * 2006-12-18 2013-02-20 Ооо "Нпп Бреслер" Способ настройки компенсации емкостных токов замыкания на землю в электрических сетях
RU147273U1 (ru) * 2014-07-10 2014-10-27 Геннадий Николаевич Марченко Устройство управления настройкой дугогасящего реактора

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110780160A (zh) * 2019-12-06 2020-02-11 广东电网有限责任公司 一种弧光高阻接地故障检测方法及其装置
CN113258565A (zh) * 2021-05-11 2021-08-13 广东电网有限责任公司韶关供电局 一种频率调节方法、装置、设备和存储介质

Similar Documents

Publication Publication Date Title
Asiminoaei et al. A digital controlled PV-inverter with grid impedance estimation for ENS detection
Bifaretti et al. Comparison of two three-phase PLL systems for more electric aircraft converters
US10459013B2 (en) Apparatus for and method of providing measurements of uncertainty in respect of a transfer function
JP5985775B1 (ja) 単独運転検出装置及び単独運転検出方法
WO2011124223A2 (en) Power quality improvement by active filter
JP2016520203A (ja) 電気信号計測
JP2008178221A (ja) アクティブフィルタ
Büyük et al. Performance comparison of voltage sag/swell detection methods implemented in custom power devices
CN104502701B (zh) 基于相位调制检测电力信号频率的方法和系统
RU2606952C1 (ru) Способ настройки режима компенсации емкостных токов в электрических сетях
RU2421737C1 (ru) Способ измерения потенциала подземного сооружения и устройство для его осуществления
JP2015161631A (ja) 交流インピーダンス測定装置および交流インピーダンス測定方法
RU2411526C2 (ru) Способ контроля сопротивления изоляции разветвленных сетей постоянного тока и устройство для его осуществления
RU147273U1 (ru) Устройство управления настройкой дугогасящего реактора
RU161784U1 (ru) Устройство автоматической настройки дугогасящего реактора
Patil et al. Modified dual second-order generalized integrator FLL for frequency estimation under various grid abnormalities
Günter et al. A method to measure the network harmonic impedance
RU127536U1 (ru) Устройство автоматической настройки компенсации емкостных токов замыкания на землю
RU2621670C1 (ru) Способ выделения свободной составляющей в контуре нулевой последовательности электрической сети и устройство автоматической настройки дугогасящего реактора на его основе
Chen et al. ADALINE-based shunt active power filter for power quality modification of power system
Mohamed et al. Adaptive Transversal digital Filter for reference current detection in shunt active power filter
RU2646221C1 (ru) Способ настройки компенсации емкостного тока замыкания на землю
Neves et al. A space-vector discrete fourier transform for detecting harmonic sequence components of three-phase signals
RU2667313C2 (ru) Способ измерения эквивалентной емкости сети и устройство для его осуществления
Braca et al. An improved method for grid impedance estimation by digital controlled PV inverters suitable for ENS detection

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170708

NF4A Reinstatement of patent

Effective date: 20181003