RU2604573C1 - Быстродействующее устройство измерения температуры газового потока - Google Patents

Быстродействующее устройство измерения температуры газового потока Download PDF

Info

Publication number
RU2604573C1
RU2604573C1 RU2015135577/28A RU2015135577A RU2604573C1 RU 2604573 C1 RU2604573 C1 RU 2604573C1 RU 2015135577/28 A RU2015135577/28 A RU 2015135577/28A RU 2015135577 A RU2015135577 A RU 2015135577A RU 2604573 C1 RU2604573 C1 RU 2604573C1
Authority
RU
Russia
Prior art keywords
input
output
code
measurement channel
measurement
Prior art date
Application number
RU2015135577/28A
Other languages
English (en)
Inventor
Виль Файзулович Галиакбаров
Жанна Артуровна Сухинец
Артур Игоревич Гулин
Владимир Дмитриевич Ковшов
Эмилия Вильевна Галиакбарова
Марат Сабирович Каримов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет"
Priority to RU2015135577/28A priority Critical patent/RU2604573C1/ru
Application granted granted Critical
Publication of RU2604573C1 publication Critical patent/RU2604573C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/024Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving gases

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Изобретение относится к термометрии и может быть использовано для измерения быстропротекающих высокотемпературных процессов в газодинамике и построения систем автоматического регулирования температуры. Быстродействующее устройство измерения температуры газового потока состоит из двух каналов измерения для реализации дифференциальной схемы и блока обработки информации. Каждый канал измерения содержит струйный генератор, пьезоэлектрический преобразователь для преобразования акустического сигнала в электрический, электронно-перестраиваемый фильтр, компаратор фаз, ключ, генератор пилообразного напряжения, одновибратор, преобразователь напряжение-код. Блок обработки информации содержит вычитатель кодов, один элемент «ИЛИ», три схемы «И», первый и второй инвертор, два делителя кодов. В устройстве реализуется принцип фазовой автоподстройки первой гармоники частоты полигармонического сигнала с применением электронно-перестраиваемого фильтра, управляемого генератором пилообразного напряжения, и цифровой обработки измерительной информации, реализующей дифференциальный способ измерения. Технический результат - повышение быстродействия и точности, а также упрощение схемы устройства для измерения температуры газового потока, с сохранением работоспособности при выходе из строя одного из каналов измерения. 1 табл., 2 ил.

Description

Изобретение относится к термометрии и может быть использовано для измерения быстропротекающих высокотемпературных процессов в газодинамике и построения систем автоматического регулирования температуры.
Известно устройство для измерения температуры газового потока (А.с. 909590 СССР, МКИ G01K 13/02. Опубл. 28.02.1982. Бюл. №8), содержащее два струйных генератора, выходы которых через преобразователи акустического сигнала в электрический сигнал соединены с входами схемы выделения разностной частоты, выход которой соединен с измерительным блоком, два делителя частоты, схему вычитания частот, входы которой соответственно через делители частоты соединены с входами схемы выделения разностной частоты, а выход соединен с входом измерительного блока.
Недостатками аналога являются низкая точность измерения температуры и неполное использование широкого диапазона работы струйного генератора. Это обусловлено тем, что гармоники основной частоты полигармонического сигнала струйного генератора попадают в рабочий диапазон устройства, причем некоторые из них значительно усиливаются пьезоэлектрическим преобразователем из-за совпадения его собственной частоты резонанса с частотой гармоники.
Наиболее близким по технической сущности является устройство для измерения температуры газового потока (А.с. 1093911 СССР, МКИ G01K 13/02. Опубл. 23.05.1984. Бюл. №19), содержащее два блока фильтров, при этом выходы каждого преобразователя акустического сигнала в электрический подключены к входу схемы выделения разностной частоты через соответствующий блок фильтров, каждый из которых содержит группу полосовых фильтров, выходы которых подключены соответственно к входам ключей и входам формирователей, выходы которых, за исключением последнего формирователя, подключены через инверторы соответственно к первым входам схем совпадения, выходы которых соединены соответственно с управляющими входами ключей со второго по последний, причем управляющий вход первого ключа соединен с выходом первого формирователя, выход второго формирователя соединен с вторым входом первой схемы совпадения, а каждый второй, с второго по k-й, вход k-й схемы совпадения, начиная с второй, подключен соответственно к выходам инверторов с первого по k-й, при этом выход последнего формирователя соединен с дополнительным входом последней схемы совпадения.
Основными существенными недостатками прототипа являются сложная система выделения информативного параметра из полигармонического выходного сигнала с использованием множества полосовых фильтров, недостаточные быстродействие, точность и надежность.
Задачей заявляемого изобретения является повышение быстродействия и точности, а также упрощение схемы устройства для измерения температуры газового потока, с сохранением работоспособности при выходе из строя одного из каналов измерения.
Поставленная задача решается использованием быстродействующего устройства измерения температуры газового потока, состоящего из двух каналов измерения и блока обработки информации, при этом каждый из двух каналов измерения содержит струйный генератор, пьезоэлектрический преобразователь, электронно-перестраиваемый фильтр, соединенный с первым входом компаратора фаз, осуществляющий фазовую подстройку частоты фильтра до равенства фаз с первой гармоники полигармонического сигнала, поступающего непосредственно с выхода пьезоэлектрического преобразователя на второй вход компаратора, выход которого через ключ соединен с первым управляющим входом генератора пилообразного напряжения, второй вход которого соединен с одновибратором, а выход соединен с управляющим входом электронно-перестраиваемого фильтра, при этом выход генератора пилообразного напряжения первого канала измерения соединен со вторым входом первой схемы «И», первым инвертором блока обработки информации и с преобразователем напряжение-код; выход генератора пилообразного напряжения второго канала измерения соединен с первым входом первой схемы «И», вторым инвертором блока обработки информации и с преобразователем напряжение-код; при этом выход преобразователя напряжение-код первого канала измерения соединен с первым делителем кода блока обработки информации и с первым входом вычитателя кодов, а выход преобразователя напряжение-код второго канала измерения соединен со вторым делителем кода и со вторым входом вычитателя кодов; разница кодов, реализующая дифференциальную схему измерения температуры, через третий вход первой схемы «И» и элемент «ИЛИ» поступает на выход.
При выходе из строя первого канала измерения в блоке обработки информации устанавливается соединение преобразователя напряжение-код второго канала измерения через второй делитель кодов, второй вход второй схемы «И», первый вход которого соединен с выходом генератора пилообразного напряжения первого канала измерения через первый инвертор, и элемент «ИЛИ» на выход.
В случае выхода из строя второго канала измерения в блоке обработки информации устанавливается соединение преобразователя напряжение-код первого канала измерения через первый делитель кодов, второй вход третьей схемы «И», первый вход которого соединен с выходом генератора пилообразного напряжения второго канала измерения через второй инвертор, и элемент «ИЛИ» на выход.
Технический результат достигается использованием электронно-перестраиваемого фильтра, управляемого генератором пилообразного напряжения для фазовой автоподстройки первой гармоники частоты полигармонического сигнала с выхода пьезоэлектрического преобразователя, и цифровой обработкой измерительной информации.
Кроме того, сущность технического решения поясняется чертежами, где:
- на фиг. 1 - принципиальная схема электронно-перестраиваемого фильтра;
- на фиг. 2 представлена блок-схема быстродействующего устройства измерения температуры газового потока.
Сущность: в устройстве реализуется принцип фазовой автоподстройки первой гармоники частоты полигармонического сигнала с применением электронно-перестраиваемого фильтра, управляемого генератором пилообразного напряжения, и цифровой обработки измерительной информации, реализующей дифференциальный способ измерения.
Применение фазовой автоподстройки частоты для электронно-перестраиваемого фильтра (ЭПФ) повышает точность, т.к. отсутствует методическая погрешность в момент измерения частоты (см. Радиоприемные устройства / Под ред. А.П. Жуковского. - М.: Высшая школа, 1989. С. 195), и быстродействие, т.к. роль перестраиваемых емкостей в ЭПФ выполняют варикапы, практически безынерционные элементы до субмиллиметрового диапазона (см. Берман Л.С. Введение в физику варикапов. - Л.: Наука, 1968. С. 38), а измерение номинальной частоты без промежуточных преобразований значительно упрощает схему, что повышает надежность устройства.
Для расширения диапазона частоты перестройки ЭПФ применяется цепная трехполюсная структура (ЦТС), состоящая из n/2 RC-звеньев, где роль емкостей C выполняют варикапы (Фиг. 1).
Известные традиционные методы исследования не позволили получить аналитические выражения, связывающие диапазон измерения
Figure 00000001
и частоту настройки (квазирезонанса) ω0 с числом n/2 RC-звеньев ЭПФ, тем более состоящих из нелинейных элементов (варикапов) и тем самым решить актуальную проблему.
Использование метода функций преобразования (ФП) позволило устранить этот пробел (см. Гулин А.И. Диагностика измерительных преобразователей и устройств связи с неоднородной цепной структурой // Контроль. Диагностика. 2010. №11. С. 69-72). Оказалось, что вычисление частот квазирезонансов при произвольном количестве звеньев n/2, где n число плеч структуры, сводится к определению коэффициента kn (см. Гулин А.И. Проектирование многозвенных RC-генераторов // Изв. вузов Приборостроение. - 2012. - Т. 56. - №3. - С. 14-18) из выражения
Figure 00000002
В результате аналитического анализа впервые получена формула определения коэффициента kn однородных ЦТС с произвольным количеством RC-звеньев
Figure 00000003
где p=0,25n-1.
Из всех вещественных положительных корней уравнения (2) необходимо использовать наименьший (для шестиплечей ЦТС оно равно
Figure 00000004
), так как использование других значений, удовлетворяющих условию (2), приведет к сдвигу фаз на 2π радиан и более. В таблице для примера приведены значения коэффициентов kn для числа плеч ЦТС n от 6 до 40.
Figure 00000005
Для расчета сложных ЦТС можно воспользоваться программой (см. Гулин А.И., Сухинец Ж.А., Мударисов Д.Ф., Хаников И.Р. Расчет частоты квазирезонанса и коэффициента передачи многозвенных RC-структур // Свидетельство об официальной регистрации программы для ЭВМ №2003611147 / 16.05.2003. Роспатент. Москва. 2003).
Рассмотрим рекомендации построения ЭПФ. Емкость варикапа определяется из выражения
Figure 00000006
,
где CB, UB - емкость и напряжение смещения варикапа, соответствующие верхней частоте перестройки;
Uупр - напряжение управления смещением варикапов;
φk - контактная разность потенциалов p-n перехода, лежащая в пределах 0,4÷0,7 В;
b - коэффициент, зависящий от распределения примесей в переходе, равный 0,5 для варикапов с резким p-n переходом.
Следовательно, выражение (1) при использовании варикапов примет вид
Figure 00000007
Зная диапазон изменения первой гармоники выходной частоты струйного генератора
Figure 00000008
, равный
Figure 00000009
,
где Cmax - максимальная емкость варикапа, соответствующая нижней частоте перестройки фильтра, получим выражение для определения коэффициента kn
Figure 00000010
.
Из таблицы находим соответствующее значение коэффициента kn, по которому определяем число звеньев (варикапов) ЭПФ. В случае несовпадения вычисленного коэффициента с табличным значением выбираем ближайшее меньшее значение kn.
Если поддерживать значение напряжения управления (смещения) на емкости в 4÷5 раз больше амплитуды высокочастотных колебаний, то можно считать, что емкость в основном будет определяться лишь значениями напряжения смещения. А поскольку обратное сопротивление перехода более 1 МОм, то практически напряжение смещения на всех варикапах одинаково в виду ничтожно малого токораспределения по вертикальным плечам - проводимостям. Высокоомное сопротивление RД необходимо для предотвращения шунтирования входного сигнала источником управляющего напряжения.
Быстродействующее устройство измерения температуры газового потока (Фиг. 2) состоит из двух каналов 1 и 2 измерения для реализации дифференциальной схемы и блока 3 обработки информации (БОИ). Дифференциальное включение повышает быстродействие устройства в два с лишним раза из-за сокращения переходного процесса установления измеряемой разницы частот (Гулин А.И. Быстродействующий измеритель температуры газов в газотурбинном двигателе // Авиакосмическое приборостроение. - 2012. - №9 - С. 10-14).
Каждый канал измерения 1 (2) содержит струйный генератор (СГ) 4 (5), пьезоэлектрический преобразователь (ПЭП) 6 (7) для преобразования акустического сигнала в электрический, электронно-перестраиваемый фильтр (ЭПФ) 8 (9), компаратор фаз (КФ) 10 (11), ключ 12 (13), генератор пилообразного напряжения (ГПН) 14 (15), одновибратор (ОВ) 16 (17), преобразователь напряжение-код (ПНК) 18 (19).
Блок обработки информации содержит вычитатель кодов (ВК) 20, один элемент «ИЛИ» 22, три схемы «И» 21, 23 и 25, первый инвертор 24 и второй 26, два делителя кодов (ДК) 27 и 28.
Устройство работает следующим образом. При помещении двух СГ 4 и 5, расположенных в одном корпусе в газовый поток, абсолютную температуру Θ которого измеряют, в них возбуждаются акустические колебания с частотами
Figure 00000011
и
Figure 00000012
, преобразуемые с помощью ПЭП 6 и 7 в соответствующие электрические колебания, которые в свою очередь поступают через первые входы ЭПФ 8 и 9 на первые входы КФ 10 и 11, на вторые входы которых частоты
Figure 00000013
и
Figure 00000014
поступают непосредственно с выходов ПЭП 6 и 7. Выходы КФ через ключи 12 и 13 и первые входы ГПН 14 и 15, запускаемых ОВ 16 и 17 через вторые входы, управляют временем разверток линейно изменяющихся напряжений, поступающих на соответствующие вторые управляющие входы ЭПФ 8 и 9. ЭПФ под воздействием ГПН перестраивают ЭПФ на первые гармоники, начиная с частот
Figure 00000015
и
Figure 00000016
, до совпадения фаз на соответствующих компараторах, реализуя принцип фазовой автоподстройки частоты. При этом компараторы через соответствующие ключи фиксируют напряжения U1 и U2 с выходов ГПН 14 и 15, поступающие на ПНК 18 и 19, которые формируют коды N1 и N2, пропорциональные измеряемой температуре газового потока θ.
В блоке обработки информации с выхода ВК 20, реализующем дифференциальный принцип измерения, разница кодов ΔN=N1-N2, также пропорциональная температуре газового потока, через третий вход схемы «И» 21, на два других которой поступают разрешающие напряжения с выходов ГПН 14 и 15, и элемент «ИЛИ» 22 поступает на выход.
При выходе из строя одного из каналов измерения, например первого, схема «И» 21 запирается нулевым потенциалом с выхода ГПН 14, открывая через инвертор 24 схему «И» 23, а код N2 после деления в k2 раз ДК 28 через второй вход схемы «И» 23 и элемент «ИЛИ» 22 поступает на выход в виде ΔN.
Аналогичным образом работает схема при выходе из строя второго канала измерения.
Коэффициенты деления k1 и k2 делителей кодов 27 и 28 выбирают таким образом, чтобы коды на их выходах были равны разности кодов ΔN, т.е.
Figure 00000017
.
Итак, заявляемое изобретение позволяет повысить быстродействие и точность, а также упростить схему устройства измерения температуры газового потока, что обеспечивает его высокую надежность.

Claims (1)

  1. Быстродействующее устройство измерения температуры газового потока, состоящее из двух каналов измерения и блока обработки информации, при этом каждый из двух каналов измерения содержит струйный генератор, пьезоэлектрический преобразователь, электронно-перестраиваемый фильтр, соединенный с первым входом компаратора фаз, осуществляющий фазовую подстройку частоты фильтра до равенства фаз с первой гармоники полигармонического сигнала, поступающего непосредственно с выхода пьезоэлектрического преобразователя на второй вход компаратора, выход которого через ключ соединен с первым управляющим входом генератора пилообразного напряжения, второй вход которого соединен с одновибратором, а выход соединен с управляющим входом электронно-перестраиваемого фильтра, при этом выход генератора пилообразного напряжения первого канала измерения соединен со вторым входом первой схемы «И», первым инвертором блока обработки информации и с преобразователем напряжение-код; выход генератора пилообразного напряжения второго канала измерения соединен с первым входом первой схемы «И», вторым инвертором блока обработки информации и с преобразователем напряжение-код; при этом выход преобразователя напряжение-код первого канала измерения соединен с первым делителем кода блока обработки информации и с первым входом вычитателя кодов, а выход преобразователя напряжение-код второго канала измерения соединен со вторым делителем кода и со вторым входом вычитателя кодов; разница кодов, реализующая дифференциальную схему измерения температуры, через третий вход первой схемы «И» и элемент «ИЛИ» поступает на выход; при этом, в случае выхода из строя второго канала измерения, в блоке обработки информации устанавливается соединение преобразователя напряжение-код первого канала измерения через первый делитель кодов, второй вход третьей схемы «И», первый вход которого соединен с выходом генератора пилообразного напряжения второго канала измерения через второй инвертор, и элемент «ИЛИ» на выход; при выходе из строя первого канала измерения в блоке обработки информации устанавливается соединение преобразователя напряжение-код второго канала измерения через второй делитель кодов, второй вход второй схемы «И», первый вход которого соединен с выходом генератора пилообразного напряжения первого канала измерения через первый инвертор, и элемент «ИЛИ» на выход.
RU2015135577/28A 2015-08-21 2015-08-21 Быстродействующее устройство измерения температуры газового потока RU2604573C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015135577/28A RU2604573C1 (ru) 2015-08-21 2015-08-21 Быстродействующее устройство измерения температуры газового потока

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015135577/28A RU2604573C1 (ru) 2015-08-21 2015-08-21 Быстродействующее устройство измерения температуры газового потока

Publications (1)

Publication Number Publication Date
RU2604573C1 true RU2604573C1 (ru) 2016-12-10

Family

ID=57776681

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015135577/28A RU2604573C1 (ru) 2015-08-21 2015-08-21 Быстродействующее устройство измерения температуры газового потока

Country Status (1)

Country Link
RU (1) RU2604573C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659612C1 (ru) * 2017-05-02 2018-07-03 Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Дифференциальная система измерения температуры газов газотурбинного двигателя

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706227A (en) * 1963-03-27 1972-12-19 Us Army Pneumatic thermometer
SU467242A1 (ru) * 1972-11-21 1975-04-15 Предприятие П/Я А-3251 Устройство дл измерени температуры газовых потоков
SU808879A1 (ru) * 1979-03-11 1981-02-28 Уфимский Авиационный Институтим. C.Орджоникидзе Устройство дл измерени тем-пЕРАТуРы гАзОВОгО пОТОКА
SU909590A1 (ru) * 1980-06-09 1982-02-28 Уфимский авиационный институт им.С.Орджоникидзе Устройство дл измерени температуры газового потока
SU1093911A2 (ru) * 1983-04-08 1984-05-23 Уфимский Ордена Ленина Авиационный Институт Им.Орджоникидзе Устройство дл измерени температуры газового потока

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706227A (en) * 1963-03-27 1972-12-19 Us Army Pneumatic thermometer
SU467242A1 (ru) * 1972-11-21 1975-04-15 Предприятие П/Я А-3251 Устройство дл измерени температуры газовых потоков
SU808879A1 (ru) * 1979-03-11 1981-02-28 Уфимский Авиационный Институтим. C.Орджоникидзе Устройство дл измерени тем-пЕРАТуРы гАзОВОгО пОТОКА
SU909590A1 (ru) * 1980-06-09 1982-02-28 Уфимский авиационный институт им.С.Орджоникидзе Устройство дл измерени температуры газового потока
SU1093911A2 (ru) * 1983-04-08 1984-05-23 Уфимский Ордена Ленина Авиационный Институт Им.Орджоникидзе Устройство дл измерени температуры газового потока

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659612C1 (ru) * 2017-05-02 2018-07-03 Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Дифференциальная система измерения температуры газов газотурбинного двигателя

Similar Documents

Publication Publication Date Title
Cao et al. Internal resonance for nonlinear vibration energy harvesting
Cupertino et al. Running DFT-based PLL algorithm for frequency, phase, and amplitude tracking in aircraft electrical systems
CN108535679B (zh) 基于插值法的电容式电压互感器谐波电压精准测量方法
Urbina-Salas et al. Instantaneous power quality indices based on single-sideband modulation and wavelet packet-Hilbert transform
Suárez et al. Stability and noise analysis of coupled-oscillator systems
Fedele et al. An adaptive quasi-notch filter for a biased sinusoidal signal estimation
US20140035649A1 (en) Tuned resonant clock distribution system
RU2604573C1 (ru) Быстродействующее устройство измерения температуры газового потока
Liu et al. Interference signal frequency tracking for extracting phase in frequency scanning interferometry using an extended Kalman filter
Georgiadis et al. New techniques for the analysis and design of coupled-oscillator systems
Yamgoué et al. Propagation of modulated waves in narrow-bandpass one-dimensional lattices
RU2626232C1 (ru) Дифференциальное устройство измерения температуры газового потока
Wu et al. Effect of adding DC‐offset estimation integrators in there‐phase enhanced phase‐locked loop on dynamic performance and alternative scheme
RU2625557C1 (ru) Способ для определения границ рабочего диапазона импульсного генератора систем фазовой синхронизации и устройство для его реализации
CN103344414A (zh) Pzt调制系数测试装置及测试方法
Suchenek et al. Programmable pulse generator based on programmable logic and direct digital synthesis
RU2659612C1 (ru) Дифференциальная система измерения температуры газов газотурбинного двигателя
RU2614191C1 (ru) Способ измерения нелинейных искажений чм сигнала, сформированного методом прямого цифрового синтеза
Shah et al. Study of multi-objective photovoltaic grid connected system using SOGI-FLL and NL-SOGI-FLL-APF based DQ hysteresis method
Serov et al. Sample rate converter as a means of reducing measurment error of the voltage spectrum by application of fft
Wang et al. Single-phase phase-locked loop based on tracking differentiator
CN103983854A (zh) 石英晶体电参数测试系统
Giampaolo et al. High-dynamic single-phase Hilbert-based PLL for improved phase-jump ride-through in grid-connected inverters
RU2715799C1 (ru) Способ для определения границ рабочего диапазона классических систем фазовой автоподстройки и устройство для его реализации
Føyen et al. Single-phase synchronisation with Hilbert transformers: a linear and frequency independent orthogonal system generator

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170822