RU2605819C1 - Способ и устройство для непрерывного определения концентрации растворенных в воде газов - Google Patents

Способ и устройство для непрерывного определения концентрации растворенных в воде газов Download PDF

Info

Publication number
RU2605819C1
RU2605819C1 RU2015145215/28A RU2015145215A RU2605819C1 RU 2605819 C1 RU2605819 C1 RU 2605819C1 RU 2015145215/28 A RU2015145215/28 A RU 2015145215/28A RU 2015145215 A RU2015145215 A RU 2015145215A RU 2605819 C1 RU2605819 C1 RU 2605819C1
Authority
RU
Russia
Prior art keywords
gas
analyte
carrier gas
concentration
water
Prior art date
Application number
RU2015145215/28A
Other languages
English (en)
Inventor
Алексей Андреевич Васильев
Александр Викторович Писляков
Олег Владимирович Половко
Андрей Владимирович Соколов
Original Assignee
Олег Владимирович Половко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Владимирович Половко filed Critical Олег Владимирович Половко
Priority to RU2015145215/28A priority Critical patent/RU2605819C1/ru
Priority to EA201800219A priority patent/EA031792B1/ru
Priority to PCT/RU2016/000588 priority patent/WO2017069657A1/ru
Application granted granted Critical
Publication of RU2605819C1 publication Critical patent/RU2605819C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

Изобретение относится к способам и устройствам для мониторинга в реальном масштабе времени состояния объектов подводного пространства на наличие газовых течей, а также поиска полезных ископаемых, в частности, метана и других углеводородов. Поток газа-носителя непрерывно перемещают от источника газа-носителя 1 во внутренний объем блока пробоподготовки 2, регулируя скорость потока газа-носителя так, чтобы обеспечить насыщение в мембранном процессе газа-носителя растворенным в воде газом-аналитом. Насыщенный газом-аналитом поток газа-носителя непрерывно перемещают из блока пробоподготовки 2 во внутренний объем газочувствительного элемента 3. С помощью газового сенсора производят определение концентрации газа-аналита в потоке газа-носителя. После определения концентрации газа-аналита газ-носитель, прошедший через газочувствительный элемент 3, вместе с содержащимся в нем газом-аналитом выводят через газоотводную трубку 4. Техническим результатом является непрерывное определение концентрации растворенных в воде газов в реальном масштабе времени. 2 н. и 14 з.п. ф-лы, 1 ил.

Description

Область применения
Изобретение относится к способам и устройствам для мониторинга состояния объектов подводного пространства, в том числе морского (океанского) дна и/или шельфа на наличие газовых течей, а также поиска полезных ископаемых, в частности месторождений углеводородов.
Предшествующий уровень техники
Известны способ и устройство, в котором определение концентрации метана, растворенного в воде, производится путем отбора проб воды в специальные емкости с последующим анализом паровой фазы над поверхностью воды с растворенным в ней метаном с помощью газового хроматографа.
Согласно руководящему документу (Руководящий документ. Методика выполнения измерений концентрации метана в водах парофазным газохроматографическим методом. РД 52.24.512-2002. Дата введения 2003-01-01, разработан Гидрохимическим институтом) для проведения каждого единичного анализа требуются трудозатраты 1,8 чел./час.
Таким образом, известные способ и устройство не могут быть использованы для непрерывного определения концентрации растворенных в воде углеводородов в реальном масштабе времени, поскольку процесс измерения концентрации метана посредством указанного способа и устройства состоит из отдельных этапов и не является непрерывным, а на проведение каждого единичного анализа требуется более одного часа.
Известны способ и устройство для определения концентрации углеводородов, растворенных в воде с помощью их экстракции летучими растворителями (Стандарт DIN ISO 9377-2:2000. S. Drozdova, W. Ritter, B. Lendl, E. Rosenberg. Challenges in the determination of petroleum hydrocarbons in water by gas chromatography /hydrocarbon index/. Fuel 113 (2013) 527-536.).
Известные способ и устройство стандартизованы ISO. Они состоят в отборе пробы с последующей экстракцией углеводородов с помощью летучих растворителей и проведении анализа полученного экстракта с помощью хроматографа. Известные способ и устройство не могут быть использованы для непрерывного определения концентрации углеводородов в воде, так как процесс определения концентрации углеводородов занимает несколько часов и состоит из отдельных операций, требующих последовательного и полного выполнения.
Также известен способ поиска залежей нефти и газа (патент RU 2512741, опубл. 10.04.2014, МПК G01V 9/00), который включает выполнение бурения серии неглубоких скважин для взятия кернов и определение концентрации потенциально содержащихся в кернах углеводородных газов в газовой среде. Бурение производится до глубины 1-3 м, анализ углеводородных газов осуществляется барботированием через минерализованную воду. Дополнительно проводится анализ газовоздушной смеси внутри скважин на наличие гелия, радона, водорода, азота, диоксида углерода и кислорода. При этом месторождение нефти или газа определяется как область с наиболее благоприятными содержаниями гелия, радона, водорода, азота, диоксида углерода и кислорода и углеводородных газов.
Известное техническое решение не может быть использовано для непрерывного определения концентрации растворенных в воде углеводородов в реальном масштабе времени, поскольку не является прямым способом определения концентрации растворенных в воде углеводородов и для его реализации требуются продолжительные дополнительные операции - бурение скважин на морском дне и анализ их содержимого.
Также известно устройство для прямого масс-спектрометрического определения метана и его летучих гомологов в воде (В.Т. Коган, А.С. Антонов, Д.С. Лебедев, С.А. Власов, А.Д. Краснюк. Прямое масс-спектрометрическое определение метана и его летучих гомологов в воде. Журнал технической физики, 2013, том 83, вып. 3.), в котором в качестве блока пробоподготовки используют глухую ампулу, через стенку которой диффундирует целевой газ (пары углеводородов), а газ из ампулы отбирается с помощью высоковакуумного насоса и направляется на вход масс-спектрометра, используемого в качестве детектора целевого газа.
Недостатком устройства является использование в качестве детектора целевых газов в погружаемом в воду устройстве масс-спектрометра массой 20 кг, что существенно ограничивает его применение на компактных автономных непилотируемых подводных аппаратах. Кроме того, в указанном устройстве принципиальным элементом является высоковакуумный электрический насос, требующий значительного энергообеспечения, что также существенно ограничивает возможности работы под водой выбранного прототипа как в автономном режиме, так и при буксировке за движущимся исследовательским судном.
Так, автономный аппарат-носитель для данного устройства должен обладать внушительными массогабаритными характеристиками и, главное, мощными источниками энергии для обеспечения работы движительной установки и собственно устройства. Указанные обстоятельства неизбежно влекут за собой высокую цену на само устройство и значительные издержки на средства его доставки, пилотирования и обеспечения работы.
Для снижения издержек могут применять т.н. буксируемый вариант, когда основная энергозатратная и наиболее массогабаритная часть устройства размещена на судне-буксире, а под водой постоянно находится элемент для забора водных проб, жестко соединенный с основным устройством. Однако указанное техническое решение может применяться на глубинах не более 30 метров, что существенно ограничивает практическую сферу его применения. А при наличии преград на поверхности воды (например, лед) использование указанного устройства становится практически невозможным. В этой связи применение указанного устройства для решения практических задач, например поиска углеводородов на арктическом шельфе России представляется либо низкоэффективным, либо вообще невозможным.
Помимо этого, естественным следствием применения масс-спектрометра и глухой ампулы в качестве устройства пробоподготовки является то, что постоянная времени определения концентрации метана в воде составляет около 10 минут. Такая длительность проведения каждого единичного измерения метана делает невозможным непрерывное определение концентрации растворенных в воде углеводородов в реальном масштабе времени, так как требует остановки на время измерения концентрации, например, метана. А в случае непрерывного движения аппарата-носителя или судна-буксира с указанным устройством соотнесение точек измерения концентрации растворенных в воде углеводородов с реальными местами их естественной течи будет крайне затруднено и приведет к недопустимо большим погрешностям в определении таких мест.
Например, при буксировке такого устройства за судном со скоростью 20 узлов (примерно 10 метров в секунду) неточность определения места течи углеводородов будет составлять до 6 километров. Такая большая погрешность при соотнесении точек концентрации растворенных в воде углеводородов (метана) с местами их естественной течи на морском дне (шельфе) делает невозможным выполнение задачи высокоточного поиска подводных месторождений углеводородов и мест бурения скважин на морском дне (шельфе).
Сущность изобретения
Технической задачей настоящего изобретения является создание способа и устройства, полностью или частично размещаемого под водой и непрерывно определяющего в реальном масштабе времени концентрацию растворенных в воде газов.
Технический результат данного изобретения заключается в быстром и прямом определении концентрации растворенных в воде газов, в частности метана и других углеводородов (газы-аналиты).
Поставленная задача решается тем, что в способе непрерывного определения концентрации растворенных в воде газов, заключающемся в насыщении в мембранном процессе газа-носителя, контактирующего с водой, газом-аналитом, растворенным в воде, и последующем определении концентрации газа-аналита в газе-носителе, согласно предложенному решению поток газа-носителя непрерывно перемещают в одном направлении, регулируя его скорость, обеспечивая насыщение газа-носителя газом-аналитом, а концентрацию газа-аналита в газе-носителе измеряют в реальном масштабе времени после насыщения газа-носителя газом-аналитом, при этом газ-носитель после измерения в нем концентрации газа-аналита удаляют.
В качестве газа-носителя может быть использован воздух.
Концентрация газа-аналита в газе-носителе может быть определена путем измерения изменения сопротивления нанокристаллического полупроводникового материала при хемосорбции на его поверхности газа-аналита.
Концентрация газа-аналита в газе-носителе может быть определена по поглощению света в инфракрасной области в результате его абсорбции газом-аналитом.
Концентрация газа-аналита в газе-носителе может быть определена по тепловому эффекту реакции каталитического окисления газа-аналита.
Концентрация газа-аналита в газе-носителе может быть определена по изменению электрохимического потенциала или тока электрода, контактирующего с газом-носителем с содержащимся в нем газом-аналитом.
Концентрация газа-аналита в газе-носителе может быть определена по изменению теплопроводности газа-носителя с содержащимся в нем газом-аналитом.
Концентрация газа-аналита в газе-носителе может быть определена по изменению резонансной частоты пьезоэлектрического резонатора, покрытого слоем сорбента, при адсорбции газа-аналита.
Поставленная задача решается тем, что в устройстве для осуществления способа, включающем источник газа-носителя, блок пробоподготовки и присоединенные к нему последовательно газочувствительный элемент и газоотводную трубку, согласно предложенному решению блок пробоподготовки выполнен в виде погружаемой в воду прямой или изогнутой трубки, изготовленной из материала, селективно проницаемого для газа-аналита и непроницаемого для воды, а газочувствительный элемент выполнен в виде камеры, не сообщающейся с водой, с помещенным в ней газовым сенсором, соединенным с блоком управления, причем газовый вход газочувствительного элемента присоединен к выходному концу блока пробоподготовки, а выход присоединен к газоотводной трубке.
В качестве газа-носителя может быть использован воздух.
В качестве источника газа-носителя может быть использован компрессор, баллон со сжатым газом или химический источник газа - ампула с химическим веществом, из которой в результате химической реакции выделяется газ.
В качестве материала, селективно проницаемого для газа-аналита и непроницаемого для воды, может быть использован полидиметилсилоксан толщиной от 0,001 до 1 мм.
В качестве материала, селективно проницаемого для газа-аналита и непроницаемого для воды, может быть использована гидрофобизированная пористая керамика толщиной от 0,01 до 10 мм.
В качестве гидрофобизатора могут быть использованы фторированные алкоксисиланы.
В качестве газочувствительного элемента может быть использован газочувствительный сенсор полупроводникового типа, или термокаталитического, или оптического, или пьезоэлектрического, или электрохимического, или фотоакустического, или фотоионизационного типа.
Входной и выходной концы газоотводной трубки могут быть оснащены обратными клапанами, не препятствующими выходу газа-носителя с содержащимся в нем газом-аналитом и не допускающими попадания воды в газоотводную трубку.
Выходной конец газоотводной трубки может быть снабжен поплавком и обратным клапаном, не допускающим попадания воды в газоотводную трубку.
Краткое описание чертежей
На чертеже представлен общий вид устройства.
Устройство состоит из источника газа-носителя 1 с регулятором газового потока (в качестве источника газа-носителя может выступать, например, компрессор, баллон со сжатым газом, химический источник газа), соединенного с блоком пробоподготовки 2, выполненным в виде погружаемой в воду прямой или изогнутой трубки, изготовленной из материала, селективно проницаемого для газа-аналита и непроницаемого для воды. Во внутреннем объеме блока пробоподготовки 2, газочувствительного элемента 3 и газоотводной трубки 4 размещен и непрерывно перемещается по направлению от блока пробоподготовки 2 к газочувствительному элементу 3 и затем к газоотводной трубке 4 газ-носитель. Газочувствительный элемент 3 представляет собой не сообщающуюся с водой камеру с помещенным в ней газовым сенсором, соединенным с блоком управления 5, причем газовый вход газочувствительного элемента 3 присоединен к выходному концу блока пробоподготовки 2, а выход присоединен к газоотводной трубке 4, оснащенной одним или несколькими клапанами, не препятствующими выходу газа-носителя и газа-аналита и не допускающими попадания воды в газоотводную трубку 4.
Осуществление изобретения
Под воду (например, на морском шельфе) погружают устройство для непрерывного измерения концентрации растворенных в воде газов, в частности метана и других углеводородов. Из источника газа-носителя 1 с регулятором во внутреннем объеме блока пробоподготовки 2 поток газа-носителя непрерывно перемещают, регулируя его скорость так, чтобы обеспечить насыщение газа-носителя газом-аналитом. Насыщенный газом-аналитом поток газа-носителя непрерывно перемещают из блока пробоподготовки 2 во внутренний объем газочувствительного элемента 3, соединенного с блоком управления 5, где с помощью газового сенсора производят определение концентрации газа-аналита в потоке газа-носителя, автоматически регистрируемое в памяти устройства. После определения концентрации газа-аналита газ-носитель, прошедший через газочувствительный элемент 3, вместе с содержащимся в нем газом-аналитом выводят через газоотводную трубку 4 и вторично не используют. В течение всего процесса определения концентрации растворенных в воде газов движение газа-носителя во внутреннем объеме устройства не прерывается.
Предложенное решение позволяет непрерывно определять концентрацию растворенных в воде газов, в частности метана и других углеводородов, в реальном масштабе времени.
Изобретение может быть использовано в виде устройств, предназначенных для установки на автономные пилотируемые и непилотируемые подводные аппараты, автономные пилотируемые и непилотируемые водные аппараты, автономные пилотируемые и непилотируемые многосредные аппараты, подводную часть надводных судов; для буксирования за автономными пилотируемыми и непилотируемыми подводными, водными, многосредными аппаратами, надводными судами, а также для установки на морском дне, шельфе или иных объектах, погруженных в водную среду.

Claims (16)

1. Способ непрерывного определения концентрации растворенных в воде газов, заключающийся в насыщении в мембранном процессе газа-носителя, контактирующего с водой, газом-аналитом, растворенным в воде, и последующем определении концентрации газа-аналита в газе-носителе, отличающийся тем, что поток газа-носителя непрерывно перемещают в одном направлении, регулируя его скорость, обеспечивая насыщение газа-носителя газом-аналитом, а концентрацию газа-аналита в газе-носителе измеряют в реальном масштабе времени после насыщения газа-носителя газом-аналитом, при этом газ-носитель после измерения в нем концентрации газа-аналита удаляют.
2. Способ по п. 1, отличающийся тем, что в качестве газа-носителя используется воздух.
3. Способ по п. 1, отличающийся тем, что концентрацию газа-аналита в газе-носителе определяют, измеряя изменение сопротивления нанокристаллического полупроводникового материала при хемосорбции на его поверхности газа-аналита.
4. Способ по п. 1, отличающийся тем, что концентрацию газа-аналита в газе-носителе определяют по поглощению света в инфракрасной области в результате его абсорбции газом-аналитом.
5. Способ по п. 1, отличающийся тем, что концентрацию газа-аналита в газе-носителе определяют по тепловому эффекту реакции каталитического окисления газа-аналита.
6. Способ по п. 1, отличающийся тем, что концентрацию газа-аналита в газе-носителе определяют по изменению электрохимического потенциала или тока электрода, контактирующего с газом-носителем с содержащимся в нем газом-аналитом.
7. Способ по п. 1, отличающийся тем, что концентрацию газа-аналита в газе-носителе определяют по изменению теплопроводности газа-носителя с содержащимся в нем газом-аналитом.
8. Способ по п. 1, отличающийся тем, что концентрацию газа-аналита в газе-носителе определяют по изменению резонансной частоты пьезоэлектрического резонатора, покрытого слоем сорбента, при адсорбции газа-аналита.
9. Устройство для осуществления способа, включающее источник газа-носителя, блок пробоподготовки и присоединенные к нему последовательно газочувствительный элемент и газоотводную трубку, отличающееся тем, что блок пробоподготовки выполнен в виде погружаемой в воду прямой или изогнутой трубки, изготовленной из материала, селективно проницаемого для газа-аналита и непроницаемого для воды, а газочувствительный элемент выполнен в виде камеры, не сообщающейся с водой, с помещенным в ней газовым сенсором, соединенным с блоком управления, причем газовый вход газочувствительного элемента присоединен к выходному концу блока пробоподготовки, а выход присоединен к газоотводной трубке.
10. Устройство по п. 9, отличающееся тем, что в качестве материала, селективно проницаемого для газа-аналита, в частности метана и других углеводородов, и непроницаемого для воды, используют полидиметилсилоксан толщиной от 0,001 до 1 мм.
11. Устройство по п. 9, отличающееся тем, что в качестве материала, селективно проницаемого для газа-аналита, в частности метана и других углеводородов, и непроницаемого для воды, используют гидрофобизированную пористую керамику толщиной от 0,01 до 10 мм.
12. Устройство по п. 11, отличающееся тем, что в качестве гидрофобизатора используют фторированные алкоксисиланы.
13. Устройство по п. 9, отличающееся тем, что в качестве источника газа-носителя используют компрессор, баллон со сжатым газом или химический источник газа - ампулу с химическим веществом, из которой в результате химической реакции выделяется газ.
14. Устройство по п. 9, отличающееся тем, что в качестве газочувствительного элемента используют газочувствительный сенсор полупроводникового типа, или термокаталитического, или оптического, или пьезоэлектрического, или электрохимического, или фотоакустического, или фотоионизационного типа.
15. Устройство по п. 9, отличающееся тем, что входной и выходной концы газоотводной трубки оснащены обратными клапанами, не препятствующими выходу газа-носителя с содержащимся в нем газом-аналитом и не допускающими попадания воды в газоотводную трубку.
16. Устройство по п. 9, отличающееся тем, что выходной конец газоотводной трубки снабжен поплавком и обратным клапаном.
RU2015145215/28A 2015-10-21 2015-10-21 Способ и устройство для непрерывного определения концентрации растворенных в воде газов RU2605819C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2015145215/28A RU2605819C1 (ru) 2015-10-21 2015-10-21 Способ и устройство для непрерывного определения концентрации растворенных в воде газов
EA201800219A EA031792B1 (ru) 2015-10-21 2016-08-31 Способ и устройство для непрерывного определения концентрации растворенных в воде газов
PCT/RU2016/000588 WO2017069657A1 (ru) 2015-10-21 2016-08-31 Способ и устройство для непрерывного определения концентрации растворенных в воде газов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015145215/28A RU2605819C1 (ru) 2015-10-21 2015-10-21 Способ и устройство для непрерывного определения концентрации растворенных в воде газов

Publications (1)

Publication Number Publication Date
RU2605819C1 true RU2605819C1 (ru) 2016-12-27

Family

ID=57793664

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015145215/28A RU2605819C1 (ru) 2015-10-21 2015-10-21 Способ и устройство для непрерывного определения концентрации растворенных в воде газов

Country Status (3)

Country Link
EA (1) EA031792B1 (ru)
RU (1) RU2605819C1 (ru)
WO (1) WO2017069657A1 (ru)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2204127C2 (ru) * 2001-05-18 2003-05-10 Открытое акционерное общество "Ангарское опытно-конструкторское бюро автоматики" Способ измерения концентрации газов, растворенных в трансформаторном масле
RU2478084C2 (ru) * 2011-07-01 2013-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный архитектурно-строительный университет" (СГАСУ) Композиция для производства водостойкого пористого заполнителя
WO2014109410A1 (ja) * 2013-01-11 2014-07-17 株式会社アクアバンク 溶存水素濃度の測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
В.Т. Коган et al, Прямое масс-спектрометрическое определение метана и его летучих гомологов в воде, Журнал технической физики, том 83, вып. 3, 132-139, 2013;RU 2001127288 A 27.06.2003;RU 2204127 C2 10.05.2003;WO2014109410 A1 17.07.2014. *

Also Published As

Publication number Publication date
EA201800219A1 (ru) 2018-07-31
EA031792B1 (ru) 2019-02-28
WO2017069657A1 (ru) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5448045B2 (ja) 漏洩co2検出方法及び漏洩co2検出装置、地中貯留co2の漏洩モニタリング方法
RU2014123721A (ru) Способ разведки и система для обнаружения углеводородов
RU2571169C2 (ru) Автоматизированный анализ пластовых флюидов, находящихся под давлением
US10067111B2 (en) System and method to measure dissolved gases in liquid
CA2507354A1 (en) Probe, measurement system and method for measuring concentrations of gaseous components of soil air, and rates of gas transport in soil
Schlüter et al. Application of membrane inlet mass spectrometry for online and in situ analysis of methane in aquatic environments
RU2715724C2 (ru) Конденсатно-газовые соотношения углеводородсодержащих текучих сред
Andrews et al. A fully automated purge and trap GC-MS system for quantification of volatile organic compound (VOC) fluxes between the ocean and atmosphere
Rillard et al. The DEMO-CO2 project: A vadose zone CO2 and tracer leakage field experiment
Tumba et al. Phase equilibria of clathrate hydrates of ethane+ ethene
Ju et al. Application of natural and artificial tracers to constrain CO2 leakage and degassing in the K-COSEM site, South Korea
De Prunelé et al. Focused hydrocarbon‐migration in shallow sediments of a pockmark cluster in the Niger Delta (off Nigeria)
Wang et al. Modeling and measurement of CO2 solubility in salty aqueous solutions and application in the Erdos Basin
Gentz et al. Underwater cryotrap‐membrane inlet system (CT‐MIS) for improved in situ analysis of gases
Liu et al. A review on the methane emission detection during offshore natural gas hydrate production
RU2605819C1 (ru) Способ и устройство для непрерывного определения концентрации растворенных в воде газов
Martinotti et al. A flow injection analyser conductometric coupled system for the field analysis of free dissolved CO 2 and total dissolved inorganic carbon in natural waters
CN108020608A (zh) 一种检测水中甲烷含量的方法
De Gregorio et al. Long-term continuous monitoring of the dissolved CO2 performed by using a new device in groundwater of the Mt. Etna (southern Italy)
AU2020279903A1 (en) Systems and methods for finding and sampling hydrocarbons in water
RU2484503C1 (ru) Способ гелиевой съемки на акваториях
Ming-Gang et al. Simultaneous determination of chlorofluorocarbons and sulfur hexafluoride in seawater based on a purge and trap gas chromatographic system
Newell et al. Tracing CO2 leakage into groundwater using carbon and strontium isotopes during a controlled CO2 release field test
Zaidin et al. Impact of H2s in predicting the storage efficiency of Co2 injection in a high pressure high temperature (Hpht) carbonate aquifer-a case study in a sarawak offshore high CO2 gas field, malaysia
Zimmer et al. The gas membrane sensor (GMS) method: a new analytical approach for real-time gas concentration measurements in volcanic lakes